Probing the Higgs with angular observables at future e^+e^- colliders

Jiayin Gu

Fudan University

ECFA meeting Dec 12, 2023

[arXiv:1512.06877] Nathaniel Craig, JG, Zhen Liu, Kechen Wang

Jiayin Gu

- Angular distributions in $e^+e^- \rightarrow hZ$ can provide information in addition to the one from rate measurements.
- ▶ Theory framework [arXiv:1406.1361] M. Beneke, D. Boito, Y.-M. Wang
- Pheno study [arXiv:1512.06877] N. Craig, JG, Z. Liu, K. Wang
- Focusing on leptonic decays of Z (good resolution, small background, statistical uncertainty dominates).

$$\begin{aligned} \mathcal{A}_{\theta_1} &= \frac{1}{\sigma} \, \int_{-1}^{1} \, d\cos\theta_1 \, \mathrm{sgn}(\cos(2\theta_1)) \, \frac{d\sigma}{d\cos\theta_1} \,, \\ \mathcal{A}_{\phi}^{(1)} &= \frac{1}{\sigma} \, \int_{0}^{2\pi} \, d\phi \, \mathrm{sgn}(\sin\phi) \, \frac{d\sigma}{d\phi} \,, \\ \mathcal{A}_{\phi}^{(2)} &= \frac{1}{\sigma} \, \int_{0}^{2\pi} \, d\phi \, \mathrm{sgn}(\sin(2\phi)) \, \frac{d\sigma}{d\phi} \,, \\ \mathcal{A}_{\phi}^{(3)} &= \frac{1}{\sigma} \, \int_{0}^{2\pi} \, d\phi \, \mathrm{sgn}(\cos\phi) \, \frac{d\sigma}{d\phi} \,, \\ \mathcal{A}_{\phi}^{(4)} &= \frac{1}{\sigma} \, \int_{0}^{2\pi} \, d\phi \, \mathrm{sgn}(\cos(2\phi)) \, \frac{d\sigma}{d\phi} \,, \\ \mathcal{A}_{c\theta_1, c\theta_2}^{(4)} &= \frac{1}{\sigma} \, \int_{-1}^{1} \, d\cos\theta_1 \, \mathrm{sgn}(\cos\theta_1) \int_{-1}^{1} \, d\cos\theta_2 \, \mathrm{sgn}(\cos\theta_2) \frac{d^2\sigma}{d\cos\theta_1 \, d\cos\theta_2} \,, \end{aligned}$$

- 6 independent asymmetry observables from 3 angles.
- Assuming statistical uncertainties only: $\sigma_A = \sqrt{\frac{1-\overline{A}}{N}}$.

Fudan University

 $\begin{array}{ll} \mathcal{O}_{\Phi\Box} = (\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi) & \mathcal{O}_{\Phi W} = (\Phi^{\dagger}\Phi)W_{\mu\nu}^{\prime}W^{\mu\nu} \\ \mathcal{O}_{\Phi D} = (\Phi^{\dagger}D^{\mu}\Phi)^{*}(\Phi^{\dagger}D_{\mu}\Phi) & \mathcal{O}_{\Phi B} = (\Phi^{\dagger}\Phi)B_{\mu\nu}B^{\mu\nu} \\ \mathcal{O}_{\Phi\ell}^{(1)} = (\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi)(\bar{\ell}\gamma^{\mu}\ell) & \mathcal{O}_{\Phi VB} = (\Phi^{\dagger}\tau^{I}\Phi)W_{\mu\nu}^{I}B^{\mu\nu} \\ \mathcal{O}_{\Phi\ell}^{(3)} = (\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi)(\bar{\ell}\gamma^{\mu}\tau^{I}\ell) & \mathcal{O}_{\Phi \widetilde{W}} = (\Phi^{\dagger}\Phi)\widetilde{W}_{\mu\nu}^{I}W^{\mu\nu} \\ \mathcal{O}_{\Phi e} = (\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi)(\bar{e}\gamma^{\mu}e) & \mathcal{O}_{\Phi \widetilde{B}} = (\Phi^{\dagger}\Phi)\widetilde{B}_{\mu\nu}B^{\mu\nu} \\ \mathcal{O}_{4L} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma^{\mu}\ell) & \mathcal{O}_{\Phi \widetilde{M}B} = (\Phi^{\dagger}\tau^{I}\Phi)\widetilde{W}_{\mu\nu}^{I}B^{\mu\nu} \end{array}$

- Warsaw basis.
- Operators that only modifies the Higgs BR are not considered.

Effective couplings

$$\begin{split} \alpha_{ZZ}^{(1)} &= \alpha_{\Phi\Box} - \frac{1}{2} \delta'_{G_F} + \frac{1}{4} \alpha_{\Phi D}, \\ \alpha_{ZZ} &= c_W^2 \alpha_{\Phi W} + s_W^2 \alpha_{\Phi B} + s_W c_W \alpha_{\Phi NB}, \\ \alpha_{Z\bar{Z}} &= c_W^2 \alpha_{\Phi \bar{W}} + s_W^2 \alpha_{\Phi \bar{B}} + s_W c_W \alpha_{\Phi \bar{M}B}, \\ \alpha_{AZ} &= 2 s_W c_W (\alpha_{\Phi W} - \alpha_{\Phi B}) + (s_W^2 - c_W^2) \alpha_{\Phi NB}, \\ \alpha_{A\bar{Z}} &= 2 s_W c_W (\alpha_{\Phi \bar{W}} - \alpha_{\Phi \bar{B}}) + (s_W^2 - c_W^2) \alpha_{\Phi \bar{N}B}, \\ \alpha_{\bar{A}\bar{Z}} &= 2 s_W c_W (\alpha_{\Phi \bar{W}} - \alpha_{\Phi \bar{B}}) + (s_W^2 - c_W^2) \alpha_{\Phi \bar{N}B}, \\ \alpha_{A\bar{Z}} &= 2 s_W c_W (\alpha_{\Phi \bar{W}} - \alpha_{\Phi \bar{B}}) + (s_W^2 - c_W^2) \alpha_{\Phi \bar{N}B}, \\ \alpha_{A\bar{Z}} &= 2 s_W c_W (\alpha_{\Phi \bar{W}} - \alpha_{\Phi \bar{B}}) + (s_W^2 - c_W^2) \alpha_{\Phi \bar{N}B}, \\ \alpha_{A\bar{Z}} &= 2 s_W c_W (\alpha_{\Phi \bar{W}} - \alpha_{\Phi \bar{B}}) + (s_W^2 - c_W^2) \alpha_{\Phi \bar{N}B}, \\ \alpha_{A\bar{Z}} &= 2 s_W c_W (\alpha_{\Phi \bar{W}} - \alpha_{\Phi \bar{B}}) + (s_W^2 - c_W^2) \alpha_{\Phi \bar{N}B}, \\ \alpha_{A\bar{Z}} &= 2 s_W c_W (\alpha_{\Phi \bar{W}} - \alpha_{\Phi \bar{B}}) + (s_W^2 - c_W^2) \alpha_{\Phi \bar{N}B}, \\ \alpha_{A\bar{Z}} &= - \alpha_{\Phi e} + \left(\widehat{\alpha}_{\Phi \ell}^{(1)} + \widehat{\alpha}_{\Phi \ell}^{(3)} \right), \\ \delta_{G_F} &= - \widehat{\alpha}_{4L} + 2 \widehat{\alpha}_{\Phi \ell}^{(3)}, \\ \delta_{g_V} &= - \widehat{\alpha}_{\Phi \ell}^V + \frac{\widehat{\alpha}_{\Phi D}}{4} + \frac{\delta_{G_F}}{2} + \frac{4 s_W^2}{c_{2W}} \left[\frac{\widehat{\alpha}_{\Phi D}}{4} + \frac{c_W}{s_W} \widehat{\alpha}_{\Phi WB} + \frac{\delta_{G_F}}{2} \right], \\ \delta_{g_A} &= - \widehat{\alpha}_{\Phi \ell}^A - \frac{\widehat{\alpha}_{\Phi D}}{4} - \frac{\delta_{G_F}}{2}. \end{split}$$

Sensitivities to the effective couplings

Jiayin Gu

Probing the Higgs with angular observables at future e^+e^- colliders

Fudan University

Results

	SM expectation	Precision σ_A				
observable		$5 \mathrm{ab}^{-1}$	$30 {\rm ab}^{-1}$	Full Stat.		
		CEPC	FCC-ee			
$\mathcal{A}_{ heta_1}$	-0.448	0.0060	0.0025	0.00078		
$\mathcal{A}_{\phi}^{(1)}$	0	0.0067	0.0027	0.00087		
$\mathcal{A}_{\phi}^{(2)}$	0	0.0067	0.0027	0.00087		
$\mathcal{A}_{\phi}^{(3)}$	0.0136	0.0067	0.0027	0.00087		
$\mathcal{A}_{\phi}^{(4)}$	0.0959	0.0067	0.0027	0.00086		
$\mathcal{A}_{ extsf{c} heta_1, extsf{c} heta_2}$	-0.0075	0.0067	0.0027	0.00087		

indv. bounds	$\hat{\alpha}_{ZZ}$	$\widehat{\alpha}_{ZZ}^{(1)}$	$\widehat{\alpha}_{\Phi\ell}^V$	$\widehat{\alpha}_{\Phi\ell}^{A}$	$\widehat{\alpha}_{AZ}$	δg_V	δg _A	$\hat{\alpha}_{\tilde{Z}}$	$\widehat{\alpha}_{A\widetilde{Z}}$
rate	0.00064	0.0035	0.0079	0.00059	0.012	0.023	0.0018	∞	∞
angles	0.016	∞	0.0058	0.078	0.0087	0.017	0.23	0.012	0.036
total	0.00064	0.0035	0.0047	0.00059	0.0070	0.014	0.0018	0.012	0.036

► $Z \rightarrow \mu^+ \mu^- / e^+ e^-$ and $H \rightarrow b\bar{b}$, signal only, $\sim 50\%$ selection efficiency.

- "Full Stat.": naively scale to all decay channel.
- Linear contributions only. $\hat{\alpha}$ are normalized by $1/v^2$.

Jiayin Gu

A few remarks

- Many of the CP even operators can be probed by EW measurements and Higgs rate measurements.
 - In a Higgs+EW global fit with CP-even dim-6 operators we do not find the hZ angular measurements to have a significant impact.
- Some of the angular observables are sensitive to CP-odd operators.
 - The sensitivities do not match the ones from electron EDM experiments (~ 10³⁻⁴ worse than the current EDM bounds), but Higgs measurements probe a different combinations of CP-odd operator coefficients.
- More studies can be done!
 - Hadronic Z channels
 - ► Truth level ⇒ detector level
 - Optimal observables, machine learning ...