

First observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions

Constraints on τ electromagnetic moments

Cécile Caillol, CERN

LPCC seminar, March the 12th 2024

Lepton magnetic moment

- Spin and magnetic moment of lepton related via gyromagnetic factor g
- Dirac equation predicts g = 2

Lepton <u>anomalous</u> magnetic moment

• In QED, quantum effects modify the value of g, giving rise to an anomalous magnetic moment:

 $a_{\ell} = (g - 2)/2$

• NLO prediction (Schwinger, 1948):

 a_{ℓ} = α / $2\pi \cong 0.00116$

Further corrections calculated

a_l measurements

Electron

• One of the most precisely measured quantities in

physics

 Measurement aligns with QED predictions, with an extraordinary precision of up to 12 decimal places

a_l measurements

Electron

- One of the most precisely measured quantities in physics
- Measurement aligns with QED predictions, with an extraordinary precision of up to 12 decimal places

Muon

- Precision up to 9 decimal places
- Persistent discrepancy
 between experimental
 measurements and
 theoretical predictions

a_l measurements

Electron

- One of the most precisely measured quantities in physics
- Measurement aligns with QED predictions, with an extraordinary precision of up to 12 decimal places

Muon

- Precision up to 9 decimal places
- Persistent discrepancy
 between experimental
 measurements and
 theoretical predictions

Tau

- Poorly measured because of short lifetime
- Limit from PDG dates back
 20 years (LEP) and is about
 20 times the Schwinger term
- If BSM effects scale with the m_{ℓ}^2 , deviations from SM could be 280 times larger than for a_{μ}

τ electromagnetic moments from $\gamma\gamma \rightarrow \tau\tau$ events

- τ g-2 (a_{τ}) and electric dipole moment (EDM, d_{τ}) can be probed from $\gamma\tau\tau$ vertex $\gamma \rightarrow \tau\tau$ process includes 2 $\gamma\tau\tau$ vertices $\gamma \rightarrow \tau^+$ τ^+ τ^-
- Constraints on τ electromagnetic moments from form factor formalism or SMEFT approach
- In the SM, d_{τ} is extremely small (no appreciable CP violation) but it could be increased in BSM models

Photon-induced processes

 As two charged particles (e.g. protons or ions) pass each other at relativistic velocities, they generate intense electromagnetic fields →
 photon-photon collisions can happen

• Cross section proportional to $Z^4 \rightarrow$ huge enhancement in Pb-Pb runs compared to

pp runs

$\gamma\gamma \rightarrow \tau\tau$ in Pb-Pb ultraperipheral collisions

• $\gamma\gamma \rightarrow \tau\tau$ observed recently in Pb-Pb collisions by both <u>CMS</u> and <u>ATLAS</u>

Used to set constraints on a_{τ} , close to best

result from DELPHI

Can we see $\gamma\gamma \rightarrow \tau\tau$ in ultraperipheral pp collisions?

- Much larger integrated luminosity (O(10⁸))
- But:
 - No gain from Z⁴ enhancement
 - Low signal acceptance (soft signal)
 - Large backgrounds
 - High pileup

• If we can see $\gamma \gamma \rightarrow \tau \tau$ in pp runs, tight constraints on τ g-2 could be set because a_{τ} modifications from BSM physics are enhanced at large τ p_T and ditau mass

- 2 diffracted protons
 - Could be reconstructed in PPS (Precision Proton Spectrometer) if $m_{\tau\tau} \gtrsim 350 \text{ GeV} \rightarrow \text{low signal}$ acceptance
 - Decided not to require diffracted protons in the analysis

- 2 diffracted protons
- 2 back-to-back OS τ leptons
- No hadronic activity close to
 - the di- τ vertex
 - N_{tracks} = 0

Counting tracks

- Photon-induced processes are exceptionally clean...
- ... but proton-proton collisions are incredibly busy
 - Average of > 30 pileup interactions in 2018

Counting tracks

- Define **z position of di-tau vertex** as average z position of selected tau leptons
- Define N_{tracks} as the number of tracks
 - with $p_T > 0.5$ GeV and $|\eta| < 2.5$
 - within a window of **0.1 cm** around the di-tau vertex
 - Excluding tracks from tau leptons

 About 30% of the windows at the center of the beamspot do not contain any pileup track

Extraordinary tracking capabilities

of the CMS detector!

Analysis overview

Final states and categories

• 4 di-tau final states: $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$

- In each di-tau final state, 2 signal regions: N_{tracks} = 0 or 1
 - $N_{\text{tracks}} = 0$: ~50% of the signal, inclusive backgrounds reduced by $O(10^3)$
 - N_{tracks} = 1: ~25% of the signal, larger background

• Dimuon control region to derive corrections to the simulations

Strategy

- In each of the 8 categories (eµ, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$) x (N_{tracks} =0, N_{tracks} =1), fit visible invariant mass of tau pair (m_{vis})
 - SM $\gamma\gamma \rightarrow \tau\tau$ measurement: S/B ratio increases with m_{vis} because Drell-Yan background concentrated at lower masses
 - BSM a_{τ} and d_{τ} measurements: deviations from SM predictions increase with the mass

Strategy

- In each of the 8 categories (eµ, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$) x (N_{tracks} =0, N_{tracks} =1), fit visible invariant mass of tau pair (m_{vis})
 - SM $\gamma\gamma \rightarrow \tau\tau$ measurement: S/B ratio increases with m_{vis} because Drell-Yan background concentrated at lower masses
 - BSM a_{τ} and d_{τ} measurements: deviations from SM predictions increase with the mass

Drell-Yan Z/γ* \rightarrow ττ/ee/μμ	Jet \rightarrow e/ μ / τ_{h} mis-ID	Exclusive γγ→ee/μμ/WW	γγ → ττ
Resonant	Non-resonant	Small but at low N _{tracks}	Signal, non resonant
From simulation	From data	From elastic simulation	From elastic simulation

Strategy

- In each of the 8 categories (eµ, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$) x (N_{tracks} =0, N_{tracks} =1), fit visible invariant mass of tau pair (m_{vis})
 - SM $\gamma\gamma \rightarrow \tau\tau$ measurement: S/B ratio increases with m_{vis} because Drell-Yan background concentrated at lower masses
 - BSM a_{τ} and d_{τ} measurements: deviations from SM predictions increase with the mass

In the signal regions, also require $\mathbf{A} = 1 - \frac{|\Delta \phi|}{\pi} < 0.015$ and N_{tracks} = 0 or 1

μμ control region – deriving corrections to the simulations

Applied to the Drell-Yan simulation

1. Acoplanarity correction

Signal region, A < 0.015

- The Drell-Yan simulation (aMC@NLO, FxFx merging) does not model well the acoplanarity distribution in the dimuon control region
- The mismodeling depends on the lepton \boldsymbol{p}_{T}
- Derive corrections to acoplanarity distribution in 2D bins of leading and subleading lepton $\ensuremath{p_T}$
- Corrects Z p_T distribution simultaneously

Applied to all simulations

2. Pileup track multiplicity correction

- Can simulations describe accurately the number of pileup tracks within windows of 0.1 cm width all over the z axis?
- Compare N_{tracks} distribution in Z→μμ data and
 Z→μμ MC, inside windows sampled over the z axis far (> 1cm) from the μμ vertex

Applied to all simulations

2. Pileup track multiplicity correction

- First, correct simulated z position and width of beamspot (constant values) to match the profiles in data
- Then, derive event-weight correction as a function of N_{tracks} and z

1 beamspot width away from beamspot center,
 50% of windows do not contain any PU track

For a window 1 beamspot width away from

beamspot center with no PU track inside, the event-weight correction is 0.95

Applied to Drell-Yan and diboson simulations

3. Hard scattering track multiplicity correction

- Can the Drell-Yan simulation describe accurately the number of tracks from the hard interaction in windows of 0.1 cm width?
- Compare N_{tracks} distribution in Z→μμ data and
 Z→μμ MC (subtracting elastic processes),
 inside window centered at the μμ vertex

3. Hard scattering track multiplicity correction

- Compare number of reconstructed tracks in data and in DY simulation at the μμ vertex
- These tracks can come from pileup or from the hard interaction
- Split simulation based on the number of reconstructed tracks associated to the hard interaction, and rescale all components simultaneously to match the data

Simulated Drell-Yan events with no reconstucted track associated to the hard interaction in the $\mu\mu$ window should be assigned a weight of 1/1.6 = 0.625

Applying these corrections to $Z/\gamma^* \rightarrow \tau \tau$ simulation

• Good data/MC agreement in N_{tracks} distribution in all di-tau final states for the DY-enriched region with $m_{vis} (\tau, \tau) < 100 \text{ GeV}$

Applied to all photon-induced processes

30

4. Including (semi-)dissociative contributions

- Elastic-elastic (ee) signal process modeled with gammaUPC
- Single-dissociative (sd) and double-dissociative (dd) processes have larger cross section and may end up with an exclusive signature → rescale elastic signal to include these contributions
- Scaling factor = $(ee + sd + dd)_{obs} / ee_{sim}$ can be measured with $\gamma\gamma \rightarrow \mu\mu$ in the $\mu\mu$ CR and applied to $\gamma\gamma \rightarrow ee/\mu\mu/\tau\tau/WW$ in the signal region

Applied to all photon-induced processes

4. Including (semi-)dissociative contributions

• Inclusive backgrounds:

- Shape from data with 2 < N_{tracks} < 8
 - \rightarrow Negligible exclusive contributions
- Normalized to Z peak in events with

 $N_{tracks} = 0 \text{ or } 1$

- Elastic $\gamma\gamma \rightarrow \mu\mu/WW$:
 - Estimated from gammaUPC
 - Rescaled with linear $m_{\mu\mu}$ function to match data

Elastic simulation should be scaled by ~2.7 to describe all photoninduced contributions

Compatible with SuperChic predictions

Jet mis-ID background modeling

Jet $\rightarrow \tau_{h}$ mis-ID background (1)

• Measure "mis-ID factor", MF, for jets as

MF =

N(jets passing nominal τ_h ID)

N(jets failing nominal τ_h ID but passing very loose τ_h ID)

- As a function of the $\tau_h p_T$ and decay mode
- In data control regions (e.g. require SS leptons/ τ_h to enrich in QCD multijet events)

• To estimate background in the SR, select events passing the SR selection except the τ_h fails the nominal τ_h ID and reweigh them with MF

But it is not that simple... How does N_{tracks} affect MF?

Jet $\rightarrow \tau_h$ mis-ID background (2)

- If there is less track activity around the τ_{h} candidate:
 - The τ_h candidate is more isolated
 - It is more likely to pass the ID criteria
 - MF is higher

- Model N_{tracks} dependence with a multiplicative correction to the mis-ID rates
 - Parameterized with exponential at low N_{tracks}

 $e \tau_h$, $\mu \tau_h$, $\tau_h \tau_h$ final states

eµ final state

Jet \rightarrow e/µ background

- Normalization: reweigh SS events with SF made of 3 multiplicative terms
- Shape: SS events with N_{tracks} < 10 to improve statistical precision

- 1. OS/SS SF measured in events with anti-isolated muon
- 2. Correction for muon inverted isolation
- 3. N_{tracks} corrections

Observation of $\gamma\gamma \rightarrow \tau\tau$

Leading systematics

N_{tracks} = 0

 m_{vis} distributions in the different final states after the maximum likelihood fit, assuming SM a_τ and d_τ

• Signal visible in high m_{vis} bins

m_{vis} distributions in the different
 final states after the maximum
 likelihood fit, assuming SM a_τ and d_τ

 Lower signal contributions and larger background → validation of background modeling and adding some sensitivity

Observation of $\gamma\gamma \rightarrow \tau\tau$

• 5.3 σ observed, 6.5 σ expected

• First observation of $\gamma\gamma \rightarrow \tau\tau$ in pp runs

Signal strength with respect to gammaUPC elastic prediction rescaled by our data-driven correction

	Observed	Expected
еμ	2.3 σ	3.2 σ
eτ _h	3.0 σ	2.1 σ
μτ _h	2.1 σ	3.9 σ
$\tau_{h}\tau_{h}$	3.4 σ	3.9 σ
Combined	5.3 σ	6.5 σ

 Postfit N_{tracks} distribution for m_{vis} > 100 GeV

> • We can model well the N_{tracks} distribution for backgrounds

 The signal is seen as an excess of events at very low N_{tracks}

Constraints on tau anomalous electromagnetic moments

Constraining a_τ and d_τ with an EFT

• Two dimension-6 operators modify a_{τ} and d_{τ} at tree-level in the SMEFT:

$$\mathcal{L}_{\text{BSM}} = \frac{C_{\tau B}}{\Lambda^2} \bar{L}_L \sigma^{\mu\nu} \tau_R H B_{\mu\nu} + \frac{C_{\tau W}}{\Lambda^2} \bar{L}_L \sigma^{\mu\nu} \tau_R \sigma^i H W^i_{\mu\nu} + \text{h.c.}$$

BSM contributions to a_τ and d_τ:

SMEFT-sim_general alphaScheme_UFO JHEP 04 (2021) 073

$$\delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Re}\left[C_{\tau\gamma}\right] \qquad \delta d_{\tau} = \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Im}\left[C_{\tau\gamma}\right]$$

• where
$$C_{ au\gamma} = \left(cos heta_W C_{ au B} - sin heta_W C_{ au W}
ight)$$

• Matrix element reweighting to model signal for BSM values of a_{τ} and d_{τ} , setting $C_{\tau W}$ to 0 and scanning over $C_{\tau B}$ without loss of generality

How BSM physics in a_{τ} affects $\gamma\gamma \rightarrow \tau\tau$

- At large m_{ττ}, γγ→ττ cross section increases with both positive and negative variations to a_τ
- The effect grows with $m_{\tau\tau}$
- We can constrain a_{τ} by looking at the yield and $m_{\tau\tau}$ distribution of the $\gamma\gamma \rightarrow \tau\tau$ process
- Expect better BSM sensitivity than with Pb-Pb runs because of higher $m_{\tau\tau}$ range probed

How it translates in this analysis

- Changing a_{τ} from its SM value modifies the $\gamma\gamma \rightarrow \tau\tau$ prediction
- Differences between SM and BSM a_{τ} scenarios increase with m_{vis}
- a_{τ} can be constrained from the same m_{vis} distributions used to observe $\gamma\gamma \rightarrow \tau\tau$
- m_{vis} < 500 GeV to remain far from new physics scale and preserve validity of EFT interpretation

Extracting a_{τ}

- Using m_{vis} distributions in the SR, perform negative log likelihood scan over δa_{τ} , which modifies the signal shape and normalization
- In the $m_{\tau\tau}$ range considered in this analysis, both δa_{τ}
 - > 0 and < 0 increase the signal prediction
- Observed $\gamma\gamma \rightarrow \tau\tau$ deficit: tighter constraints than

expected, compatibility with SM

1σ uncertainty of 0.003 M a_τ Only 3 times the Schwinger term!

Extracting τ EDM (d_{τ})

- BSM effects symmetric with sign of $\delta \textbf{d}_{\tau}$

• In the $m_{\tau\tau}$ range considered in this analysis, both $\delta d_{\tau} > 0$ and < 0 increase the signal prediction

• Observed $\gamma\gamma \rightarrow \tau\tau$ deficit: tighter constraints than expected, **compatibility with SM**

Comparing to previous results

Large improvement over LEP and LHC Pb-Pb

Approaching Belle precision

48

The precision journey has just started...

DELPHI	CMS pp	More precision needed to
OPAL	Approaching the	probe BSM effects scaling
Pb-Pb LHC	Schwinger term!	with m _e ²

... and CMS will be a part of it

• Heavy ion runs

CMS

Events / 2 GeV 12 12

10

5

Data / Exp

350 GeV

50 GeV

The majority of CMS data has not been collected yet. Exciting complementary approaches for upcoming Runs!

50

2 TeV

m_{ττ}

Conclusion

- Thanks to the excellent tracking performance of the CMS detector, we can isolate photon-induced events in ultraperipheral proton-proton collisions without tagging protons
- The CMS Collaboration has observed, for the first time, $\gamma\gamma \rightarrow \tau\tau$ events in pp runs
- These events were used to constrain the tau electromagnetic moments with an EFT approach

 a_{τ} = 0.0009 +0.0032/-0.0031 at 68% CL

 $-0.0042 < a_{\tau} < 0.0062$ at 95% CL

Improving previous constraints on tau g-2 by a factor of ~5 (PDG: -0.052 < a_τ < 0.013 at 95% CL) and approaching the precision of the Schwinger term (0.00116)

Constraints on Wilson coefficients

- $-1.68 < \text{Re}(C_{\tau B})/\Lambda^2 < 1.62 \text{ TeV}^{-2}$
- $-3.03 < \text{Re}(C_{\tau W})/\Lambda^2 < 3.13 \text{ TeV}^{-2}$
- $-1.71 < \text{Im}(C_{\tau B})/\Lambda^2 < 1.71 \text{ TeV}^{-2}$
- $-3.20 < Im(C_{\tau W})/\Lambda^2 < 3.20 \text{ TeV}^{-2}$