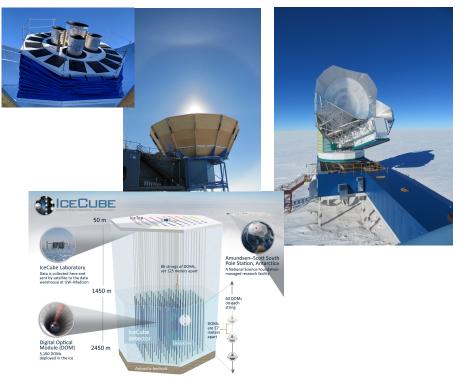


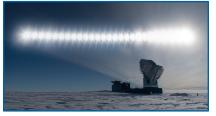
TECHNO-ECONOMIC ANALYSIS OF RENEWABLE ENERGY GENERATION AT THE SOUTH POLE

Photo credit: A. Chokshi


AMY BENDER, SUSAN BABINEC, IAN BARING-GOULD, NATE BLAIR, XIANGKUN LI, RALPH MUEHLEISEN, DAN OLIS, SILVANA OVAITT

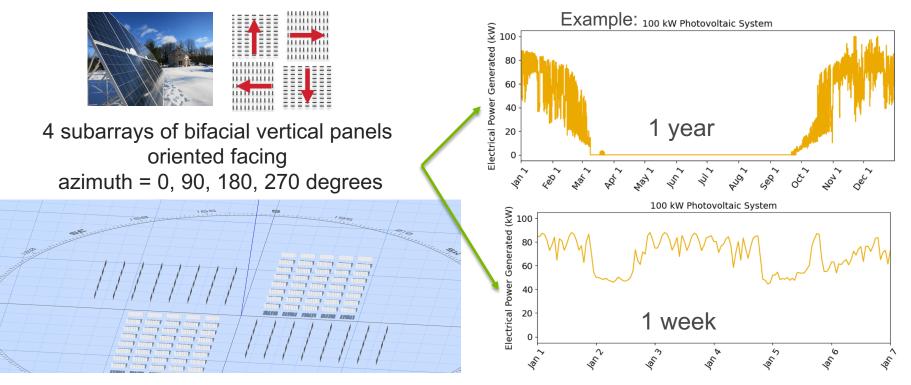
Sustainable HEP: 2024-06-10

HEP EXPERIMENTS AT THE SOUTH POLE

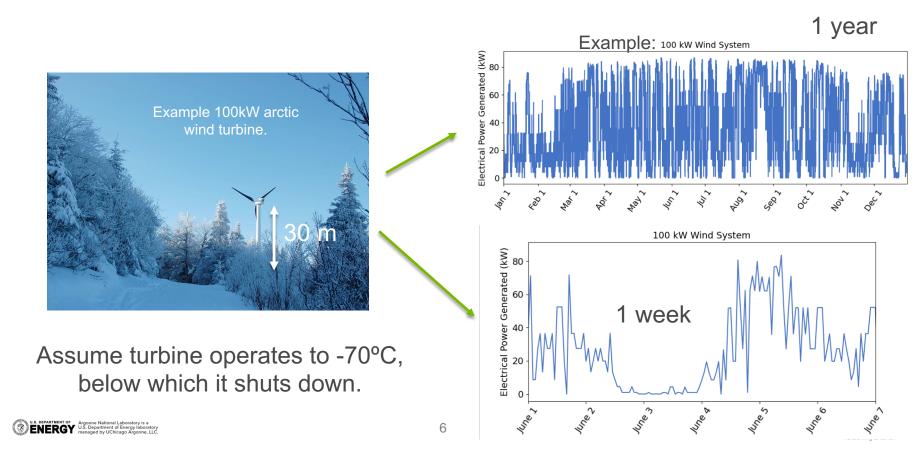

- The unique conditions at the South Pole enable HEP experiments
 - Cosmic microwave background (SPT-3G, BICEP Array)
 - Cosmic neutrino detection (IceCube, ARA)
- Electrical power is generated by traditional diesel generators that support the entire station (~600kW)
 - Fuel transport is costly and complex
 - Environmental stewardship is a key part of the Antarctic Treaty

SOUTH POLE CHALLENGES

- Sun is continuously above the horizon Sept 21 March 21, continuously below the horizon remainder of the year
- Temperatures as low a -80 °C in winter
- Transportation of personnel & equipment to the South Pole is through a combination of aircraft and overland traverse
- South Pole station is occupied year-round (~40 people in austral winter, 150 in austral summer)
 - Outdoor work occurs primarily during the short austral summer (Nov-early Feb)

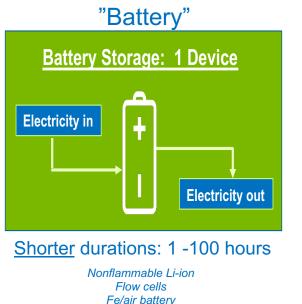

RENEWABLE ENERGY IS ALREADY IN USE AT SOME ANTARCTIC STATIONS

Type of Renewable Energy Wind Solar PV Thermal Solar Solar + Wind								
Ranking	Name of Station	Country	Туре					
1	Scott Base	New Zealand	Station					
2	Mawson	Australia	Station					
3	Comandante Ferraz	Brazil	Station					
	Jang Bogo	South Korea	Station					
5	Dumont d'Urville	France	Station					
6	Arrival Heights Laboratory	New Zealand	Laboratory					
	Arrival Heights Satellite Station	New Zealand	Laboratory					
	McMurdo	United States	Station					
9	Artigas	Uruguay	Station					
	Casey	Australia	Station					
11	Neumayer III	Germany	Station					
12	Syowa	Japan	Station					
13	Marambio	Argentina	Station					
14	Zhongshan	China	Station					
15	Rothera	United Kingdom	Station					
16	Concordia	Italy/France	Station					
	Troll	Norway	Station					

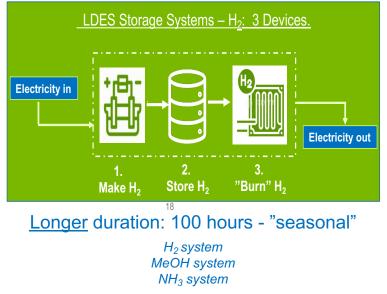


ENERGY GENERATION RESOURCES: SOLAR

- NOAA data from the past decade is used to inform solar availability over the year
 - 2016 is an 'average' year used in this analysis
 - Polar longitude dictates unique panel configuration and power generation profile



ENERGY GENERATION RESOURCES: WIND


ENERGY STORAGE OPTIONS

e^{-} in $\Leftrightarrow e^{-}$ out: Two basic approaches

Flow cells Fe/air battery MgMnOx (thermal) Liquid metal battery

"Energy Storage System""

Shorter duration storage technologies have higher technical readiness levels LDES = long duration energy storage

COMMERICAL-GRADE TOOL, UNIQUE INPUTS

<u>Renewable Energy Integration & Optimization (REopt)</u>

- REopt is a constrained optimization tool developed by NREL
 - Advises on cost-effective way to meet energy needs given available resources
 - REopt can answer different questions depending on the inputs & constraints applied
 - Decades of development on this tool
- Inputs:
 - Load requirements of application (Example: 170 kW)
 - Site specific renewable resource profiles (solar and wind)
 - Capital materials and labor estimates
 - Operations and maintenance cost estimates
 - Site specific cost estimates (e.g., shipping cost to South Pole, fuel cost)
 - Lifetime of system (Example: **15 years**)
- Outputs:
 - **Optimized sizing** of each component (solar, wind, storage)
 - Upfront capital, lifetime cost, net present value
 - Time to payback

Solar panel geometry

Temperature rating of components vs cost

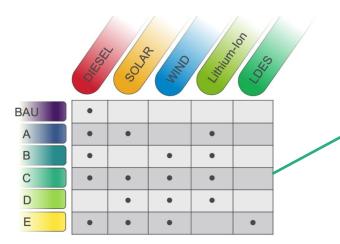
South Pole logistical constraints

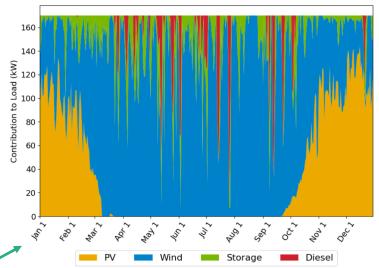
Housing of batteries

Position & number of inverters for batteries

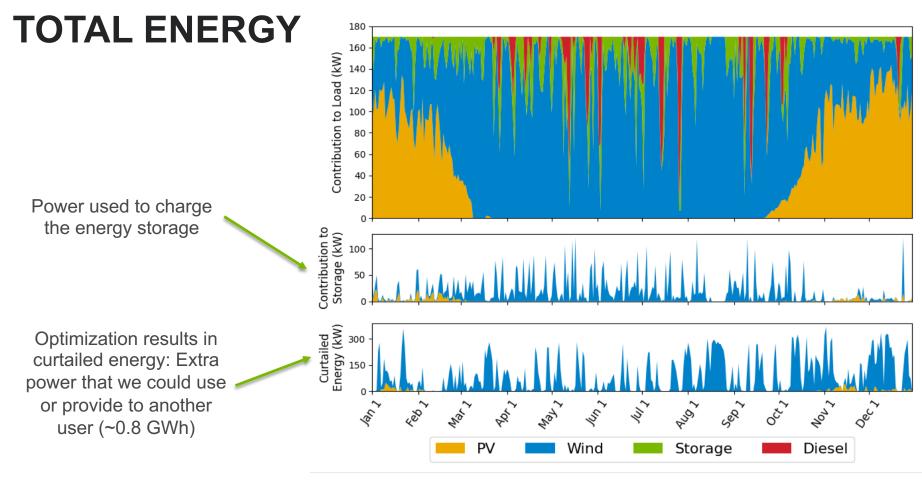
Battery round trip efficiency

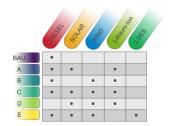
Battery cycling approach & system sizing

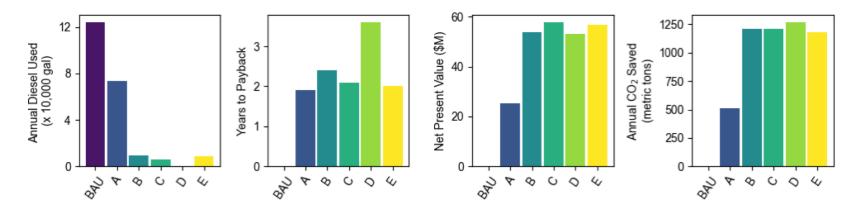

https://reopt.nrel.gov/



SYSTEM CO-OPTIMIZATION


- Assumptions:
 - Example load = 170 kW
 - Example lifetime = 15 years
 - This is a representative example, these assumptions are flexible
- Multiple configurations of renewable technology evaluated for least-cost solution


Example output from REopt shows how each technology meets the load requirement throughout the year for Scenario **C**.



COMPARATIVE RESULTS

- Diesel fuel reduction ranges from 40-100%
- All options have significant net present value (cost savings over life cycle)
- Additional configurations and constraints have been modeled to
 - characterize sensitivity to assumptions
 - determine payback at different system sizes
 - explore impact of LDES future projections

SUMMARY

- Direct collaboration with renewable energy experts to perform quantitative analysis for renewable at the South Pole
- A significant reduction in diesel consumption is possible using mature renewable energy technology and energy storage
 - Directly translates into significant reductions in both carbon footprint and cost of operations
 - Time to pay back on initial investment ~2 years
- Future engineering developments have been identified
 - Snow drift modeling & mitigation; cold turbine development, ice foundation development, EMI/RFI & vibration impacts
- 'Alternative energy' is discussed in the recently released draft South Pole Master Plan
 - Link to South Pole Master Plan & Comment Instructions
 - Currently open for public comment

