3rd PhD Committee Meeting

Matias Senger December 11th, 2023

3rd PhD Committee Meeting

- PhD Started in June 2020
 - Defense expected for spring 2024
- Requirements
 - \circ Teaching fulfilled \checkmark
 - ECTS credits fulfilled
- Publications and presentations in conferences
 - Senger, Matias, Anna Macchiolo, Ben Kilminster, Giovanni Paternoster, Matteo Centis Vignali, and Giacomo Borghi. "A Comprehensive Characterization of the TI-LGAD Technology." Sensors 23, no. 13 (January 2023): 6225. <u>https://doi.org/10.3390/s23136225</u>.
 - Caminada, L., B. Kilminster, A. Macchiolo, B. Meier, M. Senger, and S. Wiederkehr. "Development of a Timing Chip Prototype in 110 Nm CMOS Technology." Journal of Physics: Conference Series 2374, no. 1 (November 2022): 012081. <u>https://doi.org/10.1088/1742-6596/2374/1/012081</u>.
 - Senger, M., A. Bisht, G. Borghi, M. Boscardin, M. Centis Vignali, F. Ficorella, O. Hammad Ali, B. Kilminster, A. Macchiolo, and G. Paternoster. "Characterization of Timing and Spacial Resolution of Novel TI-LGAD Structures before and after Irradiation." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, June 21, 2022, 167030. https://doi.org/10.1016/j.nima.2022.167030.
 - RD50 Workshops 2020, 2021, 2022, 2023

PhD activities

- Up to November 2022, summarized in previous PhD Committee Meeting slides (<u>link</u>)
- Today:
 - 2023 activities
 - \circ Looking forward to my graduation 💆

2023 outline

- BNL AC-LGADs
 - TCT scans
 - Reconstruction algorithms
- AIDAinnova test beams
 - Preparations
 - CAEN digitizer
 - Readout boards
 - During test beam
 - 3 weeks in total
 - After test beam
 - Data analysis
 - TI-LGADs
 - BNL AC-LGADs
 - Presentation of results

AIDAinnova test beams

- 2 test beams @ CERN
 - 2 weeks in June
 - 1 week in August
- My contributions:
 - Suggested to go for 16ch digitizer, instead of oscilloscopes
 - Integration of digitizer into EUDAQ
 - Readout boards
 - Commissioning and operation of the setup
 - Data analysis for TI-LGADs and BNL AC-LGADs

Test beam setup

Some photos:

CAEN DT5742b digitizer

- Why?
 - Not as good as oscilloscopes, but...
 - 16+1 channels per digitizer
 - \circ factor of 10 cheaper
- We put 4 digitizers together
 - o 64 readout channels @ 5 Gs/s, 500 MHz
 - Equivalent to 16 oscilloscopes 🤯
- I made some tests to demonstrate the digitizer is a good enough replacement for the oscilloscopes, see <u>slides here</u>
- I wrote the module to integrate it into EUDAQ

Senger (UZH) ž **Committee Meeting** 3rd PhD **Dec 2023**

8

Readout boards

- 4 channels, 2 stages amplification
- Low cost carrier + main board design
- Easy to adapt to any sensor geometry
- Originally intended for the lab
- Prototyped in 2022, finished in 2023
- Why?
 - No (known) alternative with 4 active channels
 - Ease testing large number of sensors

Chubut 216CH

- New version with 16 channels
- Tested in TCT and beta setup ✓ (see <u>here</u>)
- Installed in August test beam for 1 run, unfortunately something went wrong with the beam
- Eager to take data with it in the next test beam

Why?

- More channels are always better
- AC-LGADs require at least 2 adjacent cells to be readout

in

Data analysis

Analyzed data from TI-LGADs and BNL AC-LGADs, presented results in $43^{\rm rd}$ RD50 Workshop

- <u>2D pixelated BNL AC-LGADs: From laser TCT to Test Beam</u> <u>characterization</u>
- First characterization of TI-LGAD technology in a test beam setup

Dec 2023 · 3rd PhD Committee Meeting · M. Senger (UZH)

11

AC-LGAD

The AC-LGAD technology

- AC-LGAD*: A single, large LGAD with a resistive and a dielectric layer on top, and small electrodes touching it.
- Fill factor = 100 % by construction. ✓
- Time resolution inherited from LGAD.
- Spatial resolution improved by sharing the charge. 👋

Characterized devices

- 2 identical devices
- Manufactured at BNL
- Active thickness: 30 µm
- Pad size: 200 µm
- Pitch: 500 μm
- 2×2 pads readout
- Unused pads to GND
- Non irradiated

Charge sharing at the heart of this technology

TCT scans

Two scans per DUT, training and testing scans, as shown:

Readout metal

0.1

0.08 €

Amplitude (

0.02

2023 · 3rd PhD

Dec

Position reconstruction methods

Position reconstruction algorithms comparison (laser TCT)

- DNN outperforms the others for large grids (because it learns to interpolate, even though it was not trained for that)
- For fine enough training grid, all algorithms behave similar.
- Converges to ≈20 µm for smaller and smaller grid sizes.
- Median reconstruction error is ~10 times smaller than for a 500×500 µm² binary readout pixel.

Time reconstruction algorithms

Two methods tested:

- 1. Single pad approach.
 - For each event just take the time from the leading waveform, ignore other channels.
- 2. Multiple pad weighted combination:
 - Amplitude weighted average from several pads.
 - \circ $\;$ No "hit position corrections".

$$t_{\rm reco} = \frac{\sum_i a_i^2 t_i}{\sum_i a_i^2}$$

Time reconstruction algorithms (laser TCT)

Weighted average algorithm

- TDCs from all pads have to be active all the time to get the desired time resolution, one TDC out of 4 is not enough.
- Laser TCT lacks of Landau fluctuations

Charge sharing in action (test beam)

Charge sharing in action (test beam)

Within ROI: Majority of events have large cluster size (desirable in this technology) ec v

Position reconstruction (test beam)

* SBRP = square binary readout pixel, see backup slides.** Residuals in x and y also available in backup slides.

Reconstruction error (m)

Dec 2023 · 3rd PhD Committee Meeting · M. Senger (UZH)

23

TI-LGAD

Senger (UZH) ž **Committee Meeting** PhD **Dec 2023**

The TI-LGAD technology

- Natural evolution of the LGAD technology
- Binary readout pixels (yes/no hit)
- Device segmentation using small trenches
- Share all same characteristics with regular LGADs, but much better inter-pixel distance
 - \circ Time resolution \checkmark
 - \circ Radiation hardness 🗸
 - Small pixels with high fill factor plausible

Effective efficiency

Efficiency measured in an area of the same size as a pixel. To avoid edge effects, take it close to the center:

- Global efficiency that a large area sensor would have
- Thanks to DUT symmetry, it is translation invariant
- Higher statistics

Effective efficiency

27

TI-LGAD vs AC-LGAD

Both technologies do what they promise

From my tests, both technologies are good... So how do we choose?

Charge sharing is the difference!

FBK - PIXEL-4K4-(258UNX258UN)-C2-V3-1TR

Charge sharing is the difference!

- TI-LGAD: Almost no charge sharing
- RSD-LGAD: A lot of charge sharing (desired, by design)

My conclusion from my experience + current understanding

How do the two technologies coexist?

Given my current understanding, we can expect this (not verified yet!):

How do the two technologies coexist?

Dec 2023 · 3rd PhD Committee Meeting · M. Senger (UZH)

35

How much gain loss can we afford in AC-LGADs?

Let's look at this plot, amplitude vs distance to pad center (this is test beam data, each point is one waveform):

How much gain loss can we afford in AC-LGADs?

We can recognize these 3 different regimes (note log scales):

How much gain loss can we afford in AC-LGADs?

As long as the amplitude at the epicenter of the pads is higher than the noise, we can expect 100 % efficiency in all the surface, i.e. 100 % fill factor.

Distance to pad center (m)

What happens after that?

After gain loss goes beyond the "critical gain loss", a blind spot will appear in the center and grow in size as gain further reduced, thus degrading the fill factor.

Comparison of my results TI-LGAD

AC-LGAD

Effective efficiency when new	>99.2±0.2 % efficiency, consistent with 0.9 ±0.2 µm effective inter-pixel distance (measured in 250×250 µm² DUTs)	100 % (measured in 500×500 μm² DUTs)
Effective efficiency after 1 n _{eq} cm ⁻² irradiation	97±1 % (measured in 250×250 µm² DUTs)	🔥 Unknown
Spatial resolution (xy residuals)	std: pitch/√12 68 %: pitch*0.340	68 %: ±40 μm (measured in 500×500 μm² DUTs)
Spatial resolution after irradiation	Same as before irrad	🔥 Unknown
Temporal resolution	Same as regular LGAD (measured)	Same as LGAD when 4 pads are readout, else strong position dependence (measured in 500×500 µm² DUTs)
Maximum occupancy	Calculate it as for a normal pixel of some size	Factor of 9 worse than a normal pixel with same pitch (for square pad arrangement)

How do the two technologies coexist?

Future plans

Dec 2023 · 3rd PhD Committee Meeting · M. Senger (UZH)

Future plans

- PhD 4 years mark: June 2024
 - Graduation before then!
- Test beam at DESY (February)
 - Take more data with TI-LGADs
 - New AIDAinnova production with carbon co-implantation for radiation hardness
 - Test AC-LGADs with 16 channels
 - Non irrad + irrad
 - New geometries
- Try to quantify a bit this plot -
- Some other minor things (e.g. spatial reconstruction in RSD-LGAD using only time variables, and using charge&time variables together)

Radiation damage

I would love to do this

- Suggested by Nicolò in the previous PhD Committee Meeting
- We (ADIAinnova WP6 TB team) have ALL what is needed, except maybe the beam 😅 (CERN? Can be done at DESY?)

Conclusions

- A lot of work with TI-LGADs and AC-LGADs
 - Laboratory
 - Test beam
- Comparison of the two technologies (ongoing)
 - \circ $\,$ So far I would say: One is not better than the other, depends on the application
- Still some things to be done
 - DESY test beam

• All in all, I think I am on track for my PhD, but please you tell me $oldsymbol{:}$

Backup slides

TCT characterization (TI-LGAD)

Almost all design patterns from the FBK RD50 TI-LGAD production were ranked according to their inter-pixel distance as measured with laser TCT, more details in <u>https://doi.org/10.3390/s23136225</u>.

Time resolution (TI-LGAD)

Measured in laboratory beta source setup as well as in test beam setup, see <u>https://doi.org/10.3390/s23136225</u> for more details.

Algorithms detailed comparison (TCT data)

Plots show reconstruction error distribution (ECDF plots, the integral of histograms without bins).

- As the training grid gets finer, the results get better (as expected).
- Because of the discrete training grid, reconstruction error resembles that from a BRP of the same size.
- The DNN learns to interpolate, that's why it is better for e.g. training grid 3×3 (red).
- All cases are better than a 500 µm SBRP.
- For small enough training grid (N×N=18 in the plots), all algorithms behave roughly as a 70 µm SBRP.
- * SBRP = square binary readout pixel

(HZH) 2023 Dec

Position reconstruction using charge imbalance

$$\begin{cases} x_{\text{reconstructed}} = \frac{\text{pitch}_x}{2} Q_{\text{imbalance } x} \\ y_{\text{reconstructed}} = \frac{\text{pitch}_y}{2} Q_{\text{imbalance } y} \end{cases} \begin{cases} Q_{\text{imbalance } x} = \frac{Q_{11} + Q_{01} - Q_{00} - Q_{10}}{\sum Q_{ij}} \\ Q_{\text{imbalance } y} = \frac{Q_{00} + Q_{01} - Q_{11} - Q_{10}}{\sum Q_{ij}} \end{cases}$$

- Pros
 - Easy
- Cons
 - Only applicable to very symmetric geometries (like this one
 - No special reason why this simple formula should be right one

Charge imbalance reconstruction results (test beam)

Reconstruction error $\stackrel{\text{def}}{=} \sqrt{\sum_{\text{coord} \in \{x,y\}} (\text{coord}_{\text{reconstructed}} - \text{coord}_{\text{original}})^2}$

- Median: 50 µm
- 99 %: 173 μm

- For a 500×500 μ m² SBRP*:
 - Median ≈ 200 µm
 - 99 % ≈ 330 µm

* SBRP = square binary readout pixel.** Residuals in x and y also available in backup slides.

Charge imbalance reconstruction residuals (test beam)

DNN reconstruction residuals (test beam)

Reconstruction error vs position (TCT)

- TCT data
- DNN reconstruction
- Color is quantile 0.99, i.e. at each position, 99 % of hits got lower reconstruction error than shown

On the statistics used to measure the spatial resolution

Spatial resolution statistics table

Quantity	Formula in SBRP*	Meaning	Comment
Median	≈ pitch × √(2/12)	≡ 50 % of reconstructed hits	It is the radius of a circle in
reconstruction		will be closer than this to the	the xy plane around the
error		actual hit	reconstructed position
std of residuals in x,y, i.e. std of "X _{reconstructed} -X _{real} " and "y _{reconstructed} -Y _{real} "	≡ pitch / √12	 Depends on the distribution In a square SBRP*: ≈ 58 % of reconstructed hits will have x,y coordinates within ± this quantity (yes, 58, not 68) 	 Not easy to interpret in a 2D arbitrary case (see slide with pathological example) Beautiful interpretation for Gaussian distributions, but not for arbitrary distributions
99 % of	≡ pitch*0.66	= 99 % of reconstructed hits	Useful to account for
reconstruction		will be closer than this to the	plausible tails and measure
error		actual hit	"the worse case scenario"

Dec 2023 · 3rd PhD Committee Meeting · M. Senger (UZH)

Median reconstruction error interpretation

Simulated hits and reconstruction Square binary readout pixel of size 1

- The meaning of the statistics shown in the plot is independent of distribution (i.e. valid for binary readout pixels, AC-LGADs, whatever)
- ▲ pitch/√12 ≡ std ONLY for binary readout pixels
- Interpretation of std is different for different distributions (for sure it is different for AC-LGADs and binary readout pixels)
- In my opinion, the most meaningful statistics when comparing binary readout pixels and non-binary readout pixels (e.g. AC-LGAD) are the quantiles of the reconstruction error, since the meaning is the same in both cases

Residuals in a square binary readout pixel (BRP)

pitch \equiv std of square BRP ≈ 58 % of hits

Residuals distribution x coordinate Square binary readout pixel of size 1

← The "magical formula" is the standard deviation of a uniform distribution (by definition), which is NOT the 68 % centered interval!!! (see plots) (It is so for a Gaussian, but this is not even close to a Gaussian)

Residuals distribution y coordinate Square binary readout pixel of size 1

Reconstruction error in a square binary readout pixel

Reconstruction error
$$\stackrel{\text{def}}{=} \sqrt{\sum_{\text{coord} \in \{x, y\}} (\text{coord}_{\text{reconstructed}} - \text{coord}_{\text{original}})^2}$$

Simulated hits and reconstruction Square binary readout pixel of size 1

- original
- reconstructed

Median reconstruction error in a square binary readout pixel $\approx \text{pitch}\sqrt{\frac{2}{12}}$

Reconstruction error distribution Square binary readout pixel of size 1

61

Pathological example

Consider this weird, still plausible pixel. Looking at the residuals in x,y we may be led to believe that ≈ 50 % of events are closer than 0.361 to the center. However, the minimum reconstruction error is actually 0.36. The reconstruction error quantiles, instead, never fail.

Simulated hits and reconstruction

Yreconstructed - Ytrack

Xreconstructed - Xtrack

Senger (

ž

nmittee Meeting

6

Dec 2023