Status of PRs towards a release
(and a few other things)

Andrea Valassi (CERN)

(THANKS to Olivier for the team work on all these PRs!)

Madgraph on GPU development meeting, 3@ September 2024
https://indico.cern.ch/event/1355160

(previous update was last week on August 27 — only mentioning changes since then)

C\E/RW A. Valassi - status of PRs etc. 3 September 2024

~Z_

https://indico.cern.ch/event/1355160

(1) Towards the release

C\E/RW A. Valassi — status of PRs etc. 3 September 2024 2

~Z_

following up on Channelid .
Bt Ll (master_june24) C h an n EI I d
(master_june24)

« I confirm my opinion: PR #830 (Sep 2023 — Jun 2024) was insufficiently tested
~ There are issues that could have been spoted with existing tests
~ There are tures for which ne houid have been added
~ There are L been added
— Especiall, the SIMD implementation i imost completely wrong
— Some parts of the code were modified and there was no need for that

« Therefore: | essentially reimplemented channelid from scratch in 2 weeks

= Olivier last week: first big priority (after the easy issues in the last slide) iS merging channelid

« PR #882 by AV accepted by OM — changes requested by OM, implemented by AV
— Fixed tests failing in the new CI, resynced with latest master — Status AV: ready to merge

« My proposed way forward on this — Olivier is this OK? (I am waiting for a go-ahead)
— 1. OM review/accept mgbamcnlo#121 into gpucpp (NB: forget about “gpucpp_june24"...)
— 2. AV merge mg5amcnlo#121 into gpucpp (without squashing! can we disable this?...)
—3. AV merge #882 (branch valassi/june24) into master_june24

—4. AV close #830 (same branch valassi/june24) into master
—5. AV create/merge PR master_june24 into master (ask OM for review, even if not needed)

27 August 2024 5

(A. Valassi — status of PRs (plus CMS/DY, timers/profiling, sampling...)

 Olivier two weeks ago: first big priority is merging channelid

« Status: FINALLY MERGED! — In detall
— 1. Merged mg5amcnlo#121 (branch valassi_gpucpp_june24) into gpucpp

— 2. Merged #882 (branch valassi/june24) into master_june24
— 2. Merged #985 (branch master_june24) into master

« And now... must merge/rebase everything else with the gpucpp+master baseline
— This is where some conflicts and issues start to appear...

3 September 2024

C\E/RW A. Valassi — status of PRs etc.

~Z_

https://github.com/mg5amcnlo/mg5amcnlo/pull/121
https://github.com/madgraph5/madgraph4gpu/pull/882
https://github.com/madgraph5/madgraph4gpu/pull/985

Next: Fortran helicity filtering and pp_tt012]

Next: Fortran helicity filtering and pp_tt012j

pp_tt012j xsec mismatch — mirror processes

« AV initial proposal in PR #935 (30 July): add one RESET_CUMULATIVE_VARIABLE

* OM counterproposal in PR #955: remove the second helicity filtering in Fortran!
— Requires merging gpucpp_goodhel into gpucpp and then fixing cudacpp accordingly
— En passant, OM also made LIMHEL a runcard parameter — cudacpp integration needed

« Olivier last week: second big priority (after channelid and june24)

« Status AV: agree on the direction, will look at it this week (did not have time yet)

6

alassi - status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024

« Olivier two weeks ago: second big priority (after channelid/june24)

» Status AV: PR #986 (branch goodhel) based on Olivier's 955 is ready and tested
— With its mg5amcnlo counterpart #137 (branch valassi_goodhel)
— Note: this includes many bits of the upgrade to 3.6.0 (but Olivier has more... next slide)

« WIP now: update this to the latest gpucpp/master including june24
— First issue: merge conflicts (maybe better solved by Olivier's gpuccp_for360, next slide)
— Second issue: with my WIP version, | get a 0.1% cross-section mismatch #991

C_E/RW A. Valassi — status of PRs etc. 3 September 2024
N7

https://github.com/madgraph5/madgraph4gpu/pull/986
https://github.com/mg5amcnlo/mg5amcnlo/pull/137
https://github.com/madgraph5/madgraph4gpu/issues/991

Next: Olivier’s gpucpp_for360

« Olivier this week: third big priority (after channelid/june24 and goodhel)
— Our cudacpp release is meant to be in v3.6.0...

» This is a series of patches that are needed on top of june24 and goodhel
— They fix issues resulting from the update to 3.6.0 (in goodhel) and the interplay with the rest

e Status: WIP WIP
— Done AV/OM: merged gpucpp_goodhel #138 into gpucpp_for360
— To do: more conflict resolution, on the mg5amcnlo side
— To do: and then, the integration with the cudacpp side

C\E/RW A. Valassi — status of PRs etc. 3 September 2024

~Z_

https://github.com/mg5amcnlo/mg5amcnlo/pull/138

Other issues towards the release

(incomplete list, random order)

Before the release:
» Packaging of cudacpp as a git submodule will be one of the priorities
* Understand and fix FPEs in DY +jets reported by CMS #942

* Check that results are the same with and without vector interfaces #5678 (OM)

— Understand xsec variation with vector_size (32 vs 16384) in DY+3jets #959
* (Check that parameter cards are handled correctly #660)

Are the following needed before the release?
* Understand xsec mismatch (Fortran vs cudacpp) in DY+4jets reported by
* Additional

CMS #944

'3” Cl by OM |- PR #865 (still under review by AV, sorry for the delay)

+ Sort out various multi-GPU issues from today’s meeting with CMS

will open tickets)

Vs

done
(fixci branch, not 865)

C\E/RW A. Valassi — status of PRs etc.

~Z_

L\Sy\/é A. Valassi - status of PRs (plus CMS/DY, timers/profiling, sampling...) 27 August 2024

Other issues
towards the release

Daniele’s talk

done, three issues

3 September 2024

(2) Miscellanea

C\E/RW A. Valassi — status of PRs etc. 3 September 2024

~Z_

Build times: from templates to linked objects

 Just some quick tests after a discussion at the meeting last week
— WIP PR #978 — reusing bits and pieces of previous work for splitting kernels

HELINL=0 (default) aka "templates with moderate inlining".

This has templated helas functions FFV. The templates are in the memory access classes, i.e. essentially the template specialization
depends on the AOSOA format used for momenta, wavefunctions and couplings. The sigmakin and calculate_wavefunction
functions in CPPProcess.cc use these templated FFV functions, which are then implemented (and possibly inlined). The build times
can be long, because the same templates are reevaluated all over the place, but the runtime speed is good.

HELINL=1 aka "templates with aggressive inlining".

This is the mode that | had introduced to mimic -f1to i.e. link time optimizations. The FFV functions (and others) are inlined with
always_inline . This significantly increases the build times because in practice it does the equiavelent of link time optimizations
(while compiling CPPProcess.o). The runtime speed can get a signifcant boost for simple processes, where data access is important]
but the speedups tend to decrease for complex processes, where arithmetic operations dominate. In a realistic madevent
environment, this is probably not interesting: for simple processes, it can be ineresting, but the ME calculation is outnumbered by
non-ME fortran parts and so it is not interesting to have faster MEs; in complex processes, the build times become just too large.

HELINL=L aka "linked objects".

This is the new mode | introduced here. The FFV functions are pre-compiled for the appropriate templates into .0 object files. A
technical detail: the HelAmps.cc file is comman in Subprocess, but it must be compiled in each P* subdirectory, because the
memory access classes may be different: for instance, a subprocess with 3 final state particles and one with 4 particles have

To do: test build times separately
for cuda and each SIMD mode

different AOSOA, hence different memory access classes. My tests so far show that the build times can decrease/improve by a
factor two, while the runtime can increase/degrade by around 10% for complex processes. (More detailed studies should show if

it is the cuda or c++ build times that improve, or both). This is work that goes somewhat in the direction of splitting kernels and
that | imagined in that context, but it is not exactly the same. It may become interesting for users especially for complex processes
and especially as long as the non-ME part is still important (eg DY +3j where cuda ME becomes 25% and sampling non-ME is over

50%, there having a ME that is 10% slower is acceptable).

Quick test using HELINL=L mode: does gg to ttggg (2 to 6) become more manageable?
Preliminary answer: NO unfortunately

C\E/RW A. Valassi — status of PRs etc.

~Z_

3 September 2024

https://github.com/madgraph5/madgraph4gpu/pull/978

