

## Sensitivity of 1 TeV ILC to measure CP-odd Higgs interactions in ZZ-fusion

I. Bozovic Jelisavcic, N. Vukasinovic, G. Kacarevic



VINCA Institute of Nuclear Sciences,

Belgrade, Serbia

ECFA meeting on ee to ZH angular measurements

12 December 2023

## **OPENING QUESTIONS/OUTLINE**

- 1. Could 125 GeV Higgs mass eigenstate be a mixture of CP-odd and CP-even states via mixing angle  $\Psi_{\rm CP}$ ?
- 2. If so, with what precision  $\Psi_{\rm CP}$  can be measured at 1 TeV ILC ?
- 3. What is the interpretation of the measurement sensitivity (in the context of Snowmass CPV White paper [arXiv:2205.07715v3])?

## A WORD ON ILC

|     | √s          | beam<br>polarisation     | ∫Ldt<br>(baseline)                                                                                   |
|-----|-------------|--------------------------|------------------------------------------------------------------------------------------------------|
| ILC | 0.1 - 1 TeV | e-: 80%<br>e+: 30% (20%) | 2 ab <sup>-1</sup> @ 250 GeV<br>0.2 ab <sup>-1</sup> @ 350 GeV<br>4 ab-1 @ 500 GeV<br>8 ab-1 @ 1 TeV |



An off-shore Higgs factory, realized in collaboration with international partners, in order to reveal the secrets of the Higgs boson. The current designs of FCC-ee and ILC meet our scientific requirements. The US should actively engage in feasibility and design studies.

P5 Panel Recommendation 2

- Comes as a 'ready to take' project (mature design, proven technologies)
- Largest ever accelerator prototype (operating now as E-XFEL), full industrialization of ILC-type
   SCRF cavity production
- Tunable, upgradeable (from Z-pole, via Higgs factory mode, 500 GeV up to 1 TeV, or by replacing accelerating structures with advanced technologies)
- Numerous benefits from the high energy phases (≥500 GeV) and beam polarization

## A WORD ON ILD

- Two validated detector concepts:
   ILD and SiD
- Physics driven requirements
- Decades of extensive detector R&D ⇒
   mature design (& available technologies)
- Multiple R&D collaborations involved (CALICE, FCAL, LCTPC,..)





#### ECFA meeting on ee to ZH angular measurements 12 December 2023

## SENSITIVE OBSERVABLE

- Generic model of CPV mixing:  $h_{125}$ =H·cos  $\Psi_{CP}$  + A·sin $\Psi_{CP}$
- CP-sensitive observable: angle between production planes  $\Delta \phi$
- As shown in [arXiv:2203.11707v3]  $\Delta\Phi$  carries the most information on the Higgs CP state

 $\Delta \Phi = - \begin{cases} arc \cos{(\cos{\Delta}\Phi)}, \ sgn(sin) \ \Phi \ge 0 \\ 2\pi - arc \cos{(\cos{\Delta}\Phi)}, \ sgn(sin) \ \Phi \le 0 \end{cases}$ 



#### SIGNAL AND BACKGROUND

| 1 TeV                                               | σ (fb)                       | Expected in 8 ab <sup>-1</sup><br>full range | Reconstructed with ILD                          |  |  |  |
|-----------------------------------------------------|------------------------------|----------------------------------------------|-------------------------------------------------|--|--|--|
| Signal:                                             | 10                           | 104000                                       | 2.10 <sup>5</sup> DELPHES~36.6 ab <sup>-1</sup> |  |  |  |
| $e^+e^-  ightarrow Hee, H  ightarrow b\overline{b}$ | 13                           |                                              | 3495 full sim. ~0.22 ab <sup>-1</sup>           |  |  |  |
| $e^+e^-  ightarrow q\bar{q}l^+l^-$                  | 255                          | 2·10 <sup>6</sup>                            | 1.10 <sup>6</sup> DELPHES                       |  |  |  |
|                                                     |                              |                                              | 5886 full sim.                                  |  |  |  |
| $e^+e^- \rightarrow q \overline{q}$                 | $ \rightarrow q\bar{q}$ 9375 |                                              | 120343 full sim.                                |  |  |  |
| $e^+e^-  ightarrow q\bar{q} l v$                    | 4116                         | 32.9·10 <sup>6</sup>                         | 955058 full sim.                                |  |  |  |



- Generator level WHIZARD
   V2.8.3/UFO/Higgs characterization
   model signal and WHIZARD 1.95/SM
   background
- $H \rightarrow b\overline{b}$  (to suppress eeγ background)
- b-tagging efficiency is idealized to 100%)

500 GeV, 1 TeV energies are optimal due to interplay of x-section and centrality

Unpolarized beams

### GENERATED AND RECONSTRUCTED SIGNAL

**Corrected** reconstructed signal for pure scalar  $\Psi_{CP}=0$ , **generated** information (WHIZARD) and **uncorrected** reconstructed signal



- o Acceptance correction needed to retrieve full physical information
- o Generated information is reasonably well reproduced with corrected reconstructed data

#### **EVENT SELECTION**

#### • Preselection – electron isolation:

- $\circ m_{e^+e^-} > 200~{
  m GeV}$  (veto HZ)
- $\circ \quad E_{e\pm} \! > 60 \; {\rm GeV}$
- DELPHES electron isolation

$$\Delta R_{max} = 0.5$$

$$p_{Tmin} = 0.5 \text{ GeV}$$

$$I = \frac{\sum_{i \neq P}^{p_T(i) > p_T^{min}} p_T(i)}{p_T(P)} < 0.12$$

Signal preselection efficiency: ~71%

#### $\circ$ $\,$ Selection cuts:

- $\circ \quad 80 \; GeV < m_{q\bar{q}} < 160 \; GeV$
- $\circ m_{Z_1,Z_2} > 30 \; GeV$
- $\circ \quad p_{Tee} > 15 \; GeV,$
- $\circ p_{T_{miss}} > 150 \, GeV$
- Selection efficiency: 96%
- Total signal efficiency: ~ 68%



• **Unbiased selection** w.r.t.  $\Delta \Phi$ • Background is CP insensitive, fully suppressed (preselection efficiency  $\leq 10^{-4}$ )

### ANGULAR OBSERVABLE $\Delta\Phi$ and mixing angle $\Psi_{\rm CP}$

 $\circ~$  Minimum of  $\Delta \Phi$  shifts for non-zero  $\Psi_{\rm CP}$ 

• Differently from the H $\rightarrow \tau \tau$  angular observable whose dependence on  $\Psi_{CP}$  can be derived from the differential x-section, here  $\Psi_{CP}$  has to be extracted **empirically** 



ECFA meeting on ee to ZH angular measurements

# HOW TO EXTRACT $\psi_{\text{CP}}?$

- ✓ Minimum of  $\Delta \Phi$  is sensitive to  $\Psi_{CP}$ ;
- 1. Determine position of the local minimum (b/a) from experimental (pseudo) data:  $f(\Delta \Phi, \Psi_{CP})=A+B \cdot cos(a \cdot \Delta \Phi - b)$
- 2. Position (b/a)/  $\Psi_{CP}$  is a linear function of  $\Psi_{CP}$ : (b/a)/  $\Psi_{CP}=k \cdot \Psi_{CP}+m$
- 3. Determine from simulation coefficients k, m
- 4.  $\Psi_{CP}$  can be retrieved from quadratic equation:  $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$



# HOW TO EXTRACT $\psi_{CP}$ ?

- ✓ Minimum of  $\Delta \Phi$  is sensitive to  $\Psi_{CP}$ ;
- 1. Determine position of the local minimum (b/a) from experimental (pseudo) data:  $f(\Delta \Phi, \Psi_{CP})=A+B \cdot cos(a \cdot \Delta \Phi - b)$
- 2. Position (b/a)/  $\Psi_{CP}$  is a linear function of  $\Psi_{CP}$ : (b/a)/  $\Psi_{CP}=k \cdot \Psi_{CP}+m$
- 3. Determine from simulation coefficients k, m
- 4.  $\Psi_{CP}$  can be retrieved from quadratic equation:  $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$



# HOW TO EXTRACT $\psi_{CP}$ ?

- ✓ Minimum of  $\Delta \Phi$  is sensitive to  $\Psi_{CP}$ ;
- 1. Determine position of the local minimum (b/a) from experimental (pseudo) data:  $f(\Delta \Phi, \Psi_{CP})=A+B \cdot cos(a \cdot \Delta \Phi - b)$
- 2. Position (b/a)/  $\Psi_{CP}$  is a linear function of  $\Psi_{CP}$ : (b/a)/  $\Psi_{CP}=k \cdot \Psi_{CP}+m$
- 3. Determine from simulation coefficients k, m
- 4.  $\Psi_{CP}$  can be retrieved from quadratic equation:  $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$



# HOW TO EXTRACT $\psi_{\text{CP}}?$

- ✓ Minimum of  $\Delta \Phi$  is sensitive to  $\Psi_{CP}$ ;
- 1. Determine position of the local minimum (b/a) from experimental (pseudo) data:  $f(\Delta \Phi, \Psi_{CP})=A+B \cdot cos(a \cdot \Delta \Phi - b)$
- 2. Position (b/a)/  $\Psi_{CP}$  is a linear function of  $\Psi_{CP}$ : (b/a)/  $\Psi_{CP}=k \cdot \Psi_{CP}+m$
- 3. Determine from simulation coefficients k, m
- 4.  $\Psi_{CP}$  can be retrieved from quadratic equation:  $k \cdot \Psi_{CP}^2 + m \cdot \Psi_{CP} - (b/a) = 0$



#### **PSEUDO-EXPERIMENTS**

 $\Delta \Psi^{CP}_{(stat.)}$ = 4 mrad



- o 2000 pseudo-experiments give 4 mrad for statistical dissipation of the mean
- Pull distribution indicates that uncertainties are correctly estimated
- $\circ~$  Systematic error from the fit parameters uncertainties gives ~1 mrad

#### ECFA meeting on ee to ZH angular measurements 12 December 2023

#### **INTERPRETATION**

o Common framework is defined in the Snowmass CPV White paper: benchmark parameter

 $f_{CP} \sim sin^2(\Delta \Psi_{CP})$  quantifying relative contribution from CP-odd amplitude  $f_{CP}^{hX} \equiv \frac{\Gamma_{h \to X}^{CP \text{ odd}}}{\Gamma_{h \to X}^{CP \text{ odd}} + \Gamma_{h \to X}^{CP \text{ even}}}$ 

 Interpretation for LHC/HL-LHC and future Higgs factories, for EFT and CP-sensitive observable based measurements (68% CL, pure scalar) [arXiv:2205.07715v3]

| Collider                          | pp                  | pp                  | pp           | $e^+e^-$            | $e^+e^-$            | $e^+e^-$            | $e^+e^-$               | $e^-p$       | $\gamma\gamma$ | $\mu^+\mu^-$ | $\mu^+\mu^-$ | target      |
|-----------------------------------|---------------------|---------------------|--------------|---------------------|---------------------|---------------------|------------------------|--------------|----------------|--------------|--------------|-------------|
| E (GeV)                           | 14,000              | 14,000              | 100,000      | 250                 | 350                 | 500                 | 1,000                  | $1,\!300$    | 125            | 125          | 3,000        | (theory)    |
| $\mathcal{L}$ (fb <sup>-1</sup> ) | 300                 | 3,000               | 30,000       | 250                 | 350                 | 500                 | 1,000                  | 1,000        | 250            | 20           | 1,000        |             |
| HZZ/HWW                           | $4.0 \cdot 10^{-5}$ | $2.5 \cdot 10^{-6}$ | $\checkmark$ | $3.9 \cdot 10^{-5}$ | $2.9 \cdot 10^{-5}$ | $1.3 \cdot 10^{-3}$ | $3.0 \cdot 10^{-6}$    | ) ✓          | $\checkmark$   | $\checkmark$ | $\checkmark$ | $< 10^{-5}$ |
| $H\gamma\gamma$                   |                     | 0.50                | $\checkmark$ |                     |                     |                     | $(10 \text{ ab}^{-1})$ | _            | 0.06           |              |              | $< 10^{-2}$ |
| $HZ\gamma$                        |                     | $\sim 1$            | $\checkmark$ | —                   | _                   |                     | $\sim 1$               |              | _              |              | _            | $< 10^{-2}$ |
| Hgg                               | 0.12                | 0.011               | $\checkmark$ | _                   | _                   | _                   | _                      |              |                | _            | _            | $< 10^{-2}$ |
| $Ht\bar{t}$                       | 0.24                | 0.05                | $\checkmark$ |                     |                     | 0.29                | 0.08                   | $\checkmark$ |                |              | $\checkmark$ | $< 10^{-2}$ |
| $H\tau\tau$                       | 0.07                | 0.008               | $\checkmark$ | 0.01                | 0.01                | 0.02                | 0.06                   |              | $\checkmark$   | $\checkmark$ | $\checkmark$ | $< 10^{-2}$ |
| $H\mu\mu$                         |                     | _                   | —            | _                   | _                   | _                   | —                      | _            |                | $\checkmark$ | _            | $< 10^{-2}$ |

ECFA meeting on ee to ZH angular measurements

1 TeV ILC

- ✓ First measurement in VBF
- ✓ First measurement in HZZ vertex based on angular observable
- ✓ Full background simulation of ILD detector and fast simulation of the signal

✓ Realistic ILC running scenario

**INTERPRETATION** 

#### (68% CL, pure scalar)

 $e^+e^$  $e^-p - \gamma \gamma - \mu^+ \mu^- - \mu^+ \mu^$  $e^+e^$  $e^+e^$  $e^+e^-$ Collider target ppppppE (GeV)  $1.300 \ 125$ 1253.000 (theory) 14.00014.000100.000 2503505001 TeV  $\mathcal{L}$  (fb<sup>-1</sup>) 3003.00030,000 2503505008 ab<sup>-1</sup>  $1.000 \ 250$ 201.000 $< 10^{-5}$ HZZ/HWW $4.0 \cdot 10^{-5} \ 2.5 \cdot 10^{-6}$  $3.9 \cdot 10^{-5} \ 2.9 \cdot 10^{-5} \ 1.3 \cdot 10^{-5}$ **1.6** ·10<sup>-5</sup>  $< 10^{-2}$  $H\gamma\gamma$ 0.060.50 $\checkmark$  $< 10^{-2}$  $HZ\gamma$  $\sim 1$  $\sim 1$  $\checkmark$  $< 10^{-2}$ Hgg 0.120.011  $< 10^{-2}$  $Ht\bar{t}$ 0.240.050.290.08 $< 10^{-2}$  $H\tau\tau$ 0.070.0080.010.010.020.06 $\checkmark$  $< 10^{-2}$  $H\mu\mu$ 

## SUMMARY

- ✓ Complete simulation of CP Higgs mixing angle ( $\Psi_{\rm CP}$ ) measurement is performed at 1 TeV ILC with the ILD detector
- ✓ This is the first result in VBF fusion based on angular observable ( $\Delta \Phi$ );
- ✓ Knowing the dependence of  $\Delta \Phi$  minimum to  $\Psi_{\rm CP}$  from simulation,  $\Psi_{\rm CP}$  can be determined from (experimental) data;
- ✓ From 8 ab<sup>-1</sup> of 1 TeV ILC data, pure scalar state should be measured with 4 mrad statistical uncertainty of  $\Psi_{CP}$  at 68% CL; Systematic uncertainty from the fit is found to be smaller (< 1 mrad);
- ✓ The above uncertainty corresponds to  $f_{\rm CP} \approx 1.6 \cdot 10^{-5}$  approaching theoretical target;
- ✓ The precision can be improved in combination with other Higgs decay channels (i.e.  $H \rightarrow WW \rightarrow 4$ -jets).