

Li 12/11/2023

Al in Rare Event Search

Aobo Li Halicioglu Data Science Institute Department of Physics UC San Diego

Fast & Slow: Al in Rare Event Search

Slow

• What is rare event search?

Fast

- Radiation detectors
- Al algorithms

Fast for Slow

• Fast ML for rare event

Fast & Slow: Al in Rare Event Search

Slow

• What is rare event search?

Fast

- Radiation detectors
- Al algorithms

Fast for Slow

• Fast ML for rare event

High Energy Physics Experiment

High-energy Particle Beam

600 million collisions per second

PIP-II Neutrino Beam

Trillions of neutrinos per second

Deep Underground Neutrino Experiment

Probability of detecting electron, muon and tau neutrinos

Naturally Occurring Neutrinos

A.

Rare Event Search in 1950s

The Cowan-Reine Neutrino Experiment

First detection of neutrino (via inverse beta decay):

$$\bar{\nu_e} + p \to n + e^+$$

Extremely low cross section, but unique signature:

•
$$e^+ + e^- \rightarrow 2\gamma$$

• Neutron capture γ

Nobel Prize of 1995

Rare Event Search in 2023

Double Beta Decay $(2v\beta\beta)$

First proposed by Maria Goeppert Mayer in 1935 First detection by Elliott, Hahn, Moe, in 1987 Decay half-life $T_{\frac{1}{2}} \sim 10^{14} - 10^{24} yrs$

Much longer than the age of universe!

Neutrinoless Double-Beta Decay ($0v\beta\beta$)

- **ΔL = 2 lepton number violation** process
- Explain the matter-antimatter asymmetry in our universe
- Changes our fundamental understanding of particle physics
- Has not been observed at $T_{\frac{1}{2}} > 10^{26} yrs$

Rare Event Search in 2023 Dark Matter

The evidence for the existence of dark matter has been plenty

Large Scale Structure Formation

Gravitational Lens

Cosmic Microwave Background

Rare Event Search in 2023 Dark Matter

None has been observed.

WIMP: Weakly Interacting Massive Particle

- The evidence for the existence of dark matter has been plenty
- Many DM candidates have been proposed (WIMP, Axion, etc.)

What Makes Rare Event Search Hard?

It is extremely rare! Using $0v\beta\beta$ as an example ...

- We have not seen $0v\beta\beta$ at half life of $T_{\frac{1}{2}} > 10^{26}yrs$
- Next-generation experiments typically aims at $T_{\frac{1}{2}} > 10^{28} yrs$ (×100 improvement)
- Correspond to 3-4 event after 10 years of data taking

What Makes Rare Event Search Hard?

•1 event every 2.5-3.3 year, we need ultra-sensitive detector to capture every event • As our detector gets more sensitive, we also collect lots of events that are not 0vββ/WIMP DM Search for needle in a haystack

What Makes Rare Event Search Hard? Ουββ **WIMP Dark Matter** The Cowan-Reine Exp.

Naturally radioactive and cosmic ray background

Control background is of unparalleled importance in rare event search experiment!

The Rare Event Search Pipeline

Fast & Slow: Al in Rare Event Search

Slow

• What is rare event search?

Fast

- Radiation detectors
- Al algorithms

Fast for Slow

• Fast ML for rare event

KamLAND-Zen Monolithic Liquid Scintillator Detector for 0vßß Search

From Left to Right:

- **Dr. Christopher Grant (BU Co-PI)**
- Hasung Song (BU)
- **Dr. Lindley Winslow (MIT, Co-PI)**
- Dr. Spencer Axani (MIT/UDelaware)
- Dr. Zhenghao Fu (MIT/Jump Trading)
- Dr. Joseph Smolsky (MIT/CSU)
- Dr. Aobo Li (BU/UNC/UCSD) Not on this photo:
- Dr. Sumita Ghosh (MIT)
- So Young Jeon (BU)

The MIT-BU Analysis Group

UNIVERSITY of HAWAI'I°

KamLAND-Zen Monolithic Liquid Scintillator Detector for 0vßß Search

Inner Detector PMTs

Background Source

 XeLS Background Film Background

Canon

Liquid Scintillator

25-µm-thick transparent nylon film

Xenon Loading

Load double beta decay isotope ¹³⁶Xe in LS inside inner balloon (XeLS)

KamLAND-Zen Data

→ 23% Quantum Efficiency ... 500 photons will produce a signal

... 500 photons will produce a signal (photoelectron).

Triggered PMT

22% Photocoverage

... 2,200 photons will reach PMT ...

KamLAND-Zen Data **Triggered PMT** θ-φ Sphere Map (-14.0 ns, -12.5 ns) $(R, \theta, \phi, t, q) \rightarrow E = \Sigma q$ 0.08 0.07 0.06 Normalized Amplitude 0.05 0.04 0.03 0.02 0.01 0.00 -10

Spatiotemporal Data

A time series of 2D images, projected onto sphere (A spherical video)

A Time Series of 2D Images ... **Attention Mechanism ConvLSTM**

Convolutional Long-Short Term Memory (LSTM) Network

Produce context images & provide interpretability

... Project onto A Sphere

Cohen, Taco et al. "Spherical CNNs." ICLR 2018

Spherical CNN

SO(3) symmetry & rotational invariance

KamNet: An Integrated Spatiotemporal Neural Network

Spatiotemporal Data

A time series of images projected onto Sphere

AttentionConvLSTM

for Spatiotemporal symmetry

Context Images (c, θ, ϕ)

KamLAND-Zen

KamNet-enabled Background Rejection

Monolithic LS detector has been at the heart of many great discoveries in neutrino physics ...

KamNet-enabled E	3;	ac
e ⁻		0.14
		0.12
WEWE	olitude	0.10
 Signal are strictly single-vertex events All energy deposited almost immediately 	ad Amp	0.08
An energy deposited annost miniculatory	malize	0.06
e^{-} Less than a few γ	Nor	0.04
ns later		0.02
WEW		

- Most backgrounds are closely-spaced multi-vertex events
 - part of event energy is deposited by cascading γ s that slightly alter event topology

KamNet captures this tiny alteration in event topology to efficiently reject most backgrounds in KamLAND-Zen!

KamNet-enabled Background Rejection

While accepting 90% of $0v\beta\beta$ events, KamNet rejects ~27% of

XeLS backgrounds and ~59% of film backgrounds

KamNet is **independent** and **multiplicative** to all existing background rejection methods in KamLAND-Zen

Long-Lived Spallation

backgrounds allows for the expansion of the fiducial volume from 157cm to 165.8cm, resulting in 17.7% gain on exposure

KamNet-enabled New Search

Exposure Before KamNet: 970 kg·yr

<u>Apply KamNet to High-Background</u> Period Only:

• Conservative use of KamNet

 Veto critical backgrounds that passes all traditional methods

Official KamLAND-Zen 800 Limit:

 $T_{1/2}^{0\nu\beta\beta} > 2.0 \times 10^{26} \text{yr} (90 \% \text{ C}.\text{L}.)$

American Physical Society 2023 Dissertation Awards In Nuclear Physics

Exposure After KamNet: 1142 kg·yr

+17.7%

Worth \$2.5 million!!! (Based on 2010 Xe price)

Official KamLAND-Zen 800 Limit:

 $T_{1/2}^{0\nu\beta\beta} > 2.0 \times 10^{26} \text{yr} (90 \% \text{ C}.\text{L}.)$

KLZ Combined Official Limit:

 $T_{1/2}^{0\nu\beta\beta} > 2.3 \times 10^{26} \text{yr} (90 \% \text{ C}.\text{L}.)$

This Xe $0\nu\beta\beta$ search represents the **worlds most stringent limit** on the effective Majorana mass

Apply KamNet to All Data:

 $T_{1/2}^{0\nu\beta\beta} > 2.7 \times 10^{26} \text{yr} (90 \% \text{ C. L.}) +35\%$

Large Enriched Germanium Experiment for Neutrinoless ββ Decay – LEGEND 56 Institutions, about 270 scientists

LEGEND mission: "The collaboration aims to develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

Univ. New Mexico L'Aquila Univ. and INFN Univ. Texas, Austin Lawrence Berkeley Natl. Lab. Univ. of Warwick Univ. California, Berkeley Leibniz Inst. Crystal Growth Univ. of Indiana Comenius Univ. Simon Fraser Univ.

Univ. of North Carolina Max Planck Univ. of South Carolina Tennessee Tech. Jagiellonian Univ. Tech. Univ. – Dresden Joint Inst. Nucl. Res. Inst. Duke Univ. Triangle Univ. Nuclear. Lab. Los Alamos Joint Res. Centre, Geel

Inst., Heidelberg	Milano Univ. and Milano INFN	North Carolina State
iv.	Inst. Nucl. Res. Russ. Acad. Sci.	South Dakota Mines
ssee	Natl. Res. Center Kurchatov Inst.	Univ. of Regina
Science Inst.	Lab. Exper. Nucl. Phy. MEPhl	Roma Tre
Gran Sasso	Max Planck Inst., Munich	Univ. Washington
niv.	Tech. Univ. Munich	SNOLAB
ool	Oak Ridge Natl. Lab.	Laurentian Universi
e London	Padova Univ.	Univ. Tuebingen
Natl. Lab.	Padova INFN	Univ. South Dakota
o Bicocca	Czech Tech. Univ. Prague	Univ. Zurich

90 x 76 mm 2.68 kg

High Purity Ge Detector (HPGe)

⁷⁶Ge is a double-beta decay isotope

92 x 112 mm 4.11 kg

LEGEND data

Improve LEGEND Baseline Model

Upper turning edge: Critical

Waveform tail: Irrelevant

Rising edge: Critical

baseline: Bias

Background Rejection Hooking a fully connected network(

to the LEGEND baseline model to identify and reject background

Interpretable

Allow students to see where LBM pays attention to to make decision

Feature Importance Supervision (FIS) Guide ML model to be Right for the Right Reason

Feature Importance Supervision (FIS) Guide ML model to be Right for the Right Reason

Quantifying Bias

Selected dataset to test for energy dependency bias

- Biased classifier: nontrivial classification power

Rejecting Background

Identify multi-site background in HPGe detector

XENONNT 2-Phase Liquid Xenon TPC for WIMP DM Search

XENONNT 2-Phase Liquid Xenon Time Projection Chamber for WIMP DM Search

Spatiotemporal Data A 2D flat video

XENONnT Data

Spatiotemporal Data A 2D flat video

Squash along time dimension

Squash along (x,y) dimension

Time Index

Time Index

Dual Classifier

Hit Pattern 2D Image

Combining Dual Classifier Combine CNN & RNN to classify confused events

Min Zhong

Fast & Slow: Al in Rare Event Search

Slow

• What is rare event search?

Fast

- Radiation detectors
- Al algorithms

Fast for Slow

• Fast ML for rare event

New Electronics for KamLAND-Zen

16-channel prototype for KamLAND2-Zen

Primary Goals:

- Digitize waveform during the chaotic period after a muon passes through the detector in order to record all neutrons, allowing us to reduce the Long-Lived spallation background.
- 2. Streaming data (deadtime free system), large data throughput.
- 3. Large memory buffers.

Reduction in PCB footprint	Machine learning on FPGA	*50% cost savings	*30-40% pow consumptio savings
-------------------------------	--------------------------------	----------------------	--------------------------------------

* compared to standard RF signal chain

Al Trigger for Low Energy

Exponentially Increasing Event Rate Lots of electronic noise

Real-Time Al Analysis

Data Stream

Fast & Slow: Al in Rare Event Search

Thank you for you liaobo77@ucsd.edu if you

Slow

- Rare event search provides a unique window to unravel the mystery of Neutrino & Dark Matter
- High sensitivity and low background is required

Fast

- Radiation detectors: KamLAND-Zen, LEGEND, XENONnT
- Al algorithms: KamNet, FIS, Dual Classifier

Fast for Slow

- Hardware: RFSoC for KamLAND-Zen and my other experiments
- Algorithms: AI Trigger and online AI analysis
- Thank you for your attention. Please email
- liaobo77@ucsd.edu if you are interested in collaborating!

