universität freiburg

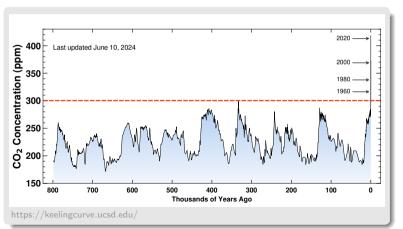
Know Your Footprint! - A yHEP Initiative

Naman Kumar Bhalla University of Freiburg

Sustainable HEP 2024

Wednesday, 12th June 2024

Atmospheric CO₂ and Ground Temperature

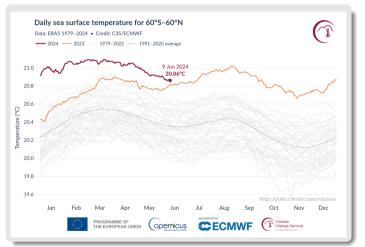

- First publication on the relation between atmospheric CO₂ and ground temperature (S. Arrhenius, 1896

- Increase in CO₂ levels by factor of 2 \rightarrow temperature increase of $\approx 6^{\circ}\mathrm{C}$
- Surprising accuracy already 128 year ago
- Confirmed and refined since then in a multitude of studies \rightarrow e.g. \bigcirc Nobel Prize 2021

1ABLE VII.— Variation of Temperature caused by a given Variation of Carbonic Acid.																									
Latitude.	Carbonic Acid=0.67.					Carbonic Acid=1.5.				Carbonic Acid=2·0.					Carbonic Acid = 2.5.					Carbonic Acid=3·0.					
	Dec Feb.	March- May.	June- Aug.	Sept Nov.	Mean of the year.	Dec Feb.	March- May.	June- Aug.	Sept Nov.	Mean of the year.	Dec.– Feb.	March- May.	June- Aug.	Sept Nov.	Mean of the year.	Dec Feb.	March- May.	June- Aug.	Sept Nov.	Mean of the year.	Dec Feb.	March- May.	June- Aug.	Sept Nov.	Mean of the year.
70 <u>0</u> 60	-2.9	-3.0	-3.4	-3.1	-3·1	3.3			'	3.52					6.05					7:95					
50 50 40	-3·0 -3·2	-3·2 -3·3	-3·4 -3·3		-3·22 -3·3	3·4 3·7			1	3·62 3·65				ì	6·02 5·92		1				9·3 9·5				9·3 9·17
30	-3.4	-3.4	-3.2	-3.3	-3.32	3.7	3.6	3.3	3.5	3.52	6.0	5.8	5.4	5.6	5.7	7 ·9	7.6	6.9	7.3	7·4 2	9.3	9.0	8.2	8.8	8.82

Trends in Atmospheric CO₂ Concentration

- ► Keeling curve using measurements since 1958 at Mauna Loa Observatory
 - Combined with data from ice cores over last 800k years
 - ⇒ Composition of air trapped in ice from Antarctica

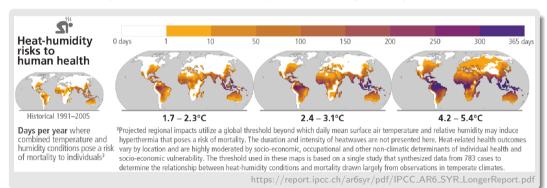


Latest reading: 427.44 ppm

- Currently 40 % higher than the maximum in past 800k years
- Extremely significant deviation from the observed variation

Trends in Ground Temperature

- ightharpoonup Data from Copernicus Satellite ightharpoonup daily sea surface temperature since 1979
 - Strongest anomaly observed in January 2024 ⇒ March 2024 hottest month


- ► Comparing last 12 months with 1850–1900 average:
 - Global average 1.63°C higher
 - Europe average 1.76°C higher

Already reached and surpassing the ideal target of $1.5^{\circ}\mathrm{C}$ set by Paris climate agreement 2015!

https://climate.copernicus.eu/ surface-air-temperature-may-2024

YHEP

- ▶ Projections for impact of climate change on natural and human systems:
 - With > 2 °C rise in temperature, risks posed in regions around the equator:
 - \Rightarrow Risk of losing 100 % of animal species
 - ⇒ Risk of Hyperthermia* due to heat-humidity conditions throughout the year

^{*}Hyperthermia: Failure of heat-regulating mechanisms of the body due to extreme external heat

- Excerpt from the Paris Agreement 2015
 - Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change:

https://treaties.un.org/doc/Treaties/2016/02/20160215%2006-03%20PM/Ch_XXVII-7-d.pdf

- ► Temperature targets set to 1.5°C (2.0°C) above pre-industrial levels (1850–1900)
 - \Rightarrow Translates to global carbon budget* of $400 \, \mathrm{GtCO}_2$ (1150 GtCO_2)
- Naively assuming equal yearly emissions from 2020–2050 for a static population of 8 billion people:

 $400 \times 10^9 \,\mathrm{tCO}_2$ Annual per person carbon budget = $30 \text{ years} \times 8 \times 10^9 \text{ people}$

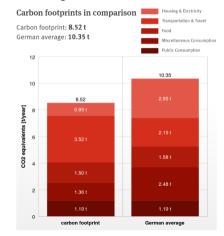
$$\left(\frac{1150 \times 10^9 \, \text{tCO}_2}{30 \, \text{years} \times 8 \times 10^9 \, \text{people}}\right)$$

 $1.7\,\mathrm{tCO}_{\odot}$

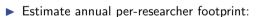
^{*}Carbon budget defined from the beginning of 2020 until global carbon neutrality is achieved

In order to mitigate climate change, ALL areas of society need to contribute towards reducing emissions ⇒ This includes HFP!

- ► HEP has significant CO₂ emissions ⇒ Seen in recent environmental reports
- ▶ But how large per-researcher? ⇒ **Know your footprint!**
 - Estimate professional CO₂ footprint per researcher ⇒ Allows comparison with private and target footprints
 - Identify dominant sources of emissions
 - Devise strategies to address biggest sources first


Steps to solve a problem: Acknowledge \rightarrow Identify

 \rightarrow Strategise \rightarrow Implement


- **yHEP**
- ► Know your footprint (Kyf) calculator → tool to estimate carbon emissions for researchers

 - ullet Professional emissions in HEP and related fields o split into 4 categories:
 - \Rightarrow Experiment
 - \Rightarrow Institute
 - \Rightarrow Computing
 - \Rightarrow Travel
 - Each category configurable for an individual, i.e. for your individual research situation
 - Investigate the impact of each category
- ► Paper discussing the basis of Kyf calculator available online on arXiv: ► arXiv:2403.03308

^{*}Permission duly granted by UBA

- Possible choices offered:
 - Large LHC experiment
 Small LHC experiment
 CERN environmental report(s)
 and LHCb technical design report
 - Small HEP experiment * → DESY electricity consumption
 - Astrophysics experiment \rightarrow ESO annual report

- (Total annual experiment footrint)/(Total experiment members)
- Experiment member → collaboration members or users (and operators) as per applicability
- ullet Do not consider indirect benefits to society o too vague and diffuses responsibility
- We researchers designing, building and operating detectors, and analysing data must take responsibility

^{*}Choice between green and conventional electricity

- Possible choices offered:
 - Research centre \rightarrow CERN environmental report(s)
 - University * → University of Freiburg environmental report (Cross check with Leibniz University Hannover)

- Estimate annual per-researcher footprint:
 - (Total annual institute footrint)/(Effective number of institute members)
 - One year outside COVID-19 pandemic considered representative
 - ⇒ 2019 for University of Freiburg, 2022 for CERN
 - University of Freiburg preferred over Leibniz University Hannover as default university footprint:
 - ⇒ Procurement information omitted by Leibniz University Hannover
 - ⇒ Decent agreement in overlapping categories

^{*}Choice between green and conventional electricity

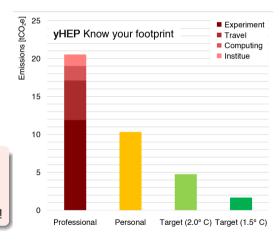
- ► Focus on high-performance computing (HPC)
 - Specify researcher's individual computing workload in core hours
 - ullet Distinguish between CPU and GPU ightarrow based on computational task
 - ⇒ Several possibilities to tune configuration
 - ⇒ Assume optimal core utilisation

- Potential to add footprint for large external data storage resources
- Personal computers, small institute clusters, etc.
 - ⇒ Assumed to be covered personal or institute electricity and procurement
- ► Benchmark scenarios provided for user-friendliness

- Only considering business travel ⇒ Private travel included in private footprint ▶ International research environment ⇒ Travel important for personal connections
- ▶ But travel leads to CO₂ emissions
 - ⇒ Need to reconsider which trips are essential

Most notably missed during COVID-19 pandemic

- Avoid air travel if possible
- Consider extending business trips to combine with vacations
- Possibility for detailed calculations for business trips in Kyf calculator
- Alternatively, also possible to configure with benchmark trips



universität freiburg

YHEP

12/13

- Doctoral researcher as a benchmark case:
 - Working on a large LHC experiment
 - Employed by a university (conventional electricity)
 - Medium computing level (conventional electricity)
 - Annual travel:
 - ⇒ Two 1-week trips by train in Germany
 - → One 1-week flight travel in Europe
 - ⇒ One 2-week transcontinental travel
- ▶ Professional footprint double of private footprint
- ▶ Both far above the targets set in Paris agreement
- HEP researchers urgently need to address this
 - \Rightarrow Become part of the solution to the climate crisis!

universitätfreiburg yHEP

- Climate crisis progressing and intensifying each year
 - Relation between atmospheric ${\rm CO_2}$ and ground temperature known since ≈ 130 years
 - Human activities drive temperature increase
 - \Rightarrow Increase of $> 2^{\circ}\mathrm{C}$ will have dire consequences in tropical regions
 - ightarrow Risk of 100% loss of biodiversity
 - → Inhabitable heat-humidity conditions throughout the year
 - However, targeted action still missing today!
- ▶ HEP and related fields contribute to global emissions
 - Estimate per-researcher emissions → Know your footprint
 - Four categories: Experiment, Institute, Computing, Travel
 - Evaluation of benchmark researcher:
 - \Rightarrow Total footprint $\approx 6~(\approx 18)$ times larger than what is needed for the $2.0^{\circ}\mathrm{C}~(1.5^{\circ}\mathrm{C})$ target
 - ⇒ Know your footprint to know where to start!
 - \Rightarrow Every gram of CO₂ not emitted counts!

13 / 13

- ▶ Climate crisis progressing and intensifying each year
 - Relation between atmospheric ${\rm CO_2}$ and ground temperature known since $\approx 130~{\rm years}$
 - Human activities drive temperature increase
 - \Rightarrow Increase of $> 2^{\circ}$ C will have dire consequences in tropical regions
 - \rightarrow Risk of 100% loss of biodiversity
 - ightarrow Inhabitable heat-humidity conditions throughout the year
 - However, targeted action still missing today!
- ▶ HEP and related fields contribute to global emissions
 - Estimate per-researcher emissions → Know your footprint
 - Four categories: Experiment, Institute, Computing, Travel
 - Evaluation of benchmark researcher:
 - \Rightarrow Total footprint $\approx 6~(\approx 18)$ times larger than what is needed for the $2.0^{\circ}\mathrm{C}~(1.5^{\circ}\mathrm{C})$ target
 - ⇒ Know your footprint to know where to start!
 - \Rightarrow Every gram of CO₂ not emitted counts!

Please consider submitting your results ⇒ provides us better statistics to understand trends

Backup