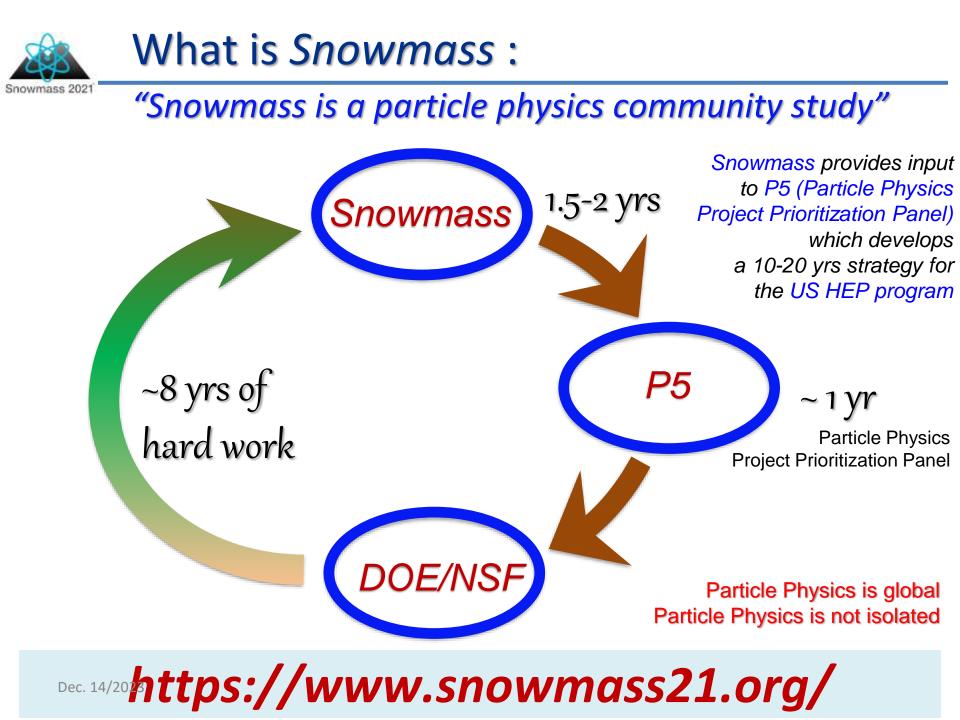


The 2020-2023 US HEP Planning Process: from Snowmass to P5 Accelerator Frontier Aspects

CERN ABP Seminar, Dec. 14, 2023 BE Auditorium (6/2-024)

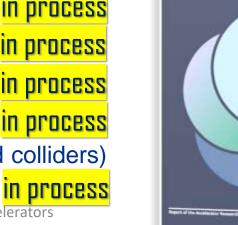
Vladimir Shiltsev, Stephen Gourlay, Tor Raubenheimer (Snowmass'21 AF Conveners)

Abstract


Snowmass is a particle physics community study that takes place in the US every 7-9 years, e.g., the previous one was in 2013. The Snowmass'21 study (the name is historical, originally held in Snowmass, Colorado) took place in 2020-22. It was organized by the American Physical Society Divisions (DPF, DPB, DNP, DAP, DGRAV) and strived to define the most important questions for the field and to identify promising opportunities to address them, to identify and document a scientific vision for the future of particle physics in the U.S. and its international partners. The P5, Particle Physics Project Prioritization Panel, chaired by H. Murayama (UC Berkeley), has taken the scientific input from Snowmass'21 to develop a strategic plan by the Fall of 2023 for U.S. particle physics that can be executed over a 10-year timescale in the context of a 20-year global vision for the field. We will discuss major recommendations of the Snowmass Accelerator Frontier.

Active Participants in the Snowmass'21 "Accelerator Frontier":

(topical group conveners)	Gianluigi Arduini		
	Susan Izquierdo Bermudez		
	Mike Lamont		
	Frank Zimmermann		
(speakers/fora/ITF)	Michael Benedikt Daniel Schulte		
	Steinar Stapnes		
	Philippe Lebrun (ITF)		
	Elias Metral (ABP Roadmap), et al.		
(P5 member)			
	Amalia Ballarino		


+ many contributors (Letters of Interest, White Papers, summary reports, publications, etc)

Previous Snowmass/P5 (2013/14)

- Snowmass 2021
 - Major accelerator-related recommendations;
 - Contribute to LHC and HL-LHC
 - Engage in the ILC in Japan, contribute if it goes unclear
 - Build >1 MW proton source PIP-II for v LBNF/DUNE
 - Provide beams for g-2 and mu2e experiments
 - Reassess Muon Accelerator Program and MICE don

- A follow-up 2015 Accelerator R&D subpanel recommended several thrusts :
 - Beam Physics (incl. IOTA and PIP-III)
 - Sources and Targets (incl. multi-MW)
 - RF (high-Q, high-G, low cost)
 - Magnets and materials (16 T, low cost)
 - Advanced acceleration (towards wakefield colliders)

done, in process

done, in process

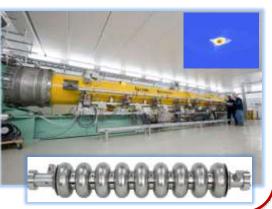
Building for Discovery

Few Examples – Facilities/Programs

(under construction) AUP LHC Nb₃Sn IR quads for HI-LHC

CD-3 project be ready LS3 FNAL BNL LBNL

(construction started) PIP-II 800 MeV proton SRF linac


@FNAL

Goal: 1.2MW for LBNF/DUNE Beam to Booster in 2029 30% Int'l contrib.

(completed) ILC@Fermilab 1st 1.3GHz full CM with beam

FAST facility ILC type beam 31.5MeV/m 255 MeV/CM = G, Q₀ specs Dec. 14/2023

(ongoing) muon beams for g-2 and mu2e experiments

FNAL 8 GeV p's \rightarrow target $\rightarrow \mu$'s Run-3 (2023) major muon g-2 result

Few Examples – Accelerator R&D

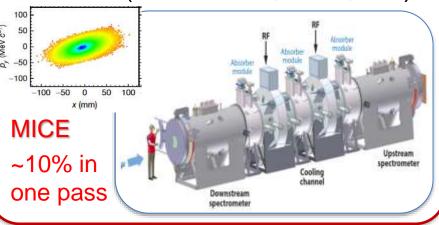
OSC Cooling

THz

No OSC

bandwidth

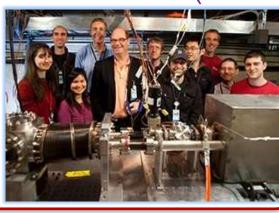
OSC


Record 14.5T Dipole (at FNAL, part of the US MDP)

Nb3Sn conductor Stress

control

MAP/MICE: Ionization cooling of muons (140 MeV/*c*, RAL, UK)



FACET-II User facility (SLAC)

BELLA: PWFA records (LBNL)

Unique beam 10 GeV 1 nC 1x1x1 μm

8 GeV/0.2m staging p.o.p 5+0.1 GeV Dec. 14/2023

IOTA Ring/Optical Stochastic cooling *e*- (100 MeV, FNAL)

soon – experiments with p's

Snowmass'2021

- Started in 2020 \rightarrow ~1 yr COVID delay \rightarrow finish 2022:
 - Community of ~3000 people, incl. international
 - Snowmass CSS Workshop in Seattle (July'22) ~1400 people
 - Final report to P5, that starts early '23 (Final report Dec 7, 2023)
- 10 "Frontiers": Energy, Theory, Cosmic, ... Accelerator

Accelerator Frontier – Key Questions:

- 1. What is needed to advance the physics?
- 2. What is currently available (state of the art) around the world?
- 3. What new accelerator facilities could be available on the next decade (or next next decade)?
- 4. What R&D would enable these future opportunities?
- 5. What are the time and cost scales of the R&D and associated test facilities as well as the time and cost scale of the facilities?

Accelerator Frontier Conveners

Snowmass 2021

Steve Gourlay (LBNL/FNAL)

Tor Raubenheimer (SLAC)

Vladimir Shiltsev (FNAL)

Topical	Crown	Taniaal Crown on Co				
lopical	l Group	Topical Group co-Co	Topical Group co-Conveners			
AF01	Beam Phys & Accel. Education	Z. Huang (Stanford)	M. Bai (SLAC)	S. Lund (MSU)		
AF02	Accelerators for Neutrinos	J. Galambos (ORNL)	B. Zwaska (FNAL)	G. Arduini (CERN)		
AF03	Accelerators for EW/Higgs	F. Zimmermann (CERN)	Q. Qin (ESRF)	G.Hoffstaetter (Cornel A.Faus-Golfe (IN2P3)	/	
AF04	Multi-TeV Colliders	M. Palmer (BNL)	A. Valishev (FNAL)	N. Pastrone (INFN)	J.Tang (IHEP)	
AF05	Accelerators for PBC and Rare Processes	E. Prebys (UC Davis)	M. Lamont (CERN)	Richard Milner (MIT)		
AF06	Advanced Accelerator Concepts	C. Geddes (LBNL)	M. Hogan (SLAC)	P. Musumeci (UCLA)	R. Assmann (DESY)	
AF07	Accelerator Technology R&D					
	Sub-Group RF	E. Nanni (LBNL)	H.Weise (DESY)	S. Belomestnykh (FNA	AL)	
	Sub-Group Magnets	G. Sabbi (LBNL)	S. Zlobin (FNAL)	S. Izquierdo Bermude	z (CERN)	
	Sub-Group Targets/Sources	C. Barbier (ORNL)	Y. Sun (ANL)	Frederique Pellemoine	∋ (FNAL)	
De	ec. 14/2023	Sniitsev Snowmass	/P5 Accelerators		9	

Snowmass Activities: pre-Seattle

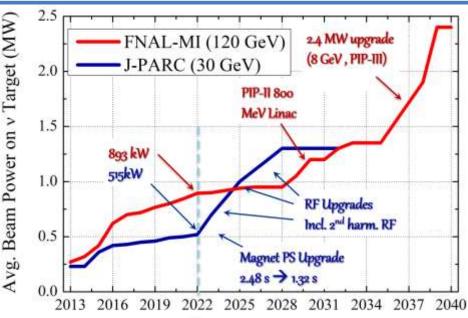
Proponents' Inputs	Letters-Of-Ir	nterest 257	White Papers 114
• AF1: Beam Physics, Education	& General	61	24
AF2: Accelerators for Neutring	DS	18	9
AF3: Accelerators for EW/Higg	gs	32	11
• AF4: Multi-TeV Colliders		56	10
• AF5: Accelerators for PBC and	Rare Proc.	37	7
AF6: Advanced Accelerator Co	oncepts	71	10
AF7: Accelerator Technology F	R&D	137	43
LUS: * > 30 Topical Works	hops		
♦ 8 Cross-Frontier Ag	goras		
 All types of colliders 	s: ee, linear/circula	r, mumu, p	p, advanced
 Experiments and ac 	cceleratosr for rare	processes	physics
Special cross-Fro	ntier Groups (e.g., AF	-EF-TF)

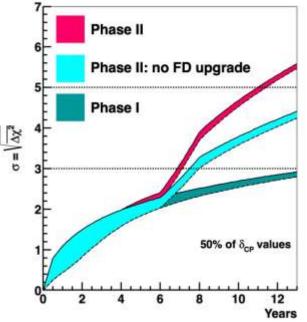
eeCollider Forum, Muon Collider Forum, Implementation Task Force

Accelerator Frontier Summary

- Draft Report \rightarrow finalized in Seattle \rightarrow Final Report
- AF Topical Group, ITF and Fora Summaries
- Below, only few topics will be briefly covered:
 - Accelerators for Neutrinos
 - Accelerators for Rare Processes/DM Searches
 - Future Colliders
 - Key Accelerator R&D
- For each key "messages" (vision):
 - Proposed directions ("what")
 - Timeline ("when") e.g., by 2030, after 2030
 - Challenges ("what's needed")

1. Multi-MW v Beams for DUNE


Snowmass 2021


LBNF/DUNE Project – Phase I :

- By 2032: 1.2 MW proton beam (120 GeV) on target + near V-detector + 20 kton LAr v-detector in Lead, SD
- Expected rate of "physics" outcome up to ~ 3σ in δ_{CP} , in the first 6 years (also Δm_{32}^2 , sin² θ_{23} , sin² $2\theta_{13}$)
- To get to ~5σ will get too long, plus competitor experiment Hyper-K in Japan

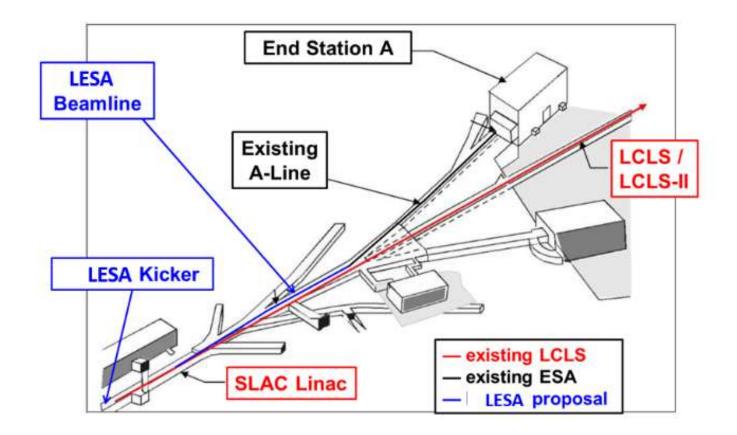
Proposed Plan - LBNF/DUNE Phase II :

- By 2038: ~2.4 MW proton beam (120 GeV) on target + new near V-detector + extra 20 kton Lar v-detector
- Expected to get to $\sim 5\sigma$ in δ_{CP} in the following 6 years
- Accelerator options proposed/under active study now:
 - (understand max performance and limits with PIP-II linac)
 - New 8 GeV RCS [two options] with/w.o. new 1-3 GeV linac upgrade
 - New 8 GeV linac with or without new 8 GeV accumulator ring
 - In any case need upgrade of MI RF power and new m-MW targets
 - See S.Nagaitsev talk earlier today
 - Fermilab has formed a special design group

2. >20 Proposed Experiments For Rare Processes

Snowmass 2021

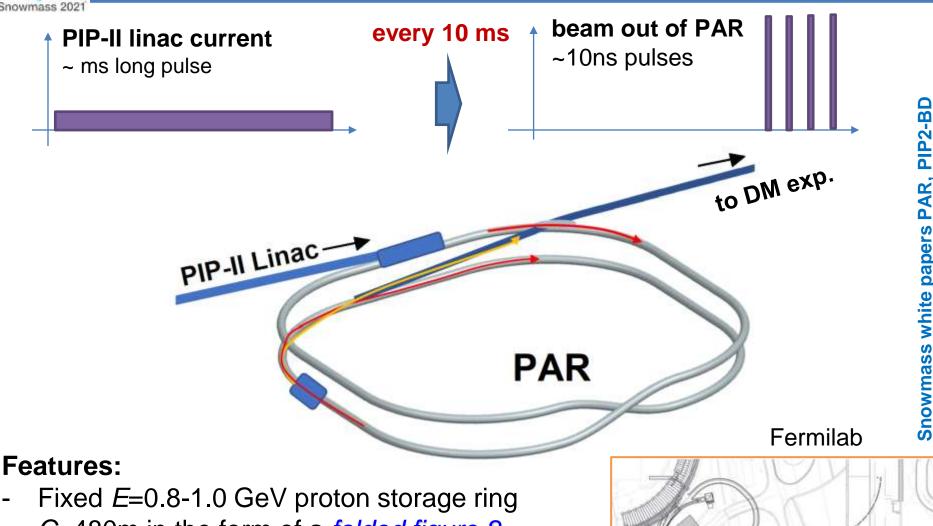
(most via Snowmass Whitepapers)


DM searches, Axion searches, CLFV experiments, muons, light mesons, beam

dump experiments... calls for corresponding beam facilities @ FNAL, SLAC, Jlab

Experiment	3	t Primary beam particle	n Beam Energy [GeV]	Beam power [kW]	Beam time structure	Electron beams:
Proton Storage Förg. EDM and Awon Searches	Precision tests, Dark Matter	proton	0.7 GeV/c beam momentum	1e11 polarized protons per NI	Fill the ring every 1000s	~ GeV to multi-GeV
Pyers with Muonium	Precision tests	proten (producing surface muons)	0.8 GeV	Tet3pm1 POT per second	CW	
Nucleon Bectromagnetic Form Factors from Lepton Scattering	Neutrino	electron or proton (producing muore)	0.85 GW to 2 GeV	1 nA to 10 microA for electrons, 10/7 to 10/8 per second for muons	A continuous or pulsed structure (ideally with a duty factor of ${\rm fN}$ or larger) should be sufficient	Proton beams:
Rare Decays of Light Mesons (REDTOP)	Precision tests	protan	1.8-22 GeV (Run I), 0.8- 0.92 (Run II), 1.7 (Run III)	0.03-0.05 (Run I), 200 (Runs II and III)	CN, size estraction for Run I	FIOLOII Deallis.
Ultra-cold Neutron Source for Fundamental Physics Experiments, Including Neutron-Anti-Neutron Oscillations	Precision tests	proton	08-2	1,000	quasi-continuous	
CLPV with Muon Decays	CLFV	proton	Not critical 0.8 to a lew GeV	100 or more	continues beam on the timescale of the muon lifetime i.e. proton pulses separated by a microsecond or less. The more continuous the better	~2 GeV CW-capable beam
Mide II	CLFV	proton:	1103	105 1	pulse width 10s of ns or botter separated by 200 to 2000 ns. Filedble time structure and minimal pulse-to-pulse variation	•
Fixed Target Searches for new physics with O(1 GeV) Proton Bears Dump	Dark Sector, Neutrino	proton	88 to 15 GeV		<0(1micros) pulse with for neutrino mazaraments, $<0(30m)$ pulse with for dark matter sourcless $10(-5)$ or befor dark factor	
FRBMARe Charged Lepton Flavor Violation	CLFV	protes	1-3 GeV	up to 2MW	Fire pulses at a rep rate of shout 1 MHz	
Bectron Mossing Momentum (LDMX)	DarkSector	electron	-3 GW to -20 GeV	O(1 electron per RF budlet at 53 MHz)	QWath	~2 GeV pulsed beam from
BactronBeam Dumps	Dark Sector	electron	few GeV	10/(20) electrons on target over the oppriment of runtime	Pulsediwars (duty factor not specified)	storage ring ~1MW
Proton irradiation Facility	RND	proton	Evergy is not very important	Tell'S protoce in a Ber hours	Putrechean (duty factor not specified)	
SEN	Natrio	proten	1	2	2012	
Male	CLFV	protox		1	<10%-10 editation	
Field Target Searches for new physics with O(10 GeV) Proton Beam Dump	Dark Sector, Neutrino	proton		up to 115	Beam spills less than a leve microsec with separation between spills greater than 50 microsec	
Muon beam dump	DarkSector	proton (producing mucros)	3.96/ micro	3eH more in total on target for the whole run	CW.	~8 GeV pulsed beam ~1MW
Muon Collider R8D and Neutrino Factory	RMD	proton	5+30GeV	le12 to le13 protore per bunch	10+50 Hz repliate and bunch length 5-3 m	
Muon Missing Momentum	Dark Sector	proton (producing muons)	New 10s of GeV	10/(10) muons per experimental runtime	Pulsedbeam (duly factor not specified)	
High Exergy Proton Fixed Target	DarkSector, Neutrino	proken.	O(100 GeV)	tel2 POTA therefore ~20W	OV via resonant extraction. "IF we could up the duty factor that woull due even better" (?)	
Test-Boon Facility	RAD	proton	50, lower energies would also be beneficial	10 to 100 Hz on the testing apparatus	Pulsedbaan (daly factor not specified)	120 GeV Slow extraction or LBNF beam
TaiNetiros	Nating	srotat	120	1200 or higher	Mitme stucture	LBINF beam

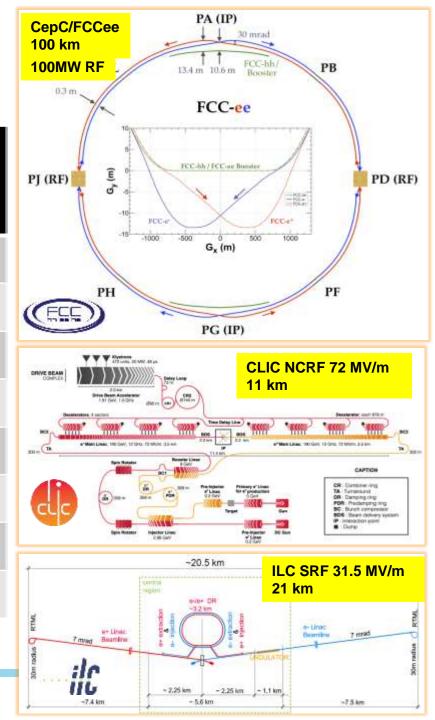
Started LESA Beamline for LDMX @ SLAC


Snowmass 2021

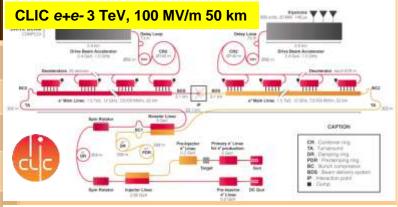
Features:

- SLAC electron SRF linac *E*=4-8 GeV
- Low intensity, almost CW beamline, 1-500 e-/us
- Beam dump and LDMX experiment
- CD-process started

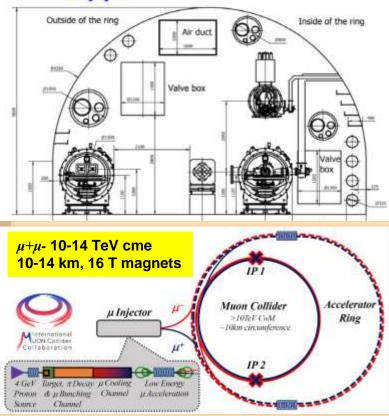
Proposed PIP-II Accumulator Ring (PAR)


- C=480m in the form of a *folded figure 8*
- Power 100 kW for Dark Sector program, 100Hz
- There is also compact version C=120 m

Snowmass white papers PAR,

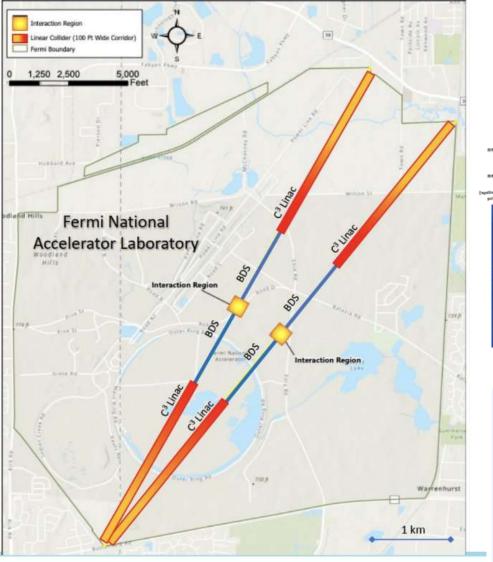

Future Collider Proposals: 8 Higgs/EW factories

Name	Details
СерС	e+e-, $\sqrt{s} = 0.24$ TeV, L= 3.0 ×10 ³⁴
CLIC (Higgs factory)	e+e-, \sqrt{s} = 0.38 TeV, L= 1.5 ×10 ³⁴
ERL ee collider	e+e-, \sqrt{s} = 0.24 TeV, L= 73 ×10 ³⁴
FCC-ee	e+e-, $\sqrt{s} = 0.24$ TeV, L= 17 ×10 ³⁴
gamma gamma	X-ray FEL-based γγ collider
ILC (Higgs factory)	e+e-, \sqrt{s} = 0.25 TeV, L= 1.4 ×10 ³⁴
LHeC	$ep, \sqrt{s} = 1.3$ TeV, L= 0.1 ×10 ³⁴
MC (Higgs factory)	$\mu\mu, \sqrt{s} = 0.13$ TeV, L= 0.01 $\times 10^{34}$



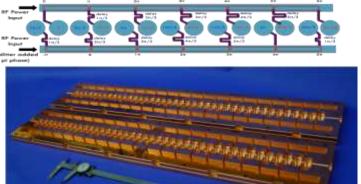
17 (!) High Energy Collider Concepts/Proposals

Name	Details	(
Cryo-Cooled Copper linac	e+e-, \sqrt{s} = 2 TeV, L= 4.5 ×10 ³⁴	
High Energy CLIC	e+e-, $\sqrt{s} = 1.5 - 3$ TeV, L= 5.9 $\times 10^{34}$	201-
High Energy ILC	e+e-, $\sqrt{s} = 1 - 3$ TeV	
FCC-hh	pp, $\sqrt{s} = 100$ TeV, L= 30 $ imes 10^{34}$	
SPPC	pp, $\sqrt{s} = 75/150$ TeV, L= 10 $\times 10^{34}$	F
Collider-in-Sea	pp, $\sqrt{s} = 500$ TeV, L= 50 ×10 ³⁴	pp
LHeC	ep , $\sqrt{s} = 1.3$ TeV, L= 1 $\times 10^{34}$	
FCC-eh	ep , $\sqrt{s} = 3.5$ TeV, L= 1 $\times 10^{34}$	
CEPC-SPPpC-eh	ep , $\sqrt{s} = 6$ TeV, L= 4.5 $\times 10^{33}$	
VHE-ep	$ep, \sqrt{s} = 9 \text{ TeV}$	
MC – Proton Driver 1	$\mu\mu$, $\sqrt{s}=1.5$ TeV, L= 1 $ imes 10^{34}$	
MC – Proton Driver 2	$\mu\mu$, $\sqrt{s}=3$ TeV, L= 2 $ imes 10^{34}$	16
MC – Proton Driver 3	$\mu\mu$, $\sqrt{s}=10-14$ TeV, L= 20 $ imes 10^{34}$	Γ
MC – Positron Driver	$\mu\mu$, $\sqrt{s}=10-14$ TeV, L= 20 $ imes 10^{34}$	
LWFA-LC (e+e- and $\gamma\gamma$)	Laser driven; e+e-, $\sqrt{s} = 1 - 30$ TeV	
PWFA-LC (e+e- and $\gamma\gamma$)	Beam driven; e+e-, $\sqrt{s} = 1 - 30$ TeV	2
	Structure wakefields; e+e-, $\sqrt{s} = 1 - 30$ TeV	0



(New!) LC-Higgs Factories on FNAL Site

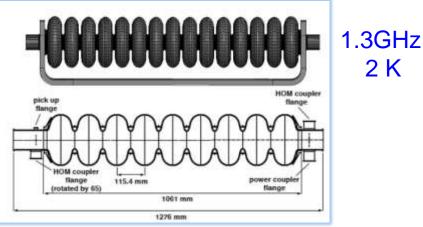
nowmass 2021



Dec. 14/2023

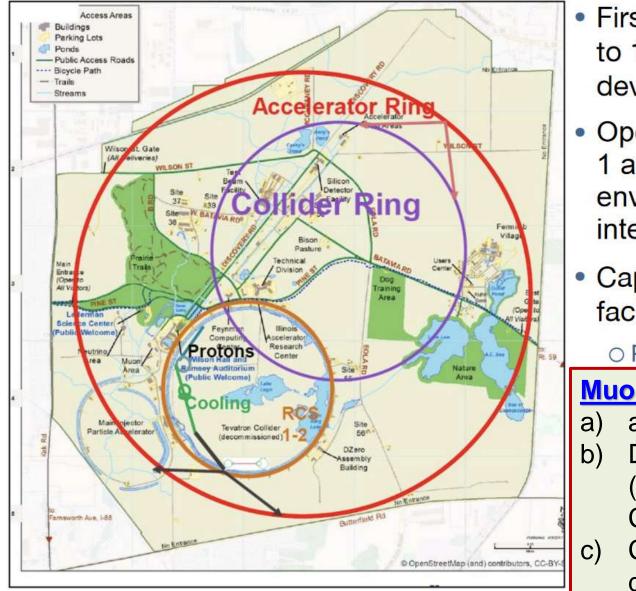
Shiltsev | Snowmass

Must fit ~7 km incl BDS Requires gradients of at least 72MV/m Compact \rightarrow lower cost (wrt ILC/CLIC)


Option 1: Cool Copper Collider (C^3)

5.7GHz 77K

2 K


Option 1: <u>HELEN</u> (Travelling Wave ILC)

FNAL Citing – O(10 TeV) Muon Collider

Snowmass 2021

- First design concept of up to 10 TeV collider developed
- Operation at 125 GeV, 1 and 3 TeV can be envisioned as intermediate stages
- Capitalize on existing facilities and expertise:

O PIP-II and upgrades,

Muon Colliders Forum:

- aim for 10 TeV cme
- DOE support+join IMCC (CERN-led Int'l Muon Collider Collaboration)
 - Carry out R&D and deliver pre-CDR ca 2030

Implementation Task Force

Snowmass 2021

- The Accelerator Implementation Task Force (ITF) is charged with developing metrics and processes to facilitate a comparison between collider projects.
- 10 int'l experts, 2 Snowmass Young's, 3 liaisons to Energy & Theory Frontiers
- ITF addressed (four subgroups): Physics reach (impact), beam parameters Size, complexity, power, environment Technical risk, technical readiness, validation and R&D required
 - Cost and schedule

JINST 18 P05018 (2023)

Meenakshi Narain **Dmitry Denisov** (BNL) (Brown U.)

Liantao Wang (U.Chicago)

Sarah Cousineau (ORNL)

Marlene Turner (LBNL)

Thomas Roser

(BNL, Chair)

Philippe Lebrun

(CERN)

Tor Raubenheimer (SLAC)

Katsunobu Oide (KEK)

Jim Strait (FNAL)

(FNAL)

Vladimir Shiltsev Reinhard Brinkmann John Seeman (DESY)

(SLAC)

Higgs factory summary table

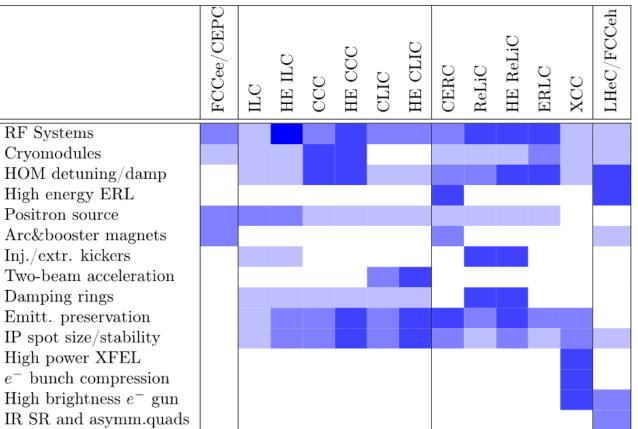
ITF Report

Proposal Name	CM energy	Lum./IP	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
$FCC-ee^{1,2}$	0.24	7.7(28.9)	0-2	13-18	12-18	290
	(0.09-0.37)	10 ⁴ 1 10				
$CEPC^{1,2}$	0.24	8.3(16.6)	0-2	13-18	12-18	340
	(0.09-0.37)					
ILC ³ - Higgs	0.25	2.7	0-2	<12	7-12	140
factory	(0.09-1)					
$CLIC^3$ - Higgs	0.38	2.3	0-2	13-18	7-12	110
factory	(0.09-1)					<
CCC^3 (Cool	0.25	1.3	3-5	13-18	7-12	150
Copper Collider)	(0.25-0.55)				\Box	
$CERC^3$ (Circular	0.24	78	5-10	19-24	12-30	90
ERL Collider)	(0.09-0.6)					
ReLiC ^{1,3} (Recycling	0.24	165(330)	5-10	> 25	7-18	315
Linear Collider)	(0.25-1)					
$ERLC^3$ (ERL	0.24	90	5-10	> 25	12-18	250
linear collider)	(0.25-0.5)					
XCC (FEL-based	0.125	0.1	5-10	19-24	4-7	90
$\gamma\gamma$ collider)	(0.125 - 0.14)	s >				
Muon Collider	0.13	0.01	>10	19-24	4-7	200
Higgs Factory ³		2				2

Cost Estimates for Higgs Factories

- The ITF cost model for the EW/Higgs factory proposals.
- Horizontal scale is approximately logarithmic for
- the project total cost in 2021
- B\$ without contingency and
- esealation. - - - /
- Black horizontal bars with smeared ends indicate the cost estimate range for each machine.

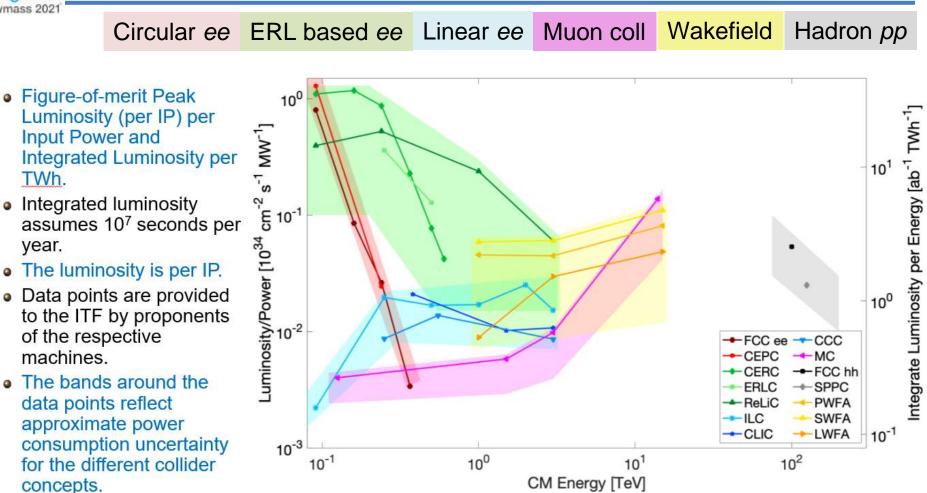
Project Cost (no esc., no cont.)	4	7	12	18	30	50
FCCee-0.24						
FCCee-0.37						
FNAL <u>eeHF</u>						
ILC-0.25						
ILC-0.5						
CLIC-0.38						
CCC-0.25						
CCC-0.55						
CERC-0.24						
CERC-0.6						
ReLiC-0.25						
ERLC-0.25						_
MuColl-0.125						
XCC-0.125						
HELEN-0.25	1					
FNALee-0.25						


ITF Report – T.Roser, et al, JINST 18 P05018

ITF Technical Risk Registry

 Technical risk registry of accelerator components and systems for future e^te⁻ and ep colliders: lighter colors indicate progressively higher TRLs (less risk), white is for either not significant or not applicable.

Proposal Name	Collider	Overall
(c.m.e. in TeV)	Design	Risk
66 - 34	Status	Tier
FCCee-0.24	II	1
CEPC-0.24	II	1
ILC-0.25	Ι	1
CCC-0.25	III	2
CLIC-0.38	II	1
CERC-0.24	III	2
ReLiC-0.24	V	2
ERLC-0.24	V	2
XCC-0.125	IV	2
MC-0.13	III	3



ITF Table 14: "Design Status": I - TDR complete, II - CDR complete, III - substantial documentation; IV - limited documentation and parameter table; V - parameter table. Overall risk tier category ranging from Tier 1 (lower overall technical risk) to Tier 4 (multiple technologies that require further R&D).

ITF Report – T.Roser, et al, JINST 18 P05018

Luminosity per Power

Once again: luminosity and power consumption values have not been reviewed by ITF - we used proponents' numbers.

ITF Report – T.Roser, et al, JINST 18 P05018

ITF Report: Beyond Higgs Factories

Snowmass 2021

	CME (TeV)	Lumi per IP (10^34)	Years, pre- project R&D	Years to 1 st physics	Cost range (2021 B\$)	Electric Power (MW)
FCCee-0.24	0.24	8.5	0-2	13-18	12-18	280
ILC-0.25	0.25	2.7	0-2	<12	7-12	140
CLIC-0.38	0.38	2.3	0-2	13-18	7-12	110
HELEN-0.25	0.25	1.4	5-10	13-18	7-12	110
CCC-0.25	0.25	1.3	3-5	13-18	7-12	150
MC-Higgs	0.13	0.01	>10	19-24	4-7	~200
CLIC-3	3	5.9	3-5	19-24	18-30	~550
ILC-3	3	6.1	5-10	19-24	18-30	~400
MC-3	3	2.3	>10	19-24	7-12	~230
MC-FNAL	6-10	20	>10	19 -2 4	12-18	O(300)
MC-10	10-14	20	>10	>25	12-18	O(300)
FCChh-100	100	30	>10	>25	30-50	~560

Future Colliders R&D Program - Initiative

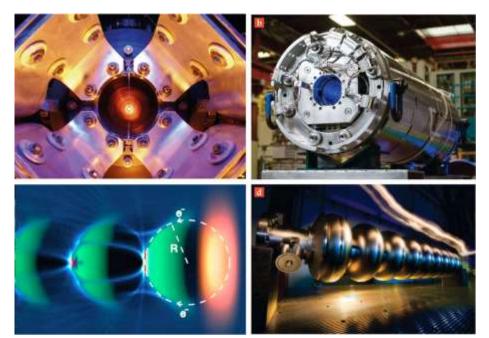
Snowmass 2021

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

June 30, 2022

U.S. National Accelerator R&D Program on Future Colliders

P.C. BHAT^{1,†},S. BELOMESTNYKH^{1,5}, D. DENISOV³, S. GOURLAY⁶, S. JINDARIANI¹, A.J. LANKFORD^{8,†}, S. NAGAITSEV^{1,2,†}, E.A. NANNI⁴, M.A. PALMER³, T. RAUBENHEIMER⁴, V. SHILTSEV¹, A. VALISHEV¹, F. ZIMMERMANN⁷


We propose that the U.S. establish a national integrated R&D program on future colliders in the DOE Office of High Energy Physics (OHEP) and charge the program

- to carry-out technology R&D and accelerator design for future collider concepts,
- to enable synergistic engagement in projects proposed abroad (e.g. FCC, ILC, CLIC, IMCC),
- to develop design reports on collider options, by the time of the next Snowmass and P5 (2029–2030), particularly for options that are feasible to be hosted in the U.S.,

Dect 94 develop R&D plans for the decade beyond 2030 Accelerators

Multi-MW targets:

- 2.4MW PIP-III
- 4-8 MW for muon collider

Advanced:

- collider quality beams
- efficient drivers
- close coordination with Int'l (Euro Roadmap, EUPRAXIA,..)

Magnets for colliders and RCSs:

 16T dipoles
 30T solenoids
 1000 T/s fast cycling ones coordinate with US MDP

SC/NC RF:

- 72-120 MV/m C³
- 72 MV/m TW SRF
- new materials, high Q₀
- efficient power sources

🚰 Fermilab

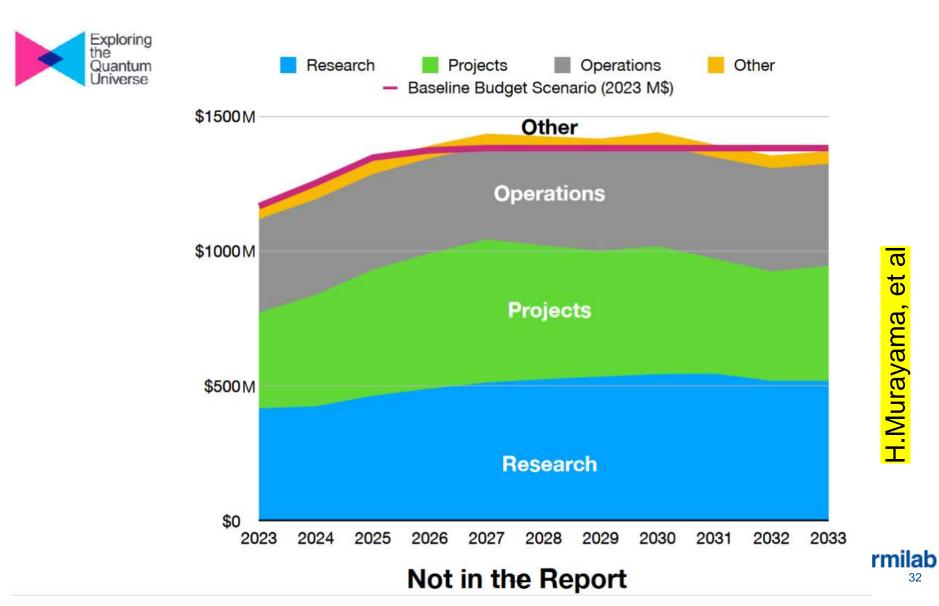
Post-"Snowmass", NAS EPP and P5: https://snowmass21.org/accelerator/start


- All Snowmass Report published
 - Incl. Accelerator Frontier/ITF/e+e- and MuC TFs
 - 20 AF peer-reviewed papers in JINST
- HEPAP Int'l Benchmarking Panel (Nov 2, 2023)
- P5 committee (H.Murayama, next slides):
 - Many collaborative activities: FCC, MuCol, C3, ILC, ...
 - 4 Town Hall meetings, Report released Dec. 7, 2023
- Parallel effort @ National Academy of Sciences:
 - Elementary Particle Physics 2024: Progress and Promise
 - M.Spiropulu, M.Turner (Co-Chairs), F.Gianotti, YK Kim, et al
 - Identify the fundamental questions in particle physics, experimental and theor. tools, research directions
 - Unlike P5, the Committee will not prioritize projects nor consider budget as part of its deliberations

P5 Report (Dec 7, 2023)

https://www.usparticlephysics.org/2023-p5-report/

Budget Scenarios Less Favorable Scenario Baseline Scenario Projects in Less Favorable Scenario -Projects in the Baseline Scenario 3% annual inflation Assuming fixed 30% fraction for Projects H.Murayama, et al 🚰 Fermilab



not including off-the-chart projects

🛟 Fermilab

H.Murayama, et al

P5 Outlook (Dec 7, 2023)

32

P5 Recommendations (of relevance to AF): In the baseline scenario

- Recommendation 1 (out of 6): Highest priority
 - HL-LHC
 - First Phase of LBNF/DUNE and PIP-II
 - Vera C. Rubin Observatory

Recommendation 2: Portfolio of major projects

- (in order)...#3 "... An <u>off-shore</u> Higgs factory, realized in collaboration with international partners, in order to reveal the secrets of the Higgs boson. The current designs of FCC-ee and ILC meet our scientific requirements. The US should actively engage in feasibility and design studies. Once a specific project is deemed feasible and well-defined (see also Recommendation 6), the US should aim for a contribution at funding levels commensurate to that of the US involvement in the LHC and HL-LHC, while maintaining a healthy US onshore program in particle physics (section 3.2)

🛟 Fermilab

P5 Recommendations (of relevance to AF):

- In the baseline scenario
- Recommendation 3: (Belle II upgrade among others)
 - ...contributions towards the SuperKEKB accelerator.
- Recommendation 4: R&D Programs ["... theoretical, computational, and technological—essential to our 20-year vision for the field. This includes an aggressive R&D program that, while technologically challenging, could yield revolutionary accelerator designs that chart a realistic path to a <u>10 TeV pCM collider</u>."]
 - a. Support vigorous R&D toward a cost-effective 10 TeV pCM collider based on proton, muon, or possible wakefield technologies, including an evaluation of options for US siting of such a machine, with a goal of being ready to build major test facilities and demonstrator facilities within the next 10 years (sections 3.2, 5.1, 6.5, and Recommendation 6).
 - **C.** Expand the **General Accelerator R&D (GARD)** program within HEP, including stewardship (section 6.4).
 - g. Develop plans for improving the Fermilab accelerator complex that are consistent with the long-term vision of this report, including neutrinos, flavor, and a 10 TeV pCM collider (section 6.6).

😎 Fermilab

P5 Recommendations (of relevance to AF): In baseline scenario

Recommendation 6: "Targeted Panel"

Convene a targeted panel with broad membership across particle physics later this decade that makes decisions on the US accelerator-based program at the time when major decisions concerning an off-shore Higgs factory are expected, and/or significant adjustments within the accelerator based R&D portfolio are likely to be needed. A plan for the Fermilab accelerator complex consistent with the long-term vision in this report should also be reviewed.

The panel would consider the following:

- The level and nature of US contribution in a specific Higgs factory including an evaluation of the associated schedule, budget, and risks once crucial information becomes available.
- 2.Mid- and large-scale test and demonstrator facilities in the accelerator and collider R&D portfolios.
- 3.A plan for the evolution of the Fermilab accelerator complex consistent with the long term the longterm vision in this report, which may commence construction in the event of a more favorable budget situation

🛟 Fermilab

P5 Recommendations (of relevance to AF): In baseline scenario

Among 20 "Area Recommendations":

General Accelerator R&D

- Increase annual funding to the General Accelerator R&D program by \$10M per year in 2023 dollars to ensure US leadership in key areas.
- Support generic accelerator R&D with the construction of small scale test facilities. Initiate construction of larger test
 facilities based on project review, and informed by the collider R&D program.

Collider R&D

- 10. To enable targeted R&D before specific collider projects are established in the US, an investment in collider detector R&D funding at the level of \$20M per year and collider accelerator R&D at the level of \$35M per year in 2023 dollars is warranted.
- 12. Form a dedicated task force, to be led by Fermilab with broad community membership. This task force is to be charged with defining a roadmap for upgrade efforts and delivering a strategic 20-year plan for the Fermilab accelerator complex within the next five years for consideration (Recommendation 6). Direct task force funding of up to \$10M should be provided.

... other notable messages:

- The GARD program is critical in supporting a broad range of AS&T for DOE SC
- [there is] ... The long-term ambition of hosting a major international collider facility in the US
- A muon collider presents an attractive option both for technological innovation and for bringing energy frontier colliders back to the US. The footprint of a 10 TeV pCM muon collider is almost exactly the size of the Fermilab campus.
- …Although we do not know if a muon collider is ultimately feasible, the road toward it leads from current Fermilab strengths and capabilities… At the end of the path is an unparalleled global facility on US soil. This is our Muon Shot. [p.23]

P5 Comments (of relevance to AF):

Cuantum 2.5 International and Inter-Agency Partnerships

In the case of the Higgs factory, crucial decisions must be made in consultation with potential international partners. The FCC-ee feasibility study is expected to be completed by 2025 and will be followed by a European Strategy Group update and a CERN council decision on the 2028 timescale. The ILC design is technically ready and awaiting a formulation as a global project. A dedicated panel should review the plan for a specific Higgs factory once it is deemed feasible and well-defined; evaluate the schedule, budget and risks of US participation; and give recommendations to the US funding agencies later this decade (Recommendation 6). When a clear choice for a specific Higgs factory emerges, US efforts will focus on that project, and R&D related to other Higgs factory projects would ramp down.

Parallel to the R&D for a Higgs factory, the US R&D effort should develop a 10 TeV pCM collider (design and technology), such as a muon collider, a proton collider, or possibly an electron-positron collider based on wakefield technology. The US should participate in the International Muon Collider Collaboration (IMCC) and take a leading role in defining a reference design. We note that there are many synergies between muon and proton colliders, especially in the area of development of high-field magnets. R&D efforts in the next 5-year timescale will define the scope of test facilities for later in the decade, paving the way for initiating demonstrator facilities within a 10-year timescale (Recommendation 6).

Area Recommendation 20: HEPAP, potentially in collaboration with international partners, should conduct a dedicated study aiming at developing a sustainability strategy for particle physics.

Thanks for your attention!

- Thanks to Frank, Elias and Yannis for inviting me
- Special thanks to
 - My co-conveners S.Gourlay and T.Raubenheimer
 - Accelerator Frontier Topical Group conveners and liaisons to EF, NF and TF

– Tor R. and M.Palmer for insights on the P5 Report Dec. 14/2023 Shiltsev | Snowmass/P5 Accelerators

Back up slides

Additional Input – From DOE Office of Science: "...to all SC federal advisory committees (incl HEPAP) on December 1, 2023 to provide input to an SC wide facility

prioritization" >100M\$

2003 Similar 20-Years Outlook

Ranked by: Science Readiness

Dec. 14/2023

Shiltsev | Snowmass/P5 Acce

Priority	Program	Facility	Outcome		
1	FES	ITER	Under construction		
2	ASCR	UltraScale Scientific Computing Capability	Become ExaScale		
3	HEP	Joint Dark Energy Mission	ESA built the Euclid mission and NASA is building the Nancy Grace Roman Telescope		
3	BES	Linac coherent Light Source	Built and operating		
3	BER	Protein Production and Tags	Part of the Bioenergy Research Centers		
3	NP	Rare Isotope Accelerator	Built and operating as FRIB		
7	BER	Characterization and Imagining	Part of the Bioenergy Research Centers		
7	NP	CEBAF Upgrade	Built and operating		
7	ASCR	ESNet Upgrade	Built and operating		
7	ASCR	NERSC upgrade	Built and operating		
7	BES	Transmission Electron Achromatic Microscope	Built and operating		
12	HEP	BTeV	Canceled		
13	HEP	Linear Collider	Never built		
14	BER	Analysis and Modeling of Celluar Systems	Part of the Bioenergy Research Centers		
14	BES	SNS 2.4 MW Upgrade	Under development		
14	BES	SNS Second target Station	Under development		
14	BER	Whole Proteome Analysis	Part of the Bioenergy Research Centers		
18	NP/HEP	Double Beta Decay Underground Detector	Under development		
18	FES	Next-Step Spherical Torus	Not built		
18	NP	RHICII	A simpler upgrade was done that still acieved the goal.		
21	BES	National Synchrotron Light Source Upgrade	Built and operating		
21	HEP	Super Neutrino Beam	Became LBNF/DUNE		
23	BES	Advanced Light Source Upgrade	Under construction		
23	BES	Advanced Photon Source Upgrade	Under construction		
23	NP	eRHIC	Became EIC		
23	FES	Fusion energy Contingency	Not built		
23	BES	HFIR Second Cold Source and Guide Hall	Built and operating		
23	FES	Integrated Beam Experiment	Not built		

DOE HEP Facilities TBC (HEPAP, Dec 7, 2023):

- Accelerator Complex Enhancement Main Injector + Target (ACE-MI+T)
 - Will double up MI beam power to 2.1MW

near-term

mid-term

- Advanced Accelerator Test Facilities:
 - Plasma wakefield (10-20M\$/yr now \rightarrow increase?)
- Future Energy Frontier Collider
 - HEP envisions as a contribution to an offshore collider
 - An on-shore collider is probably outside 10yr frame
- Accelerator Complex Enhancement Booster Replacement (ACE-BR)

From the ITF Report Draft: Tables 1-3, 5

Snowmass 2021

	CME (TeV)	Lumi per IP (10^34)	Years, pre- project R&D	Years to 1 st physics	Cost range (2021 B\$)	Electric Power (MW)
FCCee-0.24	0.24	8.5	0-2	13-18	12-18	280
ILC-0.25	0.25	2.7	0-2	<12	7-12	140
CLIC-0.38	0.38	2.3	0-2	13-18	7-12	110
HELEN-0.25	0.25	1.4	5-10	13-18	7-12	110
CCC-0.25	0.25	1.3	3-5	13-18	7-12	150
MC-Higgs	0.13	0.01	>10	19-24	4-7	~200
CLIC-3	3	5.9	3-5	19-24	18-30	~550
ILC-3	3	6.1	5-10	19-24	18-30	~400
MC-3	3	2.3	>10	19-24	7-12	~230
MC-FNAL	6-10	20	>10	19-24	12-18	O(300)
MC-10	10-14	20	>10	>25	12-18	O(300)
FCChh-100	100	30	>10	>25	30-50	~560

Higgs factory summary table

- Main parameters of the submitted Higgs factory proposals.
- The cost range is for the single listed energy.
- The superscripts next to the name of the proposal in the first column indicate:
- (1) Facility is optimized for 2 IPs. Total peak luminosity for multiple IPs is given in parenthesis;
- (2) Energy calibration possible to 100 keV accuracy for MZ and 300 keV for MW ;
- (3) Collisions with longitudinally polarized lepton beams have substantially higher effective cross sections for certain processes

Fermilab site-fillers

,	Proposal Name	CM energy	$\operatorname{Lum./IP}$	Years of	Years to	Construction	Est. operating
/	-	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
		[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
<i>.</i>	$FCC-ee^{1,2}$	0.24	7.7 (28.9)	0-2	13-18	12-18	290
		(0.09-0.37)		1 1			
	$CEPC^{1,2}$	0.24	8.3 (16.6)	0-2	13-18	12-18	340
		(0.09-0.37)		i 1			c = - 2
	ILC ³ - Higgs	0.25	2.7	0-2	< 12	7-12	140
	factory	(0.09-1)		1 (i)			L'
	CLIC ³ - Higgs	0.38	2.3	0-2	13-18	7-12	110
	factory	(0.09-1)		$\geq \leq$			
	CCC^3 (Cool	0.25	1.3	3-5	13-18	7-12	150
	Copper Collider)	(0.25 - 0.55)		tt		· *	
s	CERC ³ (Circular	0.24	78	5 - 10	19-24	12-30	90
	ERL Collider)	(0.09-0.6)					
	ReLiC ^{1,3} (Recycling	0.24	165 (330)	5 - 10	$>\!25$	7-18	315
)	Linear Collider)	(0.25-1)					
	$ERLC^3$ (ERL	0.24	90	5 - 10	$>\!25$	12-18	250
	linear collider)	(0.25-0.5)					
	XCC (FEL-based	0.125	0.1	5 - 10	19-24	4-7	90
	$\gamma\gamma$ collider)	(0.125 - 0.14)					
	Muon Collider	0.13	0.01	> 10	19-24	4-7	200
	Higgs Factory ³						

Proposal Name	CM energy	$\operatorname{Lum./IP}$	Years of	Years to	Construction	Est. operating
	nom. (range)	@ nom. CME	pre-project	first	cost range	electric power
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics	[2021 B\$]	[MW]
High Energy LeptoN	0.25	1.4	5-10	13-18	7-12	~110
(HELEN) e^+e^- colider	(0.09-1)					L
e^+e^- Circular Higgs	0.24	1.2	3-5	13-18	7-12	~ 200
Factory at FNAL	(0.09-0.24)		· · ·			

ITF Report - T.Roser, et al, JINST 18 P05018