

FCC-ee Higgs CP Studies:

Nicholas Pinto (JHU), Andrei Gritsan (JHU), Jan Eysermans (MIT), Valdis Slokenbergs (JHU)

ECFA meeting on e+e- to ZH angular measurements

12 December 2023

Massachusetts Institute of Technology

Past Studies: Snowmass 2013

arXiv:1309.4819

$$f_{\rm CP}^{HX} \equiv \frac{\Gamma_{H \to X}^{\rm CP \ odd}}{\Gamma_{H \to X}^{\rm CP \ odd} + \Gamma_{H \to X}^{\rm CP \ even}} \qquad \qquad f_{CP}^{HVV} = \frac{|a_3^{HVV}|^2}{\sum |a_i^{HVV}|^2 (\sigma_i^{HVV} / \sigma_3^{HVV})} \,,$$

Past Studies: Snowmass 2022

arXiv:2205.07715

		E (GeV)	\mathcal{L} (fb ⁻¹)	f_{CP}^{HVV}	collider	energy	$\int \mathcal{L} dt \; (\mathrm{fb}^{-1})$	production	σ (fb)	decay	$\sigma \times \mathcal{B}$ (fb)	$N_{ m prod}$	$N_{ m reco}$	$f_{ m jet}$
	$ e^+ e^- \to ZH $			JUI	pp	$14 { m ~TeV}$	3000	$gg \to H$	49850	$H \to Z Z^* \to 4\ell$	6.23	18694	5608	0.1
	$\left[\begin{array}{c} \sqrt{s} = 250 \text{GeV}, \mathscr{L} = 250 \text{fb}^{-1} \end{array} \right]$	250	250	$\pm 3.4 \cdot 10^{-4}$	pp	$14~{\rm TeV}$	3000	$V^*V^* \to H$	4180	$H \to ZZ^* \to 4\ell$	0.52	1568	470	0.6
	+ $/ +$				pp	$14 { m ~TeV}$	3000	$W^* \to WH$	1504	$H \to Z Z^* \to 4\ell$	0.19	564	169	0.5
	6 / / /	250	2,500	$\pm 3.9 \cdot 10^{-5}$	pp	$14 { m TeV}$	3000	$Z^* \to ZH$	883	$H \to ZZ^* \to 4\ell$	0.11	331	99	0.5
$-2\ln(\mathcal{L}/\mathcal{L}_{\mathrm{ma}})$		350	350	$\pm 1.2 \cdot 10^{-4}$	pp	$14 { m TeV}$	3000	$t\bar{t} \rightarrow t\bar{t}H$	611	$H \to ZZ^* \to 4\ell$	0.08	229	69	1.0
					pp	$14 { m TeV}$	3000	$V^*V^* \to H$	4180	$H \to \gamma \gamma$	9.53	28591	8577	0.6
	4 <u>95 % CL</u>	270	$3,\!500$	$\pm 2.9 \cdot 10^{-5}$	pp	$14 { m TeV}$	3000	$Z^* \to ZH$	883	$H \to b\bar{b}, Z \to \ell\ell$	34.3	102891	690	-
		300			e^+e^-	$250~{\rm GeV}$	250	$Z^* \to ZH$	240	$H \to b\bar{b}, Z \to \ell\ell$	9.35	2337	1870	-
		500	500	$\pm 4.3 \cdot 10^{-5}$	e^+e^-	$350~{\rm GeV}$	350	$Z^* \to ZH$	129	$H \to b\overline{b}, \ Z \to \ell\ell$	5.03	1760	1408	-
	2	500			e^+e^-	$500~{\rm GeV}$	500	$Z^* \to ZH$	57	$H \to b\bar{b}, \ Z \to \ell\ell$	2.22	1110	888	_
		500	$5,\!000$	$\pm 1.3 \cdot 10^{-5}$	e^+e^-	$1 { m TeV}$	1000	$Z^* \to ZH$	13	$H \to b\bar{b}, Z \to \ell\ell$	0.51	505	404	_
		500			e^+e^-	$250~{\rm GeV}$	250	$Z^*Z^* \to H$	0.7	$H \rightarrow b \bar{b}$	0.4	108	86	_
		1.000	1.000	$+1.0\cdot10^{-5}$	e^+e^-	$350~{\rm GeV}$	350	$Z^*Z^* \to H$	3	$H \rightarrow b \bar{b}$	1.7	587	470	_
-	0.002 -0.001 0 0.001 0.002	-,000 -,000		e^+e^-	$500~{\rm GeV}$	500	$Z^*Z^* \to H$	7	$H ightarrow b \overline{b}$	4.1	2059	1647	_	
	f_{CR}^{HZZ}	1.000	10,000	$\pm 3.0 \cdot 10^{-6}$	e^+e^-	$1 { m TeV}$	1000	$Z^*Z^* \to H$	21	$H ightarrow b \overline{b}$	12.2	12244	9795	_
	JUL	,	/											

Signal: $e^+e^- \rightarrow ZH \rightarrow ll \ b\overline{b}$. Background: $e^+e^- \rightarrow ZZ \rightarrow ll \ b\overline{b}$, $N_{reco,Background} \sim 1/10^{\text{th}}$ of signal, Z mass, angles input to combine, f_{CP}^{HVV} returned at 68% CL. 4+ different samples (SM Signal, BSM Signal, Background, SM/BSM Interference) used to produce fits.

Current Study

Goals:

- *Within FCC Framework*, reproduce past study fits using templates from FCC Reco-level simulation and yields from past LHE-level study.
- Reproduce fits but with the yields re-calculated based on luminosity, cross sections, and selection of the FCC samples.
- Generate 1 sample instead of many, use Matrix Element Likelihood Approach (MELA) to reweight to other samples.

Current Study

- This study shares selection with Jan Eysermans' and Ang Li's cross-sectional analysis.
- This analysis does not fully reconstruct the Higgs, it decays inclusively.
- Only manipulating a_3^{HVV}
- The study is run over the Winter2023 Campaign.

Sample Name	Processes	Generator	# of events	x-section(pb)							
Higgs Processes wzp6_ee_mumuH wzp6_ee_eeH	$e^+e^- ightarrow \mu^+\mu^- H$ $e^+e^- ightarrow e^+e^- H$	WHIZARD + PYTHIA6 WHIZARD + PYTHIA6	1,200,000 1,200,000	0.0067643 0.0071611							
Diboson Processes p8_ee_ZZ_ecm240 p8_ee_WW_ecm240	$e^+e^- ightarrow ZZ$ $e^+e^- ightarrow WW$	PYTHIA8 PYTHIA8	56,162,093 $373,375,386$	$1.35899 \\ 16.4385$							
Dilepton Processes wzp6_ee_mumu wzp6_ee_ee_Mee_30_150 wzp6_ee_tautau	$\begin{array}{c} e^+e^- \rightarrow \mu^+\mu^- \\ e^+e^- \rightarrow e^+e^- \\ e^+e^- \rightarrow \tau^+\tau^- \end{array}$	WHIZARD + PYTHIA6 WHIZARD + PYTHIA6 WHIZARD + PYTHIA6	53,400,000 85,400,000 52,400,000	$5.288 \\ 8.305 \\ 4.668$							
Electron Photon Pro	ocesses										
wzp6_egamma_eZ_Zmumu wzp6_gammae_eZ_Zmumu wzp6_egamma_eZ_Zee wzp6_gammae_eZ_Zee	$\begin{array}{l} e^-\gamma \rightarrow e^- Z(\mu^+\mu^-) \\ e^+\gamma \rightarrow e^+ Z(\mu^+\mu^+) \\ e^-\gamma \rightarrow e^- Z(e^+e^-) \\ e^+\gamma \rightarrow e^+ Z(e^+e^-) \end{array}$	WHIZARD + PYTHIA6 WHIZARD + PYTHIA6 WHIZARD + PYTHIA6 WHIZARD + PYTHIA6	6,000,000 5,600,000 6,000,000 6,000,000	0.10368 0.10368 0.05198 0.05198							
Photon Photon Processes											
wzp6-gaga_mumu_60 wzp6-gaga_ee_60 wzp6-gaga_tautau_60	$egin{array}{l} \gamma\gamma ightarrow\mu^+\mu^-\ \gamma\gamma ightarrow e^+e^-\ \gamma\gamma ightarrow au^+ au^- \end{array}$	WHIZARD + PYTHIA6 WHIZARD + PYTHIA6 WHIZARD + PYTHIA6	33,900,000 22,500,000 33,700,000	$1.5523 \\ 0.873 \\ 0.836$							
Other Processes	$e^+e^- \rightarrow \nu_e \bar{\nu}_e Z$	WHIZARD + PYTHIA6	2,000,000	0.033274							

These come from Jan's and Ang's study.

FCC-IDEA Detector

Detector simulation is done in the DELPHES framework.

The IDEA detector concept for FCC-ee

 $86 < m(\mu^+ \mu^-) < 96$

FCCAnalyses: FCC-ee Simulation (Delphes)

 $20 < p(\mu^+ \mu^-) < 60$

 $120 < m_{rec} < 140$

 $|\cos \theta_{miss}| < 0.98$

What is MELA?

• Use event kinematics to reweight from SM hypothesis to BSM hypothesis.

$$R = \frac{P_{BSM}}{P_{SM}}$$

• Also reweight from SM hypothesis to mixed states.

$$R = \frac{aP_{SM} + bP_{BSM}}{P_{SM}}$$

Reco-Level Angular Distributions

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

Reco-Level Angular Distributions

FCCAnalyses: FCC-ee Simulation (Delphes) ΖZ Events W⁺W⁻ $10 - \sqrt{s} = 240.0 \text{ GeV}$ √*s* = 240.0 GeV — ZH_0+ Z/γ 1.4 $L = 7.2 \ ab^{-1}$ — ZH_0-Rare $L = 7.2 \ ab^{-1}$ $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ $1.2 \stackrel{\frown}{\vdash} e^+ e^- \rightarrow ZH \rightarrow \mu^+ \mu^- + X$ - ZH_0+ 8 ____ ZH_0-6 0.8 0.6 Δ 0.4 2 0.2 سا میں ایس 0 n -0.5 0.5 -0.5 0.5 0 0 -1 $\cos(\theta_2)$ $\cos(\theta_2)$

FCCAnalyses: FCC-ee Simulation (Delphes)

Reco-Level Angular Distributions

Yields

Snowmass 2022

collider	energy	$\int \mathcal{L} dt$ (fb ⁻¹) production	σ (fb)	decay	$\sigma \times \mathcal{B}$ (fb)	$N_{ m prod}$	$N_{ m reco}$	$f_{ m jet}$	Energy (GeV)	$\int Ldt(fb^{-1})$	production	decay	$\sigma * B$ (fb)	N_{prod}	N_{reco}
pp	14 TeV	3000	$qq \rightarrow H$	49850	$H \to ZZ^* \to 4\ell$	6.23	18694	5608	0.1	250	250	$\mathrm{ee}{\rightarrow}\mathrm{Z*}\rightarrow\mathrm{ZH}$	$H \rightarrow X, Z \rightarrow \mu \mu$	8.08	2019	1615
pp	14 TeV	3000	$V^*V^* \to H$	4180	$H \to ZZ^* \to 4\ell$	0.52	1568	470	0.6	240	250	$\mathrm{ee}{\rightarrow}\mathrm{Z*}\rightarrow\mathrm{ZH}$	$H \rightarrow X, Z \rightarrow \mu \mu$	6.76	1690	1115
nn	14 TeV	3000	$W^* \rightarrow WH$	1504	$H \rightarrow ZZ^* \rightarrow 4\ell$	0.19	564	169	0.5	240	7200	$\mathrm{ee}{\rightarrow}\mathrm{Z}^*\rightarrow\mathrm{ZH}$	$H \rightarrow X, Z \rightarrow \mu \mu$	6.76	48672	32123
pp m	14 TeV	3000	$7^* \rightarrow 7H$	883	$H \rightarrow ZZ^* \rightarrow A\ell$	0.10	221	00	0.5	250	250	$ee \rightarrow ZZ$	$Z \rightarrow llbb$	-	-	▶ 184
pp	14 Iev	3000	$\Sigma \rightarrow \Sigma \Pi$	000	$II \rightarrow ZZ \rightarrow 40$	0.11	001	99	0.0	240	7200	$ee \rightarrow ZZ$	$Z \rightarrow X$	1360	$9.78 * 10^{6}$	15039
pp	14 TeV	3000	$tt \rightarrow ttH$	611	$H \to ZZ^* \to 4\ell$	0.08	229	69	1.0	240	7200	$ee \rightarrow WW$	$W \rightarrow X$	$1.64 * 10^4$	$1.18 * 10^8$	29610
pp	$14 { m TeV}$	3000	$V^*V^* \to H$	4180	$H ightarrow \gamma \gamma$	9.53	28591	8577	0.6	240	7200	$ee \rightarrow Z/\gamma$	$Z/\gamma \rightarrow l^+ l^-$	9596	$6.91 * 10^7$	18861
pp	$14 { m TeV}$	3000	$Z^* \to ZH$	883	$H \to b\bar{b}, Z \to \ell\ell$	34.3	102891	690	_			, ,				
e^+e^-	$250~{\rm GeV}$	250	$Z^* \to ZH$	240	$H \to b\bar{b}, \ Z \to \ell\ell$	9.35	2337	1870	ł							
e^+e^-	$350~{\rm GeV}$	350	$Z^* \to ZH$	129	$H \to b\bar{b}, Z \to \ell\ell$	5.03	1760	1408	_							
e^+e^-	$500~{\rm GeV}$	500	$Z^* \to ZH$	57	$H \to b\bar{b}, Z \to \ell\ell$	2.22	1110	888	-							
e^+e^-	$1 { m TeV}$	1000	$Z^* \to ZH$	13	$H \to b\bar{b}, Z \to \ell\ell$	0.51	505	404	_							
e^+e^-	$250~{\rm GeV}$	250	$Z^*Z^* \to H$	0.7	$H ightarrow b ar{b}$	0.4	108	86	-							
e^+e^-	$350~{\rm GeV}$	350	$Z^*Z^* \to H$	3	$H ightarrow b ar{b}$	1.7	587	470	-							
e^+e^-	$500~{\rm GeV}$	500	$Z^*Z^* \to H$	7	$H ightarrow b ar{b}$	4.1	2059	1647	-							
e^+e^-	$1 { m TeV}$	1000	$Z^*Z^* \to H$	21	$H ightarrow b ar{b}$	12.2	12244	9795	_							

Combine Fits: FCC LHE-Level Data, Snowmass Yields

- FCC LHE-level data used as input.
- Yields use values from Snowmass.
- 68% CL $f_{CP}^{HZZ} \approx \pm 4.4 * 10^{-4}$
- Verify that f_{CP}^{HZZ} values are comparable to Snowmass 2022.

Combine Fits: FCC Reco-Level Data, Snowmass Yields

- FCC Reco-level data used as input.
- Yields use values from Snowmass.
- 68% CL $f_{CP}^{HZZ} \approx \pm 4.1 * 10^{-4}$

Combine Fits: FCC Reco-Level Data, FCC Yields, Snowmass Background

- FCC Reco-level data used as input.
- Yields use values from FCC.
- 68% CL $f_{CP}^{HZZ} \approx \pm 3.7 * 10^{-5}$
- Aligns with Snowmass

projection for increased luminosity, even with detector effects.

Conclusions

- Fits with yields from FCC parameters and templates have been created.
 - We seem to agree with Snowmass.
- Next steps: Incorporate full backgrounds, optimize cuts.

References

- IDEA Detector:
 - https://inspirehep.net/files/64b3c8108ce781ee7a215284970eec70
- <u>Snowmass 2013: https://arxiv.org/pdf/1309.4819.pdf</u>
- <u>Snowmass 2022: https://arxiv.org/pdf/2205.07715.pdf</u>

Backup Plots: Stacked Histograms

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes) FCCAnalyses: FCC-ee Simulation (Delphes) Z/γ Rare 3.5⊢ √s = 240.0 GeV — ZH_0+ — ZH_0+ - √s = 240.0 GeV 6 — ZH_0-— ZH_0- $L = 7.2 \ ab^{-1}$ $L = 7.2 \ ab^{-1}$ $3 \vdash e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^- + X$ $e^+e^-
ightarrow ZH
ightarrow \mu^+\mu^- + X$ 2.5 4 2 3 1.5 2 0.5 ----0 0 -1 -0.5 0 0.5 -0.50.5 0 -1

Nicholas Pinto - Johns Hopkins University

 $\cos(\theta_2)$

 $\cos(\theta_2)$

Backup Plots: Φ

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

Backup Plots: Φ

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

