Changing the world of research based on solid measurements

Labos 1 point 5: Reducing the environmental footprint of our research activities

Samuel Calvet, Yann Coadou, Mélissa Ridel

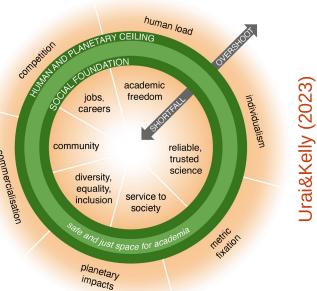
Sustainable HEP 2024 — 3rd Edition 10 June 2024

What is Labos 1point5?

- 1) A grassroot collective action « to understand and reduce the environmental footprint of research »:
 - Created in March 2019
 - (op-ed in French leading newspaper *Le Monde* & website with call for participation)
 - Network of people, labs and initiatives
 - ► ~4000 following our work

- 2) A research project called GdR (Groupement de Recherche)
 - Created in November 2021
 - ~250 participating in research activities (all genders, disciplines, ages)
 - Develop tools to help labs to change their practices
 - Scientific publications on the evaluation and analysis of research carbon footprint

https://labos1point5.org/


1±5

GdR

- Essential to quantify and understand the carbon footprint of research, its determinants, uncertainties and heterogeneity
- Implementing locally designed and deliberated solutions in research laboratories, to re-appropriate our labs as decision-making places
- Organize reflexive work on the coherence, responsibility and ethics of research in relation to the low-carbon transformation of our societies (carbon emissions main but not only focus)

→ Reinventing a way of doing research compatible with planetary boundaries

(keeping in mind that fundamental/physics research may not be considered essential to a society in crisis...)

GES 1point5: a tool to measure the carbon footprint of laboratories

GES 1point5:

- 1 free, open source & online tool to carry out GHG inventory of laboratories
- 1 methodology
- 1 GHG inventory = 1 year & 1 laboratory

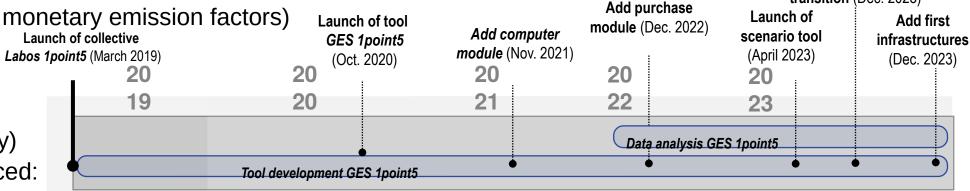
Recommended by

Emissions categories:

Buildings (construction, electricity, heating, refrigerant fluids, water)

Purchases (from monetary emission factors)

Launch of collective Digital devices


Lab vehicles

Business travels

Commute (survey)

Recently introduced:

Food (survey)

- Research infrastructures (CERN, GENCI [HPC], astronomical observatories)
- Research farming activities (fertilisers, livestock)

More to come soon (WLCG?)

Huge diversity, tricky metric choice

Launch of Labs in

transition (Dec. 2023)

GES 1point5: a free and online tool

035008

2

Sustain.

Infrastruct.

carbon

assess the

to

too/

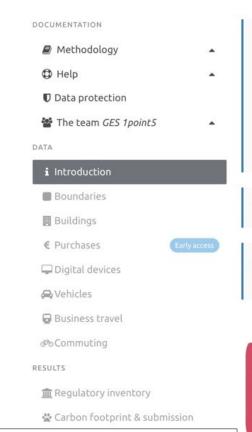
open

search

of

footprint

2022


<u>ਰ</u>

et

Mariette

Internationalisation of tools:
US, Chile

i Introduction

GES 1point5, developed by Labos 1point5, is a tool aiming at calculating the carbon footprint and building the greenhouse gas (GHG) inventory of your laboratory.

The goal of this tool is twofold:

- Carry out scientific studies relating to the carbon footprint of French public research. Our current research field is limited to France, including its overseas territories.
- Bring food for thought on the levers for action to reduce the impact of research activities on GHG emissions, at the national as well as at the local level of the laboratory.

Thank you for carefully reading the guidelines (methodology and help) before starting and contacting us.

How to cite An open-source tool to assess the carbon footprint of research. Jérôme Mariette, Odile Blanchard, Olivier Berné, Tamara Ben-Ari. bioRxiv 2021.01.14.426384; doi: https://doi.org/10.1101/2021.01.14.426384.

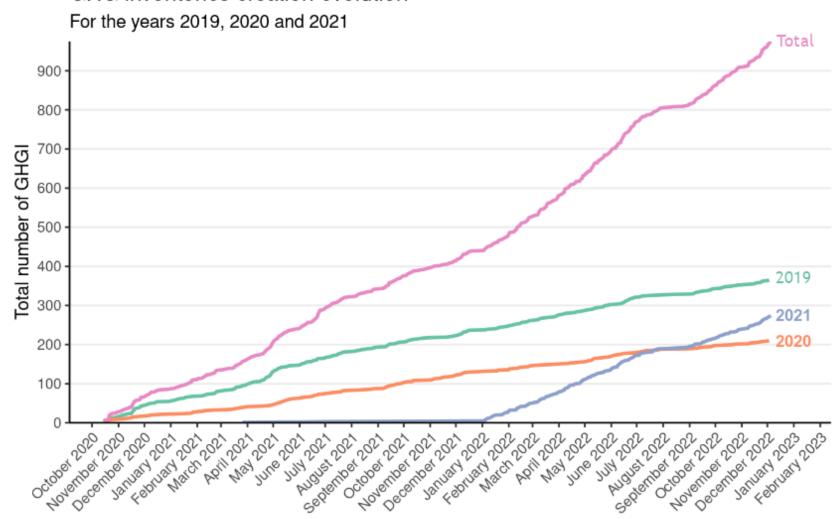
Why use GES 1point5?

Promote
open access
digital
tools.

Available standalone simulators:

- commute
- travels
- food

Anonymous usage possible, English available, give it a try:


https://apps.labos1point5.org/ges-1point5

nttps://framagit.org/labos1point5/l1p5-vuejs code source GitLab

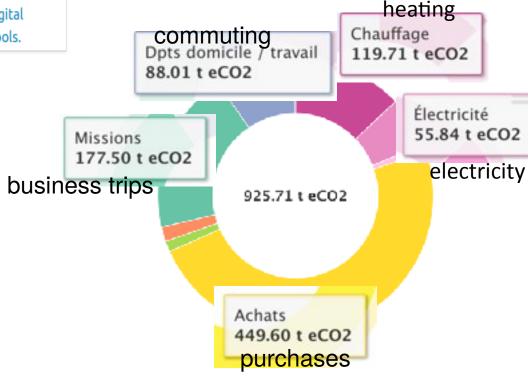
Footprint: GES 1point5 as a GHG common base

- High adoption rate and increasing
- Already >1200 labs
 (out of ~ 2000 labs/UMR)
 and >2500 GHG inventories

Data source: GES 1point5

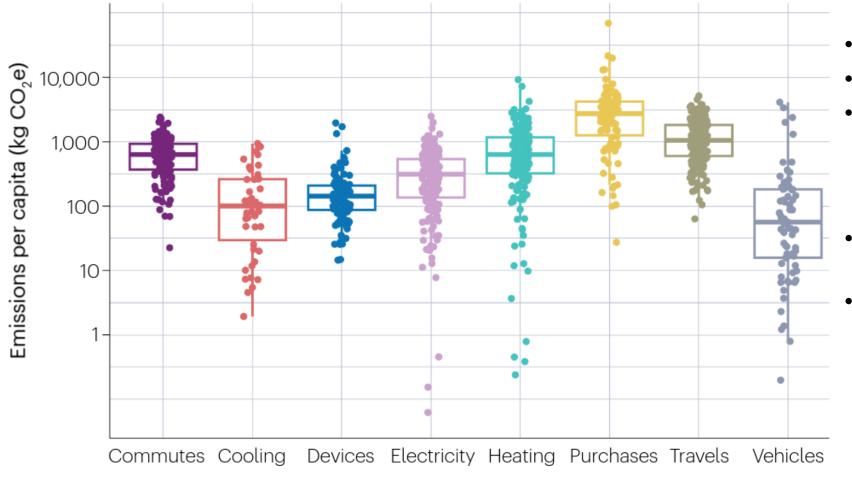
[J. Mariette et al (2022)]

GES 1point5, a tool for GHG assessment and analysis


Why use GES 1point5?

- Several papers out already [list], e.g. (see backup):
 - Travels: Flight quotas outperform focused mitigation strategies in reducing the carbon footprint of academic travel

[Tamara Ben-Ari et al 2024 Environ. Res. Lett. 19 054008] [EarthArXiv]


Procurement: Purchases dominate the carbon footprint of research laboratories [bioArXiv] Estimation of the annual carbon footprint of a fictive laboratory

https://apps.labos1point5.org/ges-1point5

Distribution of the carbon footprint of laboratories

- Year 2019 (~150 labs)
- Validated reports
- Heterogeneity between laboratories
 - But French HEP labs (IN2P3) rather homogeneous
- Purchases (40%) and travels (25%) dominate lab footprint
- Research infrastructures not included

~1000 t CO2e / year per lab ~7,3 t CO2e/year per capita ~1 250 000 t for the whole sector

[T. Ben-Ari, How research can steer academia towards a low-carbon future, Nat Rev Phys 5, 551-552 (2023)]

CERN: Splitting the impact among users

- 1 to 5
- Non trivial given the available inputs (CERN's environment reports, reporting evolving with time)
 - Share of accelerators?
 - No accelerator = no physics in detectors
 - Fair share of LHC emissions:
 - ¼ per experiment? By number of physicists? By integrated luminosity? By construction cost?
 - ightharpoonup Scope 3 not available with experiment split \rightarrow how to share?
- Account for LHC construction?
 - Estimated as much smaller than yearly usage → choice to ignore it (details in backup)
 - Philosophically not crazy: what matters today is new emissions
 - But important to keep it in mind for future infrastructures
- Account for tunnel construction? → choice to ignore it (already there from LEP)
- Average over data-taking and Long Shutdown years or accept yearly variations?
- Count only physicists, or also technicians, engineers, etc?
 - Share it among the physicists using CERN (CERN's goal is to provide them data)
 - ► Well known numbers, by CERN and labs → PhD student, post-doc, staff on 31st Dec (details in backup)
 - Taken from CERN Annual Personnel Statistics in CDS
- In the end, keep it simple for GES 1point5 users

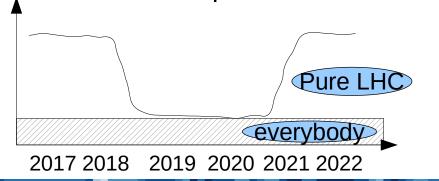
CERN emissions (from environmental reports)

Scope 1

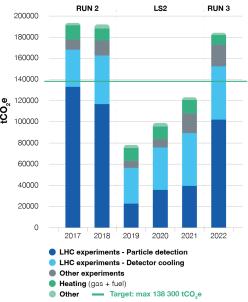
https://hse.cern/environment-report-2021-2022/emissions

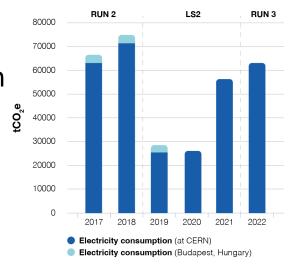
- LHC: Particle detection, detector cooling
- Non-LHC: other experiments

All users: heating, "others"


1	18.35t/phys	(for LHC	experiment users)
---	-------------	----------	-------------------

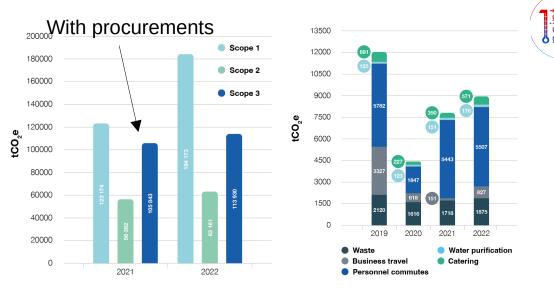
1		2017	2018	2019	2020	2021	2022
2	Runs	Run 2	Run 2	LS2	LS2	LS2	Run 3
38	scope 1 LHC/user	18.35	17.51	6.04	8.80	10.74	17.53
39	scope 1 nonLHC/user	2.98	4.30	2.22	2.83	6.45	6.44
40	scope 1 any	1.29	1.21	1.21	1.34	1.37	0.96


2.98t/phys (for non-LHC experiment users) + 1.29t/phys (LHC or non-LHC)


Scope 2 (mostly electricity)

Hypothesis: during shutdown electric consumption per physicist for non-LHC experiments is similar to LHC physicist consumption

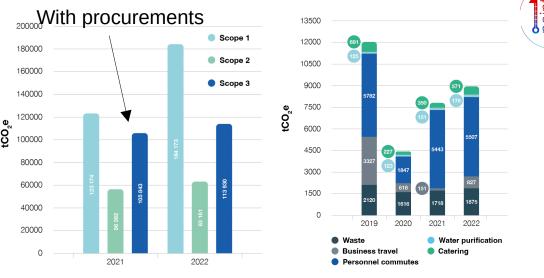
Numbers retroactively increased (2017-2020) in latest report 2021-2022



CERN emissions

Scope 3

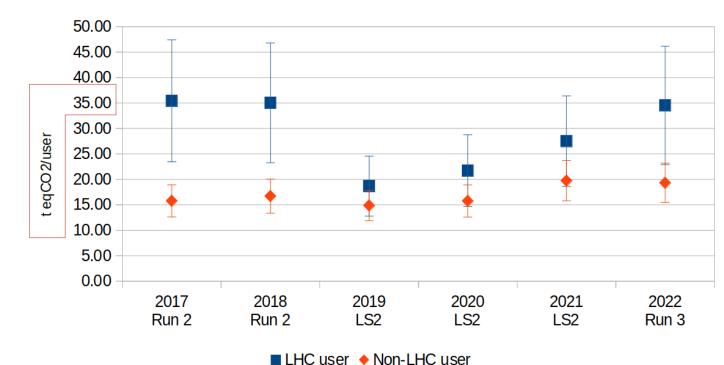
- Fully available (incl. procurement) for 2021-2022
 - → assumptions for previous years
 - 2017-2018: 2022 running conditions for waste and water, pre-covid conditions (2019) for travel, commute and catering
 - 2017-2020: adding 2021-2022 average of procurement


Uncertainties

- Methodology: comparaison between two methods (affecting everything to LHC users or not):
 - LHC: [15, 27%] → 30%
 - Non-LHC : [10,16%] → 20%
- Emission factors: (from GES 1point5)
 - Gases: 30%
 - Electricity (FR): 10%

CERN emissions

Scope 3


- Fully available (incl. procurement) for 2021-2022
 - → assumptions for previous years
 - 2017-2018: 2022 running conditions for waste and water, pre-covid conditions (2019) for travel, commute and catering
 - 2017-2020: adding 2021-2022 average of procurement

CERN emissions

Uncertainties

- Methodology: comparaison between two methods (affecting everything to LHC users or not):
 - LHC: [15, 27%] → 30%
 - Non-LHC : [10,16%] → 20%
- Emission factors: (from GES 1point5)
 - Gases: 30%
 - Electricity (FR): 10%

Single lab example: LPCA

36.27 37.37 130.41 8.74 52.05 80.43

Refrigerants

Research activities

819.49

2022

Purchases

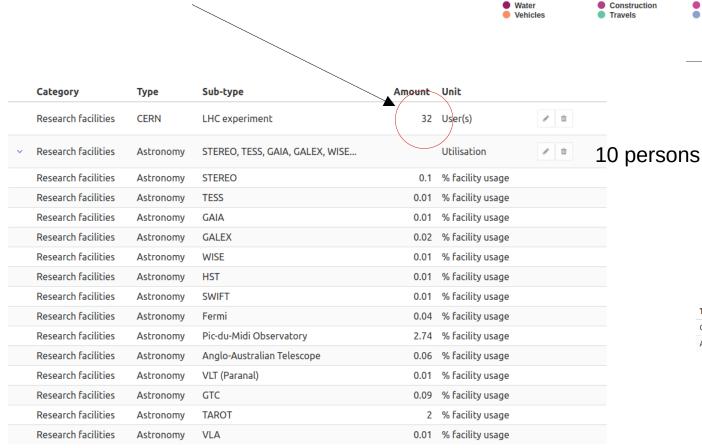
52.29

187.55

22:50

68.79

428.57


2021

Electricity

Foods

Just a single number to be provided:

Number of LHC users that year

1000

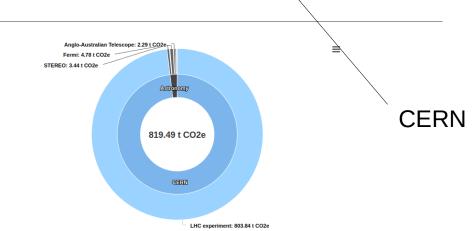
750

500

250

43.05

162.58


39.34

128.50

101.59

335.96

2019

867.90

2023

Digital devices

Figure: Carbon footprint of laboratory research activities separated by their types.

Type of research activity	Emissions (t CO2e)	Share of the research activity footprint
CERN	803.84 ± 297.42	98 %
Astronomy	15.64 ± 12.52	2 %

Yann Coadou - 10 June 2024

211.60

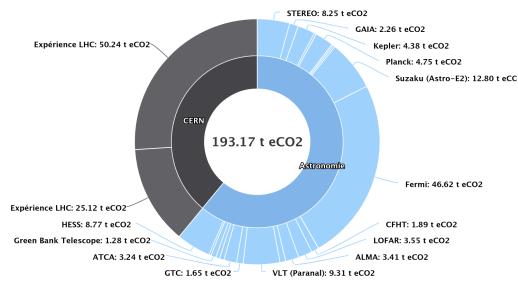
46.51

0.00

388.06

Heating

Commutes


Astronomy

- Takes into account telescopes (in space and on Earth) used in laboratory's publications
- Easy to use: just provide lab's name
- Emissions attributed with ratio of lab authors who published articles citing infrastructure and all authors in the world who published articles citing the same infrastructure
- Amortisation: 38 years for telescopes and 18 years for satellites
- Bibliometric data extracted from ADS
- Does not include yet recent infrastructures like Euclid, CTA, LSST, etc.
- Ref : arXiv: 2201.08748 [astro-ph.IM]

$$EC_{\text{infra}} = \frac{GES_{\text{construction}}}{\text{amortissement}} + GES_{\text{opérations}}$$

$$EC_{\text{labo}} = \sum_{i} \left(EC_{\text{infra}_i} \times \% \text{utilisation}_{\text{infra}_i}^{\text{labo}} \right)$$

CPPM (fake LHC to see astro)

Conclusion

- French research community got together in Labos 1point5 to tackle climate change:
 - All research areas involved
 - Started as grassroot initiative, now supported officially and encouraged by hierarchy and funding agencies
 - Provides tools, methods, webinars, scientific papers, etc.
- First step: standardised GHG emissions for all labs with single tool: GES 1point5
- Large database to analyse structure of research emissions:
 - Importance of purchases
 - Impact of various scenarios on travel emissions
 - Sizeable impact of big research infrastructures
 - Includes already astronomy, CERN, national computing center
- From this knowledge, call for action
 - Labs designing GHG emission reduction plans (goal: -50% by 2030), simulating impact with Scenario 1point5
 - Sharing experience with Transition 1point5

https://labos1point5.org/

Backup

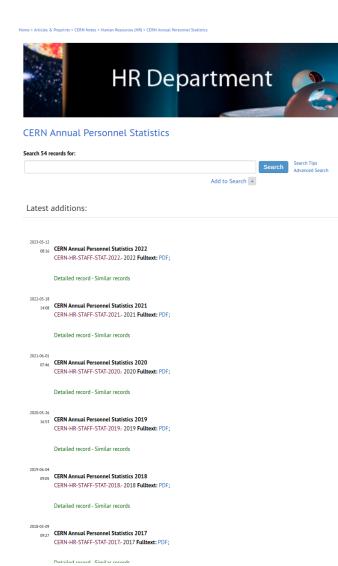
Numbers from graph on slide 12

55	2017	2018	2019	2020	2021	2022		
56	Run 2	Run 2	LS2	LS2	LS2	Run 3		
FE t/user (LHC)	35.43	35.04	18.68	21.72	27.51	34.53	divide all 3	scopes
8 30	% 10.63	10.51	5.60	6.52	8.25	10.36	methodol	ogy
9 30	% 5.51	5.25	1.81	2.64	3.22	5.26	gases	
0 10	% 0.65	0.73	0.23	0.23	0.59	0.64	electricity	
total uncertainty	11.99	11.77	5.89	7.03	8.88	11.64		
FE t/user (exp non-LHC)	15.77	16.70	14.86	15.75	19.74	19.31		
4 20	% 3.15	3.34	2.97	3.15	3.95	3.86	methodol	ogy
5 10	% 0.22	0.22	0.23	0.23	0.24	0.23	electricity	
66 total uncertainty	3.16	3.35	2.98	3.16	3.96	3.87		

CERN personnel statistics

1 to 5

- How to distribute the footprint?
 - Share it among the physicists using CERN
 - CERN's goal is to provide them data
 - Well known numbers, by CERN and labs
 - PhD student, post-doc, staff on 31st Dec
 - CERN Annual Personnel Statistics in CDS

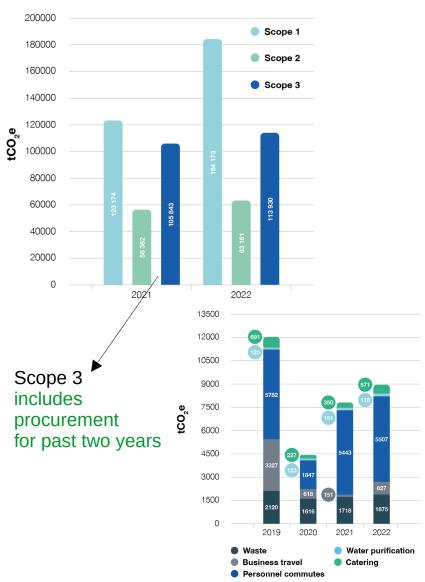

1		2017	2018	2019	2020	2021	2022
2	Runs	Run 2	Run 2	LS2	LS2	LS2	Run 3
3	Users CERN (31-déc.)	12236	12569	12428	11399	11175	11860
4	Atlas	3912	3971	3983	3699	3517	3580
5	CMS	3076	3092	3055	2862	2749	2940
6	Alice	1314	1320	1329	1180	1159	1208
7	LHCb	870	913	946	887	910	959
8	->Exp LHC	9172	9296	9313	8628	8335	8687
9		74,96%	73,96%	74,94%	75,69%	74,59%	73,25%
10	LHC	78					
11	SPS	733	745	718	676	695	711
12	PS	219	229	204	179	177	221
13	-> Acc	1030	974	922	855	872	932
14		8,42%	7,75%	7,42%	7,50%	7,80%	7,86%
15	> Autres Expe	2034	2299	2193	1916	1968	2241

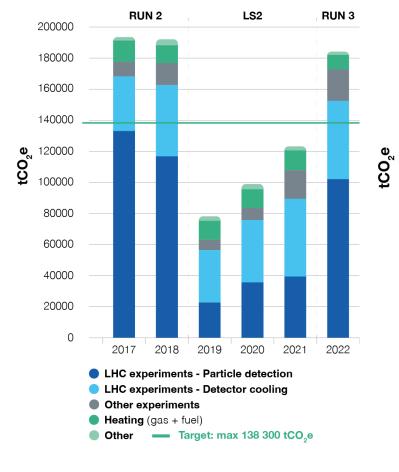
LHC experiment users

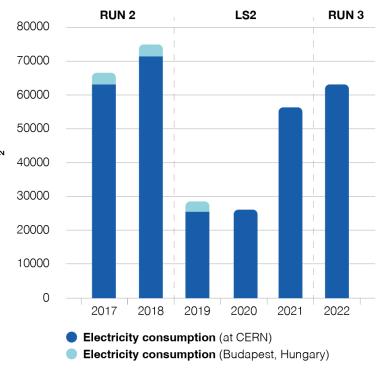
Accelerator sector

→ added to "other experiments"

Other-experiment users




Yann Coadou - 10 June 2024


CERN inputs: latest environmental report

https://hse.cern/environment-report-2021-2022/emissions

Scope 1

Scope 3 (excluding procurement)

Scope 2 (previous years recomputed)

Construction of LHC

- Not clear how to handle it
 - Tunnel already existing (LEP)
 - Amortisation period (how long?) or single shot at construction time?
 - How to take into account the upgrades ?
- Order of magnitude

12	cost:	4.50E+09	euros	LHC+4 expe	eriments (CHF=euros)
13	years:	2008	2040	32	years
14				1.41E+08	euros/year
15	EF:	0.3	kg/euros		
16	Co2eq:	4.22E+04	tonnes		
17	physicists:	8600			
18		4.91	t/phys		

- → Much smaller than yearly usage → choice to **ignore** it
 - Philosophically not crazy: what matters today is new emissions
 - But important to keep it in mind for future infrastructures

Implementing CERN reduction in Scenario 1point5

 Scenario 1point5: tool to evaluate impact of measure on GHG emissions by 2030 (goal: reduce by 50%)

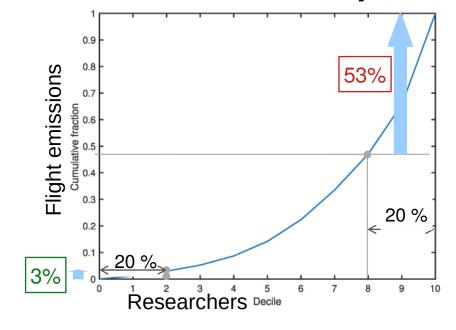
- Goals to include CERN emissions:
 - do not count on CERN improvements to decrease own lab emissions (e.g. "our biggest GHG emission source is CERN, and they're going to cut back on gas, so we don't have much left to do for our 50% reduction")
 - Raise awareness of the long-term consequences of our technological choices
 - Especially relevant with upcoming FCC discussions
- So ... What will the CERN footprint be in 2030?
 - CERN plans to reduce Scope 1 by 28% (wrt/ 2018) by 2025
 - \rightarrow Scope 1(2018) *28% / nb of phys = -5.8t
- To be applied only if the reference year is not a Long Shutdown

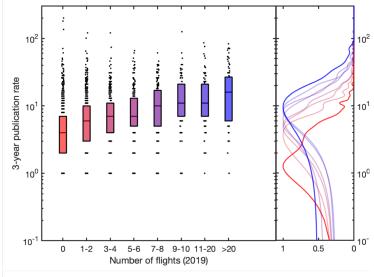
Travels

The carbon footprint of scientific visibility

[O. Berné et al 2022 Environ. Res. Lett. 17 124008]

Flight quotas outperform focused mitigation strategies in reducing the carbon footprint of academic travel

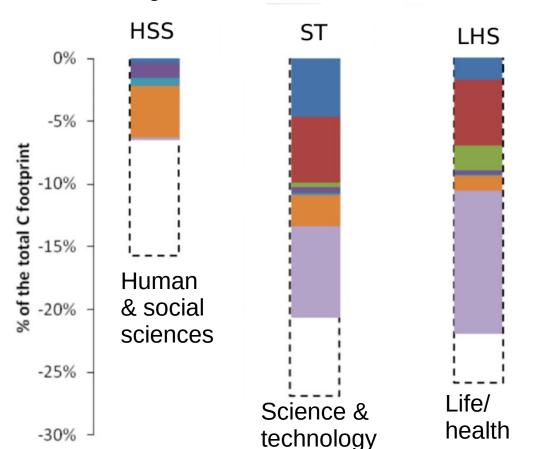

T. Ben-Ari et al 2024 Environ. Res. Lett. 19 054008


- 137k travels
- Planes ~95% of emissions

Evaluate replacement of air travel by train 50% by 2030

Current ministerial guideline

• -50% by 2030			Minimum Allowable Distance (in distance or approximate duration) for Air Travel Clearance								
			No modal shift policy	375km (~2h30)	600km (~4h)	In mainland France	900km (~6h)	1000km (~6h40)	1200km (~8h)	1500km (~10h)	
	No moderation policy -		0	0.3	3	8	12	15	18	21	
		20% fewer trips -	8	8	10	13	17	20	23*	26*	
	Reduce air travel	50% fewer trips -	19	19	21	24	27	30	32	34	
ance	number for conferences	1 r. trip/3 years -	14	13	14	17	18*	19*	21**	22**	
Air Mileage Moderation in Quantity or Distance	ioi comercinos	1 r. trip/4 years -	18	18	19	22	22	23*	24*	23**	
	Reduce long-haul air travel number	20% fewer trips -	13**	14**	16**	21**	26**	28**	32**	35**	
		50% fewer trips	32**	33**	35**	40**	44**	47**	51**	53**	
		1 r. trip/4 years -	28**	28**	31**	35**	40**	43**	46**	49**	
n in		1 r. trip/6 years -	37**	38**	40**	45**	50**	52**	56**	59**	
əratic	Reduce air travel mileage	20% decrease	20***	20***	22***	26***	30***	32***	34***	37***	
Nod		50% decrease -	48***	49***	50***	52***	54***	56***	57***	59***	
ge		5800km/year-	38***	38***	39***	41***	42***	44***	45***	46***	
Ailea		4500km/year-	47***	47***	48***	50***	51***	52***	52***	53***	
Air N		20% fewer trips -	19	20*	22*	25*	29*	31*	34*	36**	
	Reduce	50% fewer trips -	48	48	49	52	54	55	57*	58*	
	air travel number	1 r. trip/year -	36*	36*	33	32*	29*	28**	27**	27***	
		1 r. trip/2 years	61	61	58	57	51*	50*	46*	44**	



1tio5

Procurement

1 to 5

- Difficult to quantify properly
- Using monetary emission factors:
 - Good for large-scale orders of magnitude
 - Tricky at smaller scales
 - Large uncertainties

- Relies on French procurement system with ~250 categories (Nacres)
 - Single EF per category
- Serious limitation
 - "good" practice costs more → "more" emissions

MS2 50% pooling equipment
MS3 Replace 80% of plastic by glass
MS4 75% vegetarian catering
MS5 - 50% in furniture

+ 50% of equipment time

■MS7 - 50% in consumable purchases

■ MS6 - 50% in computing purchases

Purchases dominate the carbon footprint of research laboratories [bioArXiv]

Demand-based strategies can achieve a 20% reduction in the total footprint (-40% in the purchasing footprint).