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Overview

● Resistive Plate Chambers (RPCs) at the LHC

● Currently employed gas mixture and environmental issues

● RPC gas consumption @ LHC

● Two case studies
▸ The ALICE MID gas re-circulation system
▸ Alternative gas mixtures study: the RPC ECOgas@GIF++ collaboration

● Conclusions
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RPCs at the LHC
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ALICE RPCs
Operation foreseen for the 

whole duration of the 
experiment
~ 140 m2

CMS RPCs
Operated during Run1/2 + installation of 

new RPCs for HL-LHC (iRPC)
~ 3000 m2

LHCb phase 2 
upgrade – RPCs are 

a possibility

ATLAS RPCs
Operated during Run1/2 + installation of 

new RPCs for HL-LHC (BI project)
~ 4000 m2



The currently employed gas mixture 
● RPC working parameters depend on the gas mixture employed 

● The currently-used gas mixtures at the LHC grant the following properties:

1) High density of primary ion-electron pairs
 
2) Relevant quenching properties

→  Ability of capturing recombination photons without further ionization

3) Enough electron affinity to capture free electrons, reducing the spatial size of the discharge

C2H2F4 (R-134a): provides primary 
electrons

i-C4H10 - isobutane: quenching gas

SF6 – sulfur hexafluoride: electronegative 
gas

Currently employed  
gas mixtures consist 

of these gases in 
different proportions
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Emissions @ CERN
● Scope 1 (direct) emissions of CERN from facilities and vehicles

→ Expressed in equivalent tonnes of CO2

→ Highest fraction of emissions by particle detectors and cooling
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By the end of LHC 
RUN3 (2025)

→ -28% of 2018

CERN third environmental report (2023)

https://e-publishing.cern.ch/index.php/CERN_Environment_Report/issue/view/156


Emissions @ CERN
● Scope 1 (direct) emissions of CERN from facilities and vehicles

→ Expressed in equivalent tonnes of CO2

→ Highest fraction of emissions by particle detectors and cooling

4/15

By the end of LHC 
RUN3 (2025)

→ -28% of 2018

CERN third environmental report (2023)

Equivalent CO2 tonnes per gas in 2021 and 2022

https://e-publishing.cern.ch/index.php/CERN_Environment_Report/issue/view/156


Emissions @ CERN
● Scope 1 (direct) emissions of CERN from facilities and vehicles

→ Expressed in equivalent tonnes of CO2

→ Highest fraction of emissions by particle detectors and cooling

4/15

By the end of LHC 
RUN3 (2025)

→ -28% of 2018

Equivalent CO2 tonnes per gas in 2021 and 2022

CERN third environmental report (2023)

Mainly due 
to RPC 

detectors

https://e-publishing.cern.ch/index.php/CERN_Environment_Report/issue/view/156


RPC gas emission @ LHC

GHG emission per year by all the LHC systems, original figure shown by 
Beatrice Mandelli at the ECFA Detector R&D Roadmap symposium
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● Gas consumption due to RPCs @ LHC 
only

● RPC detectors represent the main 
consumers of GHG gases at CERN

https://indico.cern.ch/event/999799/contributions/4204191/attachments/2236047/3789965/BMandelli_ECFA.pdf


RPC gas emission @ LHC

GHG emission per year by all the LHC systems, original figure shown by 
Beatrice Mandelli at the ECFA Detector R&D Roadmap symposium

5/15

● Gas consumption due to RPCs @ LHC 
only

● RPC detectors represent the main 
consumers of GHG gases at CERN

● Emission increase from Run 1 and Run 2 
in the ATLAS/CMS RPC systems are due 
to new leaks at the detector level 

https://indico.cern.ch/event/999799/contributions/4204191/attachments/2236047/3789965/BMandelli_ECFA.pdf


RPC gas emission @ LHC

GHG emission per year by all the LHC systems, original figure shown by 
Beatrice Mandelli at the ECFA Detector R&D Roadmap symposium

5/15

● Gas consumption due to RPCs @ LHC 
only

● RPC detectors represent the main 
consumers of GHG gases at CERN

● Emission increase from Run 1 and Run 2 
in the ATLAS/CMS RPC systems are due 
to new leaks at the detector level

● Intensive leak repair campaign carried out 
during LS2 reduced the amount of leaks (
here and here)

● First Run 3 consumption data still to be 
produced 

https://indico.cern.ch/event/999799/contributions/4204191/attachments/2236047/3789965/BMandelli_ECFA.pdf
https://agenda.infn.it/event/30846/contributions/183801/
https://indico.cern.ch/event/999799/contributions/4204191/attachments/2236047/3789965/BMandelli_ECFA.pdf


The need for a new RPC gas mixture
● All currently employed RPC gas mixtures contain different fractions of R134a (> 90%) and SF6 (< 1%)

→ Fluorinated greenhouse gases (F-gases)

● New EU regulations to reduce the impact of F-gases

→ Phase down of the production and consumption of F-gases
→ Ban of the gases if a more eco-friendly alternative is available
→ Reduction of emissions from existing equipment
 

 

Increase in cost 
and reduction 
in availability
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● Different ways to tackle the issue at CERN, 
two examples presented in this talk:
1) Gas mixture re-circulation 
2) Search for alternative gas mixture

● For detailed description of other ways see 
Beatrice Mandelli's talk here
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Run 3 Run 4

Run 2

https://indico.cern.ch/event/999799/contributions/4204191/attachments/2236047/3789965/BMandelli_ECFA.pdf
https://www.eionet.europa.eu/etcs/etc-cm/products/etc-cm-report-2023-04
https://www.eionet.europa.eu/etcs/etc-cm/products/etc-cm-report-2023-04


ALICE RPC re-circulation system
● Interesting example provided by the ALICE Resistive Plate Chambers (RPCs) muon trigger 

(MTR)/identifier (MID) re-circulation system

● 72 RPCs arranged in 4 detection planes, active area of ~35 m2 each used to provide muon triggering 
(up to Run 2) and identification (from Run 3) 

● Gas mixture composed by:
89.7% C

2
H

2
F

4 
(GWP ~ 1430) – 10% i-C

4
H

10 
(GWP ~ 3) - 0.3% SF

6
 (GWP ~22800) → Total GWP ~ 1440

● Total gas volume of ~0.3 m3 and gas flow of 0.5 vol/h

● During Run 1 the gas system was operated in open loop mode (no re-circulation)

● Creation of pollutants in the gas when the RPCs are operated
→ Gas re-circulation requires the use of purifying materials
→ Dedicated feasibility study in 2016 and 2017 
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Schematic view of the MID 
RPCs – ALICE collaboration, 
ALICE Technical Design Report, 

(2008)

https://inspirehep.net/literature/517335


ALICE RPC re-circulation system
● Study of RPCs dark current (current with no beam, possibly linked to impurities in the gas) for different 

re-circulation fraction

● A small amount of fresh gas still has to be injected

● Total flow = fresh gas + re-circulated gas

● Re-circulation fraction = re-circulated gas/total flow
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Average dark current for different re-circulation fractions, B. Mandelli, RPC workshop 2018, Puerto Vallarta

● Dark currents increase when RF 
from 33 % to 60 % then stable

● In 2017 a change in RF did not show 
improvement in the dark current

● Currently the re-circulation fraction 
is ~ 87%



ALICE RPC re-circulation system
● The introduction of re-circulation system lead to a great decrease in gas consumption, from LHC Run 

2 onward

● From Run 3
→ ALICE RPCs operated at lower voltage thanks to new front-end electronics
→ Less impurities produced and possibility to increase the re-circulation fraction even more
→ Under study 
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GWP (C2H2F4) ~ 1430 GWP (HFO-1234ze) ~ 6

Search for alternative gas mixture
● First efforts of LHC RPC groups focused on R134a replacement

● Industrial use: from R134a to hydro-fluoro-olefine (HFO) family of gases
→ Similar chemical structure as R134a but lower Global Warming Potential
→ Among all HFOs, HFO-1234yf and HFO-1234ze are currently used

GWP (HFO-1234yf) ~ 4

Not usable at LHC 
because reported to 
be mildly flammable
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● 1:1 replacement of R134a with HFO not possible
→ Lower effective first Townsend coefficient
→ Working voltage of the detectors moves to over 15 kV

● HFO has to be diluted with other gases
→ Studies with cosmic muons by different LHC RPC groups [1-4]
→ CO

2
 found to be the most promising candidate for dilution

→ In-depth studies on RPCs long-term behavior with eco-friendly alternatives needed



The RPC ECOGas@GIF++ collaboration

●  12.5 TBq 137Cs source, high activity allows one to 
simulate long operating periods in much shorter 
time spans (aging studies) – irradiation can be 
modulated by means of attenuation filters 
(absorption factors)

●  High energy (~150 GeV/c) muon beam in 
dedicated beam time periods GIF++ bunker layout

~22 m
~10 m

● Cross-experiment collaboration to join forces and perform aging/beam test studies with eco-
friendly gas mixtures for RPCs
→ Includes CMS, ALICE, ATLAS, SHiP/LHCb and the detector technology group of CERN

● Studies carried out at the CERN Gamma Irradiation Facility (GIF++)
→ Experimental facility located on the H4 secondary SPS beam line
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Experimental setup

μ beam

γ source

View of the setups inside the GIF++ bunker

Details of the support at 3 m from the source

Details of the detectors at 6 m from the source

● Two mechanical frames installed inside the GIF++ bunker
→ At 3 and 6 m from the source
→ Different requirements of collaboration members

● Gas/HV/DAQ outside the GIF++ bunker
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● Multi-front approach to exploit both the GIF++ radioactive source and the μ beam
→ For more details on the work you can check this paper and this pre-print, main activities 
summarized here
→ Efforts ongoing from late 2019

Aging studies Beam tests

Stability of the absorbed current vs integrated charge 
for the ECO2 gas mixture (60% CO2 35% HFO, 4% i-
c4H10 and 1% SF6) period corresponds to roughly one 

year exposure to the gamma source

RPC response to the muon beam: efficiency vs high 
voltage for different ratios of CO2/HFO. MIX0 
contains 0% HFO while MIX6 contains 40%

Data taken without gamma background

Prompt charge distribution for mixtures with different 
HFO concentrations. Increasing HFO concentration 

decreases the contamination from high charge 
content signals 13/15

Activities of the collaboration

https://epjc.epj.org/articles/epjc/abs/2024/03/10052_2024_Article_12545/10052_2024_Article_12545.html
https://arxiv.org/abs/2311.17574


Integrated charge progression
● μ beam test studies pinpointed one promising HFO mixture (35/60 HFO/CO2)

● Long-term stability study ongoing since July 2022
→ reach HL-LHC integrated charge values 
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Integrated charge progression
● μ beam test studies pinpointed one promising HFO mixture (35/60 HFO/CO2)

● Long-term stability study ongoing since July 2022
→ reach HL-LHC integrated charge values 
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● Monitoring of RPC performance with the μ beam (TB) throughout the long-term irradiation study
→ Quite stable behavior of the RPCs observed
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HL-LHC projected Qint 10-103 mC/cm2 
depending on the experiment



Conclusions
● RPC detectors are one of the main consumer of F-gases at CERN

→ Mainly due to unfixable leaks at the detector level
→ Intense leak repair campaign during LS2 reduced gas consumption
→ First Run 3 data still to be published

● EU phase down on F-gases consumption and placing on the market
→ Effort to reduce CERN consumption

● Implementation of gas re-circulation systems lowers consumption
→ Example of the ALICE muon RPCs from Run 1 to Run 2

● Search for alternative gas mixtures as most desirable long-term solution
→ RPC ECOgas@GIF++ collaboration studying C2H2F4-free gas mixture
→ C2H2F4→ HFO+CO2 mixtures
→ RPC performance characterization with muon beam and long-term stability studies 
still ongoing 
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Thank you for your 
attention!
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On the HFO ecology - 1

● HFO dissociation in atmosphere might 
leas to the creation of TFA (toxic 
chemical for humans)

● Deposition on land following rain fall 
and consequent exposure to humans

● Studies on the matter (such as those 
reported in [1-3]) are not yet conclusive

● Research work on this direction is 
ongoing and we are studying these 
gases since for now they are not 
deemed as pollutants

B1

B. Mandelli
https://indico.cern.ch/event/1263322/

https://indico.cern.ch/event/1263322/


On the HFO ecology - 2

● PFAs: Per- and polyfluoroalkalyl 
substances:

- Group of synthetic substances 
consisting of carbon chain + fluorine

- Widely used in the industry and can leak 
into water/air/soil

- Prolonged exposure harmful for humans

- More than 15k PFAs identified

● Possible new regulations to ban PFAs

- Not yet clear if HFO will be included + 
not clear if the ban will be immediate or if 
derogations are foreseen

B2

B. Mandelli
https://indico.cern.ch/event/1263322/

https://comptox.epa.gov/dashboard/chemical-lists/PFASSTRUCT
https://indico.cern.ch/event/1263322/
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