

ASTeC

Sustainable Accelerator R&D in the UK

Ben Shepherd

on behalf of ASTeC's Sustainable Accelerators Task Force

Accelerator Science and Technology Centre, STFC Daresbury Laboratory, UK

Sustainable HEP Workshop × IOP PAB Conference

10-12 June 2024

Ben Shepherd Magnets

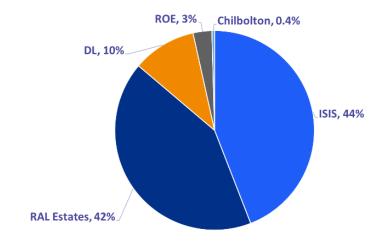
Alan Wheelhouse RF

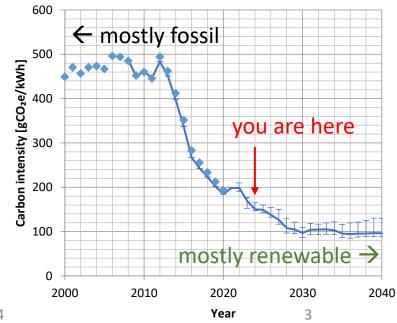
Anthony Gleeson Business

Gary Hughes Facilities

Storm Mathisen Diagnostics

Hywel Owen Acc Physics

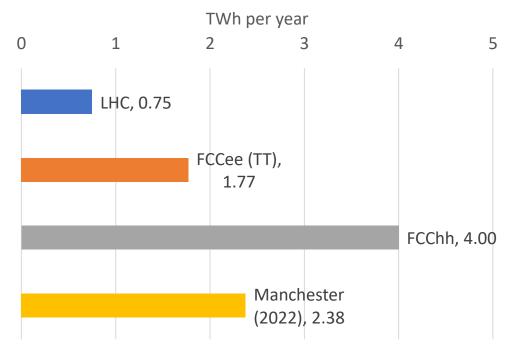

Andrew Vick Vacuum


Overview

- Sustainable accelerator technologies
 - Thin film superconducting RF
 - Permanent magnets
- The CESA proposal: a new UK centre of excellence
- Accelerator carbon footprint: the RUEDI case study

Accelerator Context

- UKRI has committed to reach Net Zero by 2040
- Electricity usage is 75% of STFC's emissions mostly big facilities →
- Particle Accelerators are core to many of our major science facilities:
 - ISIS Neutron and Muon Source
 - Diamond Light Source
 - CLARA electron beam test facility
 - Large Hadron Collider at CERN
 - European X-ray Free Electron Laser in Hamburg
 - ESRF in Grenoble
 - ... and more in the pipeline: ISIS-II, Diamond-II, HL-LHC, RUEDI, EPAC, PIP-II, ESS, ITRF, UK-XFEL, EIC, ...
- They are essential tools for enabling green research, but...
- They consume large amounts of electrical power and other resources
- The UK electricity grid is decarbonising but not to zero
 - Last coal plant closing Sep '24
 - Phase change fossil \rightarrow renewable
 - Expect 100 gCO₂e/kWh by 2030, ~20% of 2000 value



Bigger and Better?

 In general, the next generation facilities are physically larger and consume more power and other resources during operations than their predecessors

• Example:

- Future Circular Collider is being proposed as a potential successor to HL-LHC
- Tunnel: 26 \rightarrow 90km
- Energy consumption: 0.75 → 4.0 TWh/year

JP Burnett, FCC Week 2023

F Gianotti, FCC Week 2023

Thin Film Superconducting RF

Why a TF SRF programme?

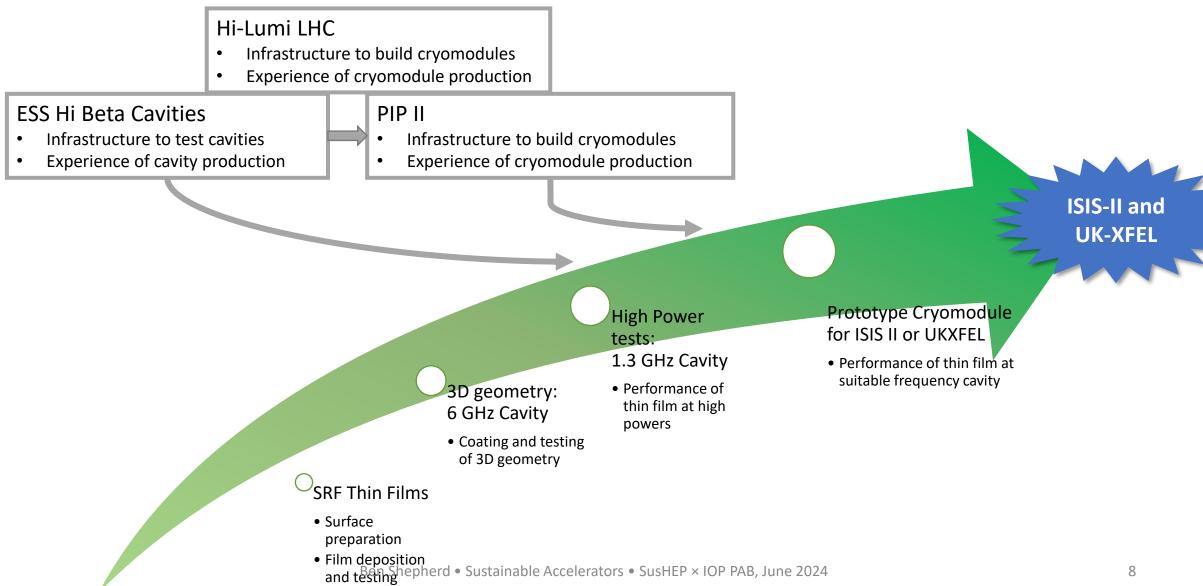
- Future challenge identified niobium reaching performance limit
- Technology development required for next generation of machines to meet challenging specifications
- Fits our skills and strategy
- Sustainability advantages can not be ignored
- Vision: To deliver high performing thin film SRF cryo modules to future infrastructure projects

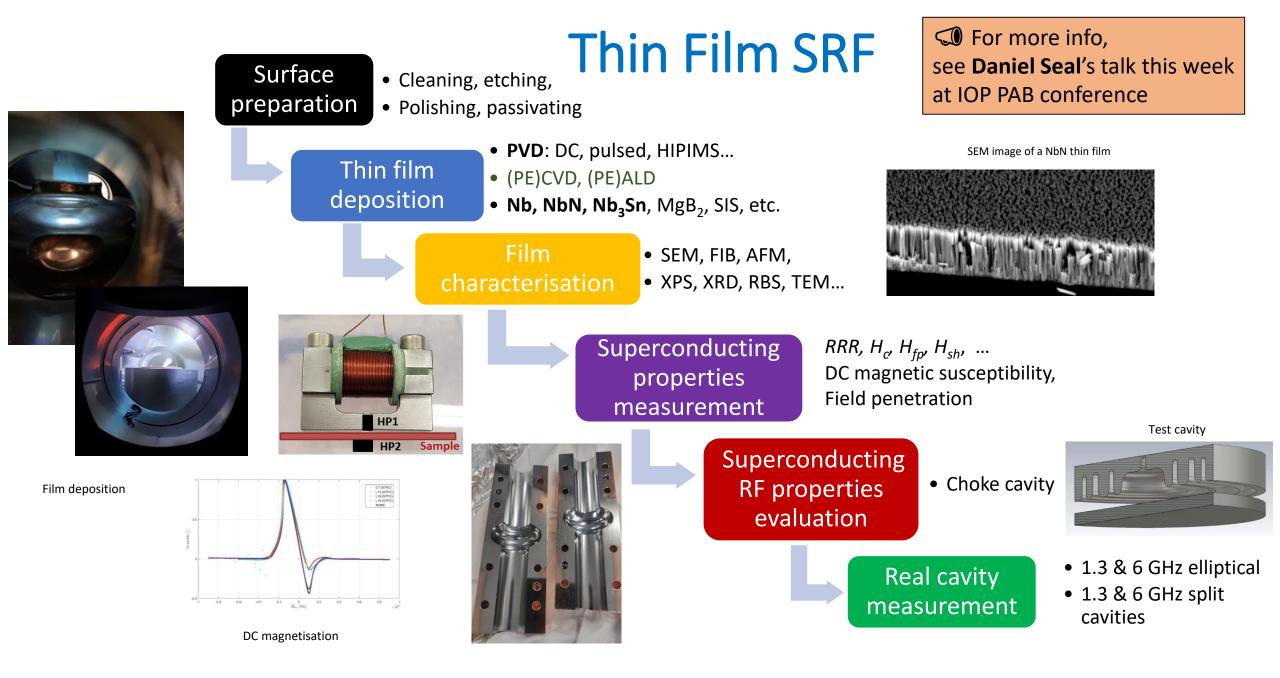
Replacing Nb bulk cavities

Use Of Thin Films On Copper

- Reduce **costs**
- Easier to machine
- Higher thermal conductivity than Nb

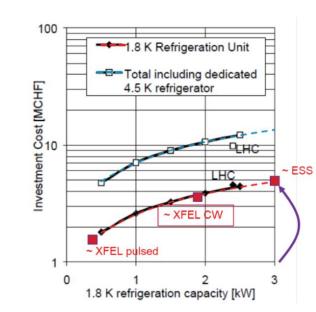
Improve Accelerator Performance


- Reach higher Q_0 and E_{acc}
- Utilise various **high** *T*_c materials e.g. Nb₃Sn, V₃Si, NbN, NbTiN, MgB₂
- Multilayers


More Sustainable Accelerators

• Bulk Cu vs Bulk Nb

- Reduce cryogenic power consumption
- Shorter accelerator structures
- Up-cycling existing cavities

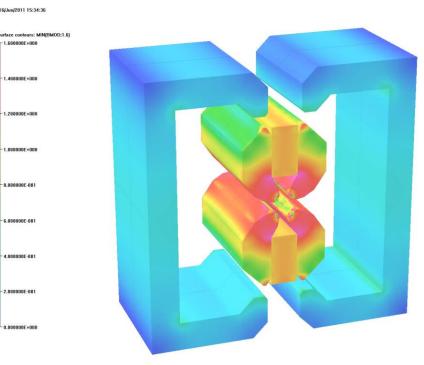


Thin Films: impact on cost and energy usage

- Capital costs:
 - Cooling to 1.8 K represents 35-40% of the total ightarrow
- Operating costs:
 - Combination of Carnot efficiency (thermodynamic limit) and refrigerator efficiency (technological limit)

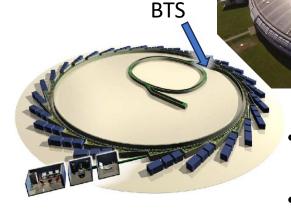
$$\eta_C = \frac{T_{cold}}{T_{hot} - T_{cold}}$$

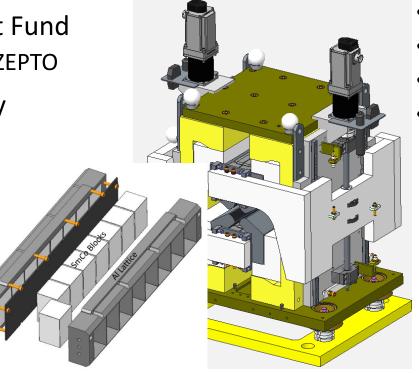
	1.8 K	4.2 K				
η_c	0.6%	1.4%				
$\pmb{\eta}_{th}$	15-20%	25-30%				


- 3x lower cooling power at 4.2 K
- Approx annual figures for an 8 GeV SC linac

Permanent Magnets

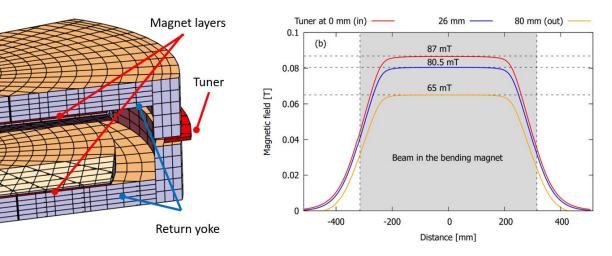
The ZEPTO concept


- Zero-Power Tuneable Optics
- Highly adjustable PM quadrupole and dipole magnets to replace electromagnets
 - Large tuning range using motors to move PMs
 - Same physical footprint
 - No energy usage (except a tiny amount when adjusting)
 - Less infrastructure required (no big current cables, power supplies, cooling)
- Two prototype quads built at Daresbury Laboratory
 - 27 mm aperture
 - 230 mm length
 - 15-60 T/m, 4-35 T/m ranges
 - Fixed poles, movable PMs
 - Simple control system with one motor



ZEPTO Diamond Quadrupole

- Aim: demonstrate operation of a ZEPTO quadrupole on a working accelerator
- Install a tuneable PM quad as a drop-in replacement for an EM quadrupole
- Installed at Diamond Light Source, on the BTS transfer line
- Enabled by STFC's Proof of Concept Fund
 - Step towards commercialisation of ZEPTO
- Assembled and tested at Daresbury
- Installation at Diamond in August 2022 shutdown
- Operated successfully at Diamond for 12 months
- Next steps: remove, retest, ensure no radiation damage

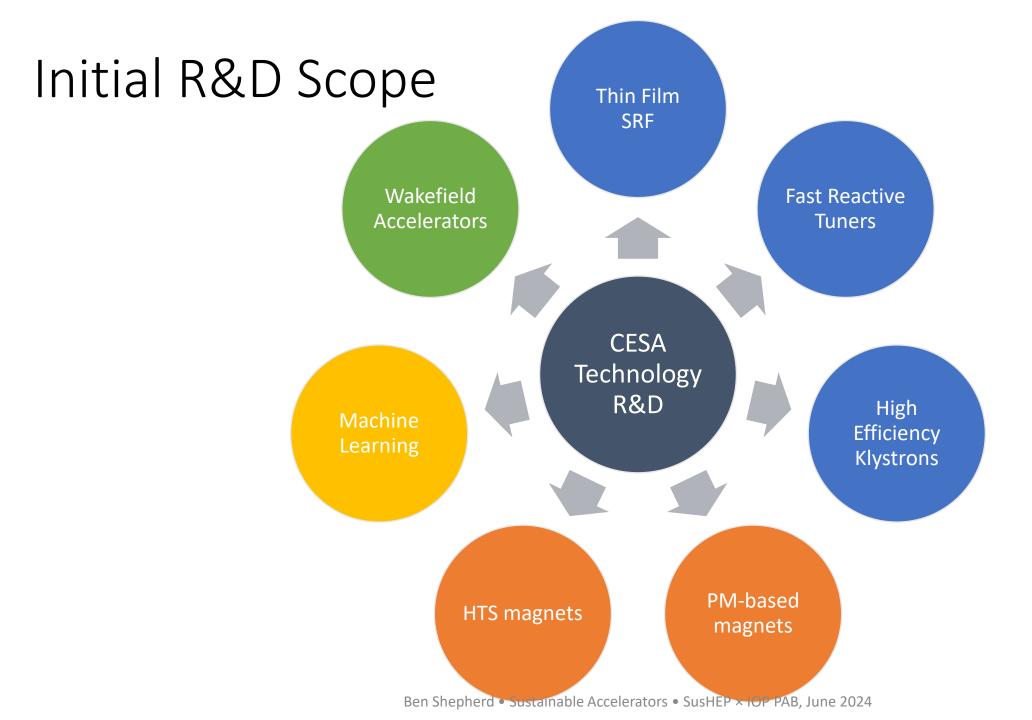

- Similar design to ZEPTO-Q2
 - Outer shell for large tuning range
- Max gradient **19 T/m**
- Min gradient 0.5 T/m
- Movement range 90 mm
- Aperture diameter 32 mm
- Improvements to design:
 - SmCo blocks
 - improved temperature stability
 - radiation resistance
 - **Splittable** to allow installation around vacuum chamber
 - **Two independent motors** for magnetic centre correction
 - Ice cube tray concept for easy installation of PM blocks

diamond

Olli Tarvainen et al, Nuclear Physics B (2022)

ECRIS: adjustable PM dipole for ion sources

- Compact ion source applicable to
 - Thin Films centre
 - Materials characterisation at ISIS
- Includes PM-based m/q separator
 - Simpler than traditional EM-based system
- Mechanical adjustment: 65-87 mT
- Assembled and tested at DL in 2022
- Excellent agreement with modelling
- Field quality 5x10⁻⁴
- Installed and operating at Jyväskylä, Finland
- Transported Ar⁶⁺ to Ar¹²⁺ beams, May 2024
 - Magnetic adjustment "works really well"



Pole piece

CESA: Centre of Excellence in Sustainable Accelerators

What is CESA?

- Our vision is that CESA is a **centre of mass** for UK-based accelerator R&D with a specific mission to **make accelerators significantly more sustainable**
 - Receives sufficient funding for a coherent and targeted R&D programme enabling a step change in the rate of progress at a timescale relevant to our future pipeline
 - Collaborating directly with **industry** so that new products can be procured commercially as they are developed and proven, enhancing the UK economy and return from CERN
 - Has a small core team who provide training to engineers, technicians and scientists in sustainable design practices backed up by providing access to sustainability software tools and databases
 - Works collaboratively with international partners
- We need to invest now to ensure we are ready in time for the potential mega-projects which are on the horizon such as ISIS-II, UK XFEL, and FCC
 - It will take many years to demonstrate new technologies
 - We still have time but need to get going as they aim to start construction in the early '30s

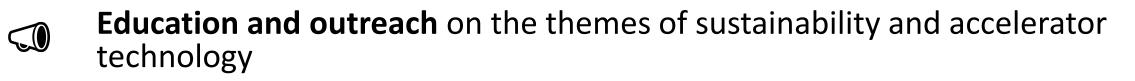
CESA Technology R&D Areas: one-page overview

	CA1 Thin Film SRF cavity development	CA2 Fast reactive tuners for SRF cryomodules	CA3 High Efficiency Klystrons	CA4 Permanent Magnets for beamline magnets and klystrons	CA5 HTS Magnets	CA6 Machine Learning and AI applied to accelerators	CA7 Plasma Wakefield Accelerators
Cost	 3 5 5 5 	5	5 5	5	<u></u>	3	<u></u>
Lab space						none	
CO₂ and opex savings				\bigcirc		$\bigcirc \bigcirc$	
Other benefits*	🆺 🧟 🚰	in 19 19 19 19 19 19 19 19 19 19 19 19 19	É	🏝 🧟 🖓		<u></u>	in 🔁 🔁 🔁

* 🛱 partnership with industry; 🧟 skills development; 🖓 development/exploitation of IP; 💿 enabler for other green technologies

CESA's Objectives

R&D in **key technology areas** to drive sustainability improvements for **current** and **next-generation** accelerators


Tools, expertise and support to measure and optimise **lifecycle carbon emissions** in support of UKRI's Net Zero 2040 target

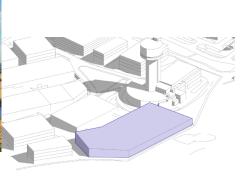
Develop strong international collaborations with other international accelerator institutes, and industrial partners

Training for new and current accelerator designers in **sustainable design**; knowledge sharing

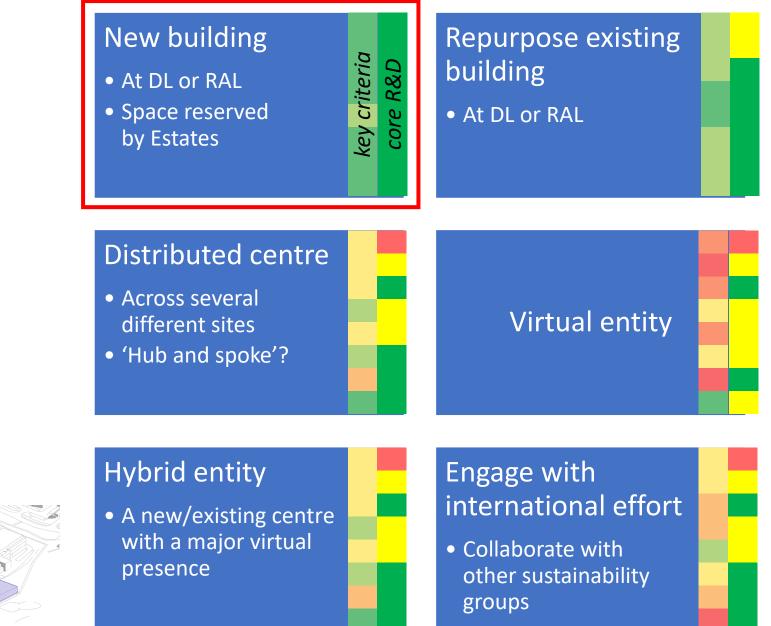
Power / cost / CO₂ savings illustration: UK-XFEL

- UK-XFEL conceptual design & options analysis in progress
- Baseline:
 - 8 GeV, 1.3 GHz superconducting linac, solid Nb cavities
 - Room temperature electromagnets
- Energy consumption estimates:

CESA will pay for itself many times over during the 40+ year lifetime of a mega-project


	Cryogenics 70 GWh	SRF 32 GWh	Magnets 11 GWh		
٦	Total per year: 113 GWh , £29m, 7900 tCO₂e	Thin film SRF: 1.8K \rightarrow 4.2K; x3 re	oduction in crup nowor		
• (Jsing CESA-developed technologies:	FRTs : higher Q \rightarrow x10 reduction in RF power			
	Cryogenics 23 GWh	HTS / PM: x10 reduction in mag	net power		

Potential annual savings on the order of 85 GWh, £24m, 6600 tCO₂e


Options for CESA

- Initial options analysis carried out
- Evaluated each option against key criteria
 - Delivery of core R&D
 - New lab space
 - Innovation & collaboration
 - Workforce development
 - Value for money
 - Net Zero targets
 - UK leadership
 - Deliverability within 5 years
- and also against *delivery of core R&D*

Preferred Option

Ben Shepherd • Sustainable Accelerators • SusHEP × IOP PAB, June 2024

CESA Next Steps

Questions? Feedback? Want to get involved? Contact us: <u>ben.shepherd@stfc.ac.uk</u> *Coming soon: <u>www.cesa.ac.uk</u>*

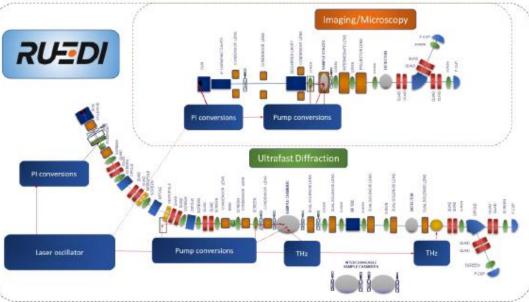
- We have written a Viability Case (a mini business case) for CESA and presented it to an internal STFC Viability Panel (this is an STFC process for major new initiatives)
- Received very positive feedback to help us strengthen the Case
- Updating the Viability Case now, to be presented to STFC Executive Board in June
- We will take on board their feedback and begin drafting the **Outline Business Case**
- We will be asking for funding to ramp up from 2025 this could come from the next government Spending Review, the UKRI Infrastructure Fund, or a specific Net Zero fund

Accelerator Carbon Footprint: RUEDI

Aims

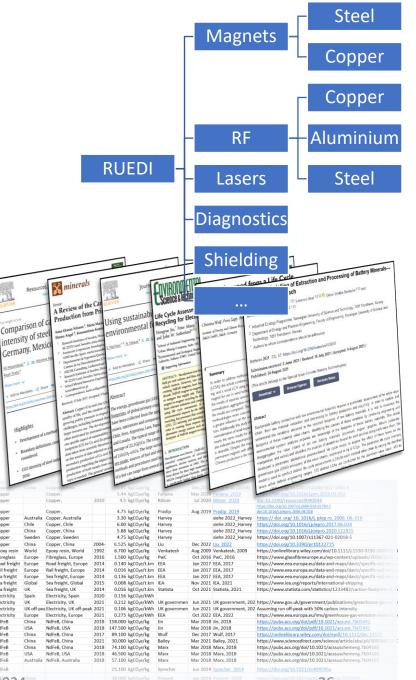
- Answer the question: "What is the carbon footprint of an accelerator?"
- Hard to find an accurate and definitive answer
 - Especially before the design is complete
 - But this is the critical time to do it
- Can we provide some guidance though?
- Look for the biggest possible gains
- Influence the design to minimise overall lifetime emissions

RUFDI NATIONAL FACILITY


- Relativistic Ultrafast Electron Diffraction and Imaging
- Facility to be built at STFC's Daresbury Laboratory
 - 4 MeV; diffraction at 10-100 fs; imaging at 10-100 nm; fC-pC bunches
- TDR was completed early 2024
 - Not published yet; available on request
- £124m for construction <u>announced</u> March 2024

RELATIVISTIC ULTRAFAST ELECTRON DIFFRACTION & IMAGING (RUEDI) NATIONAL FACILITY TECHNICAL DESIGN REPORT
VERSION 1-1 [02/04/2024]
VERSION 11 AURO- Intel Partition N.D. Romaning - Scoretta (Lorento) 1.C.D. Routen - STCC Detailship (Lorento) A.E. Statuel - Routen Institute
Authoritäti A. A. Banshanja, A. F. Borlow, G. Gari, A. Gunz, G. Gari, A. Gunz, A. Gu
A s serierd Resolut Freekon materie. Urbank ist
112.12

- 2022: Conceptual Design Review (CDR)
- 2023: Technical Design Review (TDR) and capital funding bid
- 2024: Final detailed design
- 25-26: Procurement
- 26-29: Construction and assembly
- 28-29: Technical systems commissioning
- 29-30: Science commissioning and initial user programme
- 31-35: First five-year operational run



https://ruedi.uk/

Carbon inventory: methodology

- Break accelerator down into subsystems
 - Mirrors organisational structure of our department
- For each one, make a guess at what parts are needed
 - Not always specified in detail
 - Makes it harder but also more valuable
 - This is the best time to do it not afterwards when all the decisions are made
- Use this to build up a materials inventory
 - Make an educated guess about sources of materials
 - Concentrate on biggest items (by mass)
 - Assume smaller things have less of an impact
- For each material, establish a carbon intensity (kgCO₂e / kg)
 - Use published literature
 - Try to find multiple sources
 - Build up database makes the process easier next time
 - Open data: available to share on request

Included and excluded

- ✓ Raw materials yes
 - BUT not everything
 - Biggest contributors by mass

- X Processing at factory no
 - Often proprietary data, or too hard for manufacturers to estimate
 - BUT got some interesting info from magnet manufacturers see later

- X Transport to our site no
 - Not easy to estimate distances
 - Probably small compared to materials extraction anyway

- Operations yes
 - Electricity use only
 - Grid of 2030-40 assumed 50% greener than today; 2500 operating hours per year

- X Maintenance and repair no
 - Too hard
 - Probably not significant

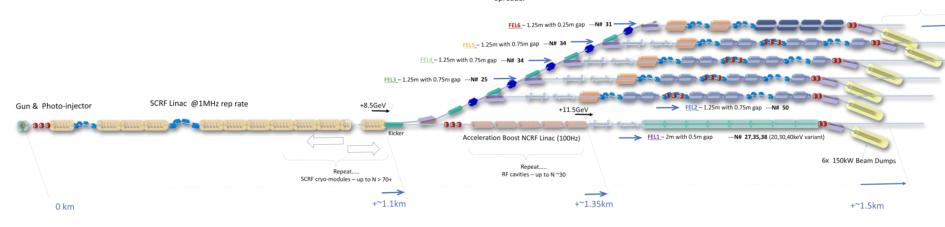
- X End of life no
 - Too many questions about where materials end up

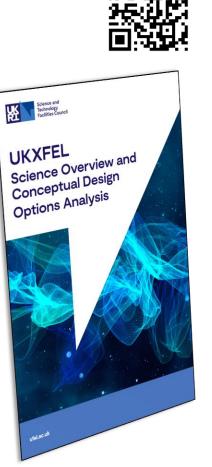
Results

				94 tCO₂e				Mat	terials (inc
Operations (ten years): 1440 tCO₂e							shielding): 254 tCO ₂ e		
Heating/cooling: 586 tCO₂e		Magnets: 204 tCO₂e		Laser: 170 tCO₂e					
Air handling units		Lens (diffraction line) Gun solenoid magn		Other Cryo chiller (Cryo MPA)		Chillers (Regen and MPA0 amplifiers)	Shielding		
						Backing pump (TW)			
				n r	Vacuum: 150 tCO₂e				
				ets	Backing				
	Pumps	Travel: 186 tC		Be tCO₂e Backing pump (lase					
							Other vacuum	Laser	
Chiller					Controls: 96 tCO₂e		RF: 48 tCO₂e		Heating/cool
		Long-haul flig	ghts Of	ther travel	Oscil	Rack-moun	Photoinjecto	Vacuum	ng
					Processi ng crate e		Dechirper + other		Control Other s s

Recommendations

- **1. Reuse shielding** from previous projects
 - New blocks to be standardised and made from low-carbon concrete
- Temperature stability
 - Consider variable-speed drives, free cooling


3.


- Permanent magnets
- Tricky but possible for solenoid lenses?
- 4. Consolidate cooling
 - Integrate + centralise laser system cooling
- 1 1 1
- 5. Reuse waste heat
 - Use heat removed from the accelerator to heat offices in winter
- **Å** ₩
- 6. Demand shifting
 - Schedule heavy energy use for windy or sunny periods
- 7. Submetering
 - Look for energy consumption hotspots

Ben Shepherd • Sustainable Accelerators • SusHEP × IOP PAB, June 2024

Next steps

- Liaise with RUEDI team and implement recommendations
- Outline carbon accounting for UK-XFEL design study
 - Baseline: 8 GeV, 1.3 GHz SC RF linac, 1.1km length
 - Definitely not LCA-standard! Make a set of assumptions, produce rough figures for comparison
 - Design is evolving
 - Aim: embed sustainability into decisions about facility design

xfel.ac.uk

Summary

ASTeC

Institute of Physics

- Our accelerators are vital tools for science
- We need to ensure they operate in the most efficient way
- ASTeC aims to be the go-to place for sustainable accelerator technology
- We are developing cutting-edge green technologies, as well as tools to understand our footprint
- We have an ambitious plan to build a global Centre of Excellence: CESA
- Acknowledgements
 - SATF: Alan Wheelhouse, Anthony Gleeson, Gary Hughes, Rachael Buckley, Storm Mathisen, Hywel Owen, Andrew Vick, Katie Morrow, Hannah Wakeling
 - RUEDI: Julian McKenzie, Alex Bainbridge, Mike Ellis, Tim Noakes
 - Icon credits: brick wall, heat pump, magnetic field, cold, heater, solar energy, mining cart, factory, truck, light bulb, maintenance, recycling

ESSRI Workshops **Energy for Sustainable** Science at Research Infrastructures

emot

PAUL SCHERRER INSTITUT

6

ICFA The International Committee for Future Accelerators

<u>ICF/</u>

I.FAST Innovation Fostering Centro de Investigaciones in Accelerator Science and Energéticas, Medioambientales Technology H2020-RIA project

y Tecnológicas Ciemat

Centro de Investigacione Energéticas, Medioambientale y Tecnológicas

CIEMAT

uc3m Universidad Carlos III de Madrid. Puerta de Toledo Campus.

uc3m

ERF-AISBL

Universidad

Carlos III

de Madrid

IROPEA

PALLATIO

7th Workshop **Energy for Sustainable Science** at Research Infrastructures

September 25th to 27th, 2024 - Madrid, Spain.

September 25th to 27th, 2024

FAST

DESY.

https://agenda.ciemat.es/e/ESSRI2024

Spare slides

Shielding

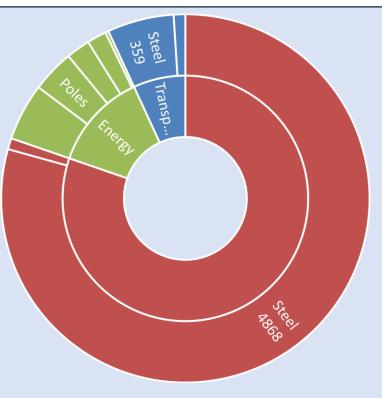
Salaria Salar alaa

- Concrete: almost the ideal shielding material
 - Absorbs gammas and neutrons well
 - Long-lasting and durable
 - Easy to manufacture
 - Acts as a structural material
- BUT: big carbon impact
 - High temperatures involved in cement production (1450°C)
 - Concrete production accounts for <u>8% of global CO₂ emissions</u>
- For RUEDI, need 0.7m thick walls, plus roof
 - Using existing building, no need for new floor
 - Total 927 tonnes of concrete → 137 tonnes CO₂e
- Can we do better?
 - Reuse old blocks (long history of this at our 60-year old lab)
 - Use concrete with additives in place of 100% cement
 - Including 50% GGBS can reduce carbon intensity of concrete by 42%

Heating and cooling

- Some systems (RF, magnets, laser) have water cooling this is counted as an overhead for those areas (rule of thumb: 35%)
- In addition, need to keep the accelerator hall stable to 0.1°C

Heating/cooling: 586 tCO₂e

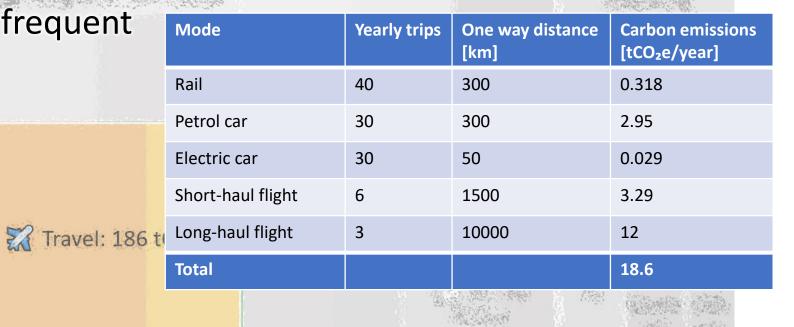

Item	Count	Power demand [kW]	Operating hours per year	Energy usage [MWh/year]	Carbon emissions [tCO₂e/year]
Air handling units	11	36.5	8766	320	24.8
Chillers	11	96.1	2500	240	18.6
Pumps	2	22.5	8766	197	15.3
Total		155		758	58.6

Ben Shepherd • Sustainable Accelerators • SusHEP × IOP PAB, June 2024

Magnets

- RUEDI is a low energy machine (4 MeV)
- Need a few dipoles and quadrupoles to transport the beam (52 magnets, total 600W)
- Biggest impact is solenoid focusing lenses
 - 9 magnets, total 77 kW
- Hard to replace with alternatives
 - PM solenoids not easy to build
 - Quadrupole focusing introduces more aberrations

Transport Materials Energy


Analysis of processes to produce a 'typical' accelerator quadrupole. Emissions for **raw materials** are the dominant source. Credit: Tesla Engineering, UK.

- Note that due to low energy, RF is a tiny fraction of emissions
 - Photoinjector, TDC, dechirper no linacs. Total 24kW
 - Would be very different for a GeV-level facility (synchrotrons, FELs)

Travel

- RUEDI is a **national** facility assume most users are from the UK
- Occasional long-haul trips (3 per year) made by facility staff to present at conferences
- Adds up to a significant contribution
- User site visits are more frequent but have less impact
- The message: reduce long-haul flights wherever possible

