

Green transition of Resistive Plate Chamber detectors for HEP applications

Luca Quaglia¹ on behalf of the RPC ECOgas@GIF++ collaboration

¹INFN Torino

Sustainable HEP 2024 - 3rd edition

10/06/2024

Overview

- Resistive Plate Chambers (RPCs) at the LHC
- Currently employed gas mixture and environmental issues
- RPC gas consumption @ LHC
- Two case studies
 - The ALICE MID gas re-circulation system
 - Alternative gas mixtures study: the RPC ECOgas@GIF++ collaboration
- Conclusions

RPCs at the LHC

Framework

LHCb phase 2 upgrade – RPCs are a possibility

Technical Design Report

Cathode strip chambers (CSC)

Resistive-plate chambers (RPC)

ATLAS RPCs Operated during Run1/2 + installation of new RPCs for HL-LHC (BI project) ~ 4000 m²

Monitored drift tubes (MDT)

End-cap toroid

Thin-gap chambers (TGC)

The currently employed gas mixture

- RPC working parameters depend on the gas mixture employed
- The currently-used gas mixtures at the LHC grant the following properties:
 - 1) High density of primary ion-electron pairs
 - 2) Relevant quenching properties
 - \rightarrow Ability of capturing recombination photons without further ionization
 - 3) Enough electron affinity to capture free electrons, reducing the spatial size of the discharge

Emissions @ **CERN**

- Scope 1 (direct) emissions of CERN from facilities and vehicles
 - \rightarrow Expressed in equivalent tonnes of CO₂
 - ightarrow Highest fraction of emissions by particle detectors and cooling

Emissions @ CERN

- Scope 1 (direct) emissions of CERN from facilities and vehicles
 - \rightarrow Expressed in equivalent tonnes of CO₂
 - \rightarrow Highest fraction of emissions by particle detectors and cooling

GROUP	GASES	tCO ₂ e 2021	tCO ₂ e 2022
Perfluorocarbons (PFCs)	$CF_4, C_2F_6, C_3F_8, C_4F_{10}, C_6F_{14}$	55 921	68 989
Hydrochlorofluorocarbons (HFCs)	$\begin{array}{c} {\rm HFC-23}\;({\rm CHF_3})\\ {\rm HFC-32}\;({\rm CH_2F_2})\\ {\rm HFC-134a}\;({\rm C_2H_2F_4})\\ {\rm HFC-404a}\\ {\rm HFC-407c}\\ {\rm HFC-410a}\\ {\rm HFC-507} \end{array}$	36 557	86 211
Other F-gases	SF_6 , NF_3	16 838	18 355
Hydrofluoroolefins (HFO)/HFCs	R-449 R1234ze NOVEC 649	86	199
	CO ₂	13 771	10 419
Total Scope 1		123 174	184 173

Equivalent CO₂ tonnes per gas in 2021 and 2022

Emissions @ CERN

- Scope 1 (direct) emissions of CERN from facilities and vehicles
 - \rightarrow Expressed in equivalent tonnes of CO₂
 - \rightarrow Highest fraction of emissions by particle detectors and cooling

GROUP	GAS	ES	tCO ₂ e 2021	tCO ₂ e 2022		
Perfluorocarbons (PFCs)	CF ₄ , C ₄ F ₁	$C_{2}F_{6}, C_{3}F_{8}, _{0}, C_{6}F_{14}$	55 921	68 989		
Hydrochlorofluorocarbons (HFCs)	HFC-23 (CHF ₃) HFC-32 (CH ₂ F ₃) HFC-134a (C ₂ H ₂ F ₃) HFC-404a HFC-407c HFC-410a HFC-507		36 557	86 211	Mainly due to RPC detectors	
Other F-gases	SF ₆ ,	NF ₃	16 838	18 355		
Hydrofluoroolefins (HFO)/HFCs	R-449 R1234ze NOVEC 649		86	199		
	CO ₂		13 771	10 419		
Total Scope 1			123 174	184 173		

Equivalent CO₂ tonnes per gas in 2021 and 2022

RPC gas emission @ **LHC**

GHG emission per year by all the LHC systems, original figure shown by Beatrice Mandelli at the ECFA Detector R&D Roadmap symposium

- Gas consumption due to RPCs @ LHC only
- RPC detectors represent the main consumers of GHG gases at CERN

RPC gas emission @ **LHC**

GHG emission per year by all the LHC systems, original figure shown by Beatrice Mandelli at the ECFA Detector R&D Roadmap symposium

- Gas consumption due to RPCs @ LHC only
- RPC detectors represent the main consumers of GHG gases at CERN
 - Emission increase from Run 1 and Run 2 in the ATLAS/CMS RPC systems are due to new leaks at the detector level

RPC gas emission @ **LHC**

GHG emission per year by all the LHC systems, original figure shown by Beatrice Mandelli at the ECFA Detector R&D Roadmap symposium

- Gas consumption due to RPCs @ LHC only
- RPC detectors represent the main consumers of GHG gases at CERN
 - Emission increase from Run 1 and Run 2 in the ATLAS/CMS RPC systems are due to new leaks at the detector level
 - Intensive leak repair campaign carried out during LS2 reduced the amount of leaks (here and here)
 - First Run 3 consumption data still to be produced

The need for a new RPC gas mixture

- All currently employed RPC gas mixtures contain different fractions of R134a (> 90%) and SF₆ (< 1%)
 → Fluorinated greenhouse gases (F-gases)
- New EU regulations to reduce the impact of F-gases
 - \rightarrow Phase down of the production and consumption of F-gases
 - \rightarrow Ban of the gases if a more eco-friendly alternative is available
 - \rightarrow Reduction of emissions from existing equipment

Increase in cost and reduction in availability

The need for a new RPC gas mixture

- All currently employed RPC gas mixtures contain different fractions of R134a (> 90%) and SF₆ (< 1%)
 → Fluorinated greenhouse gases (F-gases)
- New EU regulations to reduce the impact of F-gases
 - \rightarrow Phase down of the production and consumption of F-gases
 - \rightarrow Ban of the gases if a more eco-friendly alternative is available
 - \rightarrow Reduction of emissions from existing equipment

F-gases placing on the market (POM) plan obtained from ETC CM Report 2023/04

Increase in cost and reduction in availability

The need for a new RPC gas mixture

- All currently employed RPC gas mixtures contain different fractions of R134a (> 90%) and SF₆ (< 1%)
 → Fluorinated greenhouse gases (F-gases)
- New EU regulations to reduce the impact of F-gases
 - \rightarrow Phase down of the production and consumption of F-gases
 - \rightarrow Ban of the gases if a more eco-friendly alternative is available
 - \rightarrow Reduction of emissions from existing equipment

Increase in cost and reduction in availability

- Different ways to tackle the issue at CERN, two examples presented in this talk:
 1) Gas mixture re-circulation
 2) Search for alternative gas mixture
- For detailed description of other ways see Beatrice Mandelli's talk here

F-gases placing on the market (POM) plan obtained from ETC CM Report 2023/04

ALICE RPC re-circulation system

- Interesting example provided by the ALICE Resistive Plate Chambers (RPCs) muon trigger (MTR)/identifier (MID) re-circulation system
- 72 RPCs arranged in 4 detection planes, active area of ~35 m² each used to provide muon triggering (up to Run 2) and identification (from Run 3)
- Gas mixture composed by: 89.7% $C_2H_2F_4$ (GWP ~ 1430) – 10% i- C_4H_{10} (GWP ~ 3) - 0.3% SF₆ (GWP ~22800) \rightarrow Total GWP ~ 1440
- Total gas volume of ~0.3 m³ and gas flow of 0.5 vol/h
- During Run 1 the gas system was operated in open loop mode (no re-circulation)
- Creation of pollutants in the gas when the RPCs are operated
 - \rightarrow Gas re-circulation requires the use of purifying materials
 - $\rightarrow\,$ Dedicated feasibility study in 2016 and 2017

Schematic view of the MID RPCs – ALICE collaboration, ALICE Technical Design Report, (2008)

ALICE RPC re-circulation system

- Study of RPCs dark current (current with no beam, possibly linked to impurities in the gas) for different re-circulation fraction
- A small amount of fresh gas still has to be injected
- Total flow = fresh gas + re-circulated gas
- Re-circulation fraction = re-circulated gas/total flow

 Dark currents increase when RF from 33 % to 60 % then stable

- In 2017 a change in RF did not show improvement in the dark current
- Currently the re-circulation fraction is ~ 87%

Average dark current for different re-circulation fractions, B. Mandelli, RPC workshop 2018, Puerto Vallarta

ALICE RPC re-circulation system

 The introduction of re-circulation system lead to a great decrease in gas consumption, from LHC Run 2 onward

MID RPCs GHG consumption in equivalent tonnes of CO₂ – data provided by Beatrice Mandelli

- From Run 3
 - \rightarrow ALICE RPCs operated at lower voltage thanks to new front-end electronics
 - \rightarrow Less impurities produced and possibility to increase the re-circulation fraction even more
 - \rightarrow Under study

Search for alternative gas mixture

- First efforts of LHC RPC groups focused on R134a replacement
- Industrial use: from R134a to hydro-fluoro-olefine (HFO) family of gases
 - → Similar chemical structure as R134a but lower Global Warming Potential
 - \rightarrow Among all HFOs, HFO-1234yf and HFO-1234ze are currently used

- 1:1 replacement of R134a with HFO not possible
 - \rightarrow Lower effective first Townsend coefficient
 - \rightarrow Working voltage of the detectors moves to over 15 kV
- HFO has to be diluted with other gases
 - → Studies with cosmic muons by different LHC RPC groups [1-4]
 - \rightarrow CO₂ found to be the most promising candidate for dilution
 - \rightarrow In-depth studies on RPCs long-term behavior with eco-friendly alternatives needed

The RPC ECOGas@GIF++ collaboration

- Cross-experiment collaboration to join forces and perform aging/beam test studies with ecofriendly gas mixtures for RPCs
 Includes CMS, ALICE, ATLAS, SHIP/LHCb and the detector technology group of CEPN.
 - \rightarrow Includes CMS, ALICE, ATLAS, SHiP/LHCb and the detector technology group of CERN
- Studies carried out at the CERN Gamma Irradiation Facility (GIF++)
 → Experimental facility located on the H4 secondary SPS beam line

- 12.5 TBq ¹³⁷Cs source, high activity allows one to simulate long operating periods in much shorter time spans (<u>aging studies</u>) – irradiation can be modulated by means of attenuation filters (absorption factors)
- High energy (~150 GeV/c) muon beam in dedicated beam time periods

Experimental setup

- Two mechanical frames installed inside the GIF++ bunker \rightarrow At 3 and 6 m from the source
 - \rightarrow Different requirements of collaboration members
- Gas/HV/DAQ outside the GIF++ bunker

Details of the support at 3 m from the source

View of the setups inside the GIF++ bunker

Activities of the collaboration

- Multi-front approach to exploit both the GIF++ radioactive source and the μ beam
 → For more details on the work you can check this paper and this pre-print, main activities
 summarized here
 - \rightarrow Efforts ongoing from late 2019

Integrated charge progression

- μ beam test studies pinpointed one promising HFO mixture (35/60 HFO/CO₂)
- Long-term stability study ongoing since July 2022
 → reach HL-LHC integrated charge values

Integrated charge progression

• μ beam test studies pinpointed one promising HFO mixture (35/60 HFO/CO₂)

Long-term stability study ongoing since July 2022

 \rightarrow reach HL-LHC integrated charge values ALICE • RE11-TN 200 250 • SHiP as break '23 • RE11-TW ATLAS ر 200²00 • RE11-BOT EPDT bre mas Ē ensity 120 33 ŏ eak '22 -mas break '22 charge 001 Integrated 22 22 50 £ 12/31/23 12/31/22 12/31/23 12/31/22 Time [UTC] Time [UTC]

HL-LHC projected Q_{int} 10-10³ mC/cm² depending on the experiment

Monitoring of RPC performance with the μ beam (TB) throughout the long-term irradiation study
 → Quite stable behavior of the RPCs observed

Conclusions

- RPC detectors are one of the main consumer of F-gases at CERN

 → Mainly due to unfixable leaks at the detector level
 → Intense leak repair campaign during LS2 reduced gas consumption
 → First Run 3 data still to be published
- EU phase down on F-gases consumption and placing on the market \rightarrow Effort to reduce CERN consumption
- Implementation of gas re-circulation systems lowers consumption
 → Example of the ALICE muon RPCs from Run 1 to Run 2
- Search for alternative gas mixtures as most desirable long-term solution

 → RPC ECOgas@GIF++ collaboration studying C₂H₂F₄-free gas mixture
 → C₂H₂F₄→ HFO+CO₂ mixtures
 → RPC performance characterization with muon beam and long-term stability studies still ongoing

References

[1] A. Bianchi et al., Characterization of tetrafluoropropene-based gas mixtures for the Resistive Plate Chambers of the ALICE muon spectrometer, 2019, JINST 14 P11014, https://doi.org/10.1088/1748-0221/14/11/P11014

[2] B. Liberti et al., Further gas mixtures with low environment impact, 2016, JINST 11 C09012, https://doi.org/10.1088/1748-0221/11/09/C09012

[3] R. Guida et al., Performance studies of RPC detectors with new environmentally friendly gas mixtures in presence of LHC-like radiation background, Nuclear Inst. and Methods in Physics Research, A 958 (2020) 162073, https://doi.org/10.1016/j.nima.2019.04.027

[4] R . Albanese et al., RPC-based Muon Identification System for the neutrino detector of the SHiP experiment, 2023, JINST 18 P02022, https://doi.org/10.1088/1748-0221/18/02/P02022

[5] Young, C. J. et al., Atmospheric Perfluorinated Acid Precursors: Chemistry, Occurrence, and Impacts, Rev. Environ. Contam. T., 208, 1–109, (2010) https://pubmed.ncbi.nlm.nih.gov/20811862/

[6] George, C. at al., *Kinetics of mass transfer of carbonyl fluoride, trifluoroacetyl fluoride, and trifluoroacetyl chloride at the air/water interface*, J. Phys. Chem., 98, 10857–10862, https://doi.org/10.1021/j100093a029, (1994), https://pubs.acs.org/doi/10.1021/j100093a029

[7] L. M. David et al., Trifluoroacetic acid deposition from emissions of HFO-1234yf in India, China, and the Middle East Atmos. Chem. Phys., 21, 14833–14849, 2021, https://doi.org/10.5194/acp-21-14833-2021

Thank you for your attention!

Backup

On the HFO ecology - 1 B. Mandelli https://indico.cern.ch/event/1263322/

But not only detector performance...

- HFO dissociation in atmosphere might leas to the creation of TFA (toxic chemical for humans)
- Deposition on land following rain fall and consequent exposure to humans
- Studies on the matter (such as those reported in [1-3]) are not yet conclusive
- Research work on this direction is ongoing and we are studying these gases since for now they are not deemed as pollutants

On the HFO ecology - 2 B. Mandelli https://indico.cern.ch/event/1263322/

- PFAs: Per- and polyfluoroalkalyl substances:
 - Group of synthetic substances consisting of carbon chain + fluorine
 - Widely used in the industry and can leak into water/air/soil
 - Prolonged exposure harmful for humans
 - More than 15k PFAs identified
- Possible new regulations to ban PFAs

- Not yet clear if HFO will be included + not clear if the ban will be immediate or if derogations are foreseen

A possible new regulation?

PFAS: Per- and polyfluoroalkyl substances

- PFAS are a large class of synthetic chemicals considered environmental pollutants with links to harmful health effects.
- They all contain carbon-fluorine bonds: they resist degradation when used and also in the environment.
- Concern is growing on their use as they pollute the environment: PFAS have been frequently observed to contaminate groundwater, surface water and soil.

PFAS Regulation

- On February 7, 2023, the European Chemicals Agency (ECHA) released a proposal regarding PFAS restrictions:
 - It aims to be biggest chemical ban out of health considerations.
 - The proposal sets concentration limits below which the presence of PFAS would not be restricted: but which products?
 - None of the proposed restrictions will occur immediately: but when? Possible derogations?

