Measurement of $D^0 - \overline{D}^0$ mixing and *CP* violation in $D^0 \rightarrow K^+\pi^-$ decays

LHC seminar - March 26th 2024

Roberto Ribatti (EPFL)

on behalf of the LHCb collaboration

What's charming in Charm physics?

• Charm is the only up-type quark that mixes and allows high precision *CP* violation (*CPV*) measurements

 A single complex phase in CKM matrix is the only measured source of CPV
 → can't account for baryonic asymmetry observation

In Charm, CPV and flavour changing neutral currents are extremely suppressed in SM
 → powerful probe for new interactions at energy scales ≫ colliders' energy

Flavour Changing Neutral Currents

• Weak interactions violate flavour conservation \rightarrow flavoured neutral meson oscillate:

$$i\frac{\partial}{\partial t}\begin{pmatrix} M^{0}(t)\\\overline{M}^{0}(t)\end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M & M_{12}\\M_{12}^{*} & M \end{pmatrix} - \frac{i}{2}\begin{pmatrix} \Gamma & \Gamma_{12}\\\Gamma_{12}^{*} & \Gamma \end{pmatrix} \end{bmatrix} \begin{pmatrix} M^{0}(t)\\\overline{M}^{0}(t) \end{pmatrix}$$

NP \rightarrow off-shell transitions on-shell transitions

Grossman & al. 2009 Kagan & Sokoloff 2009 Kagan & Silvestrini 2021

• Oscillations are governed by two mixing parameters $x_{12} = 2|M_{12}|/\Gamma$ and $y_{12} = 2|\Gamma_{12}|/\Gamma$

Roberto Ribatti | Mixing and CPV in $D^0 \rightarrow K^+ \pi^-$

LHC seminar, Mar 26th 2024

$D^0 - \overline{D}^0$ mixing SM predictions

• Mixing amplitudes governed by two contributions

- Short distance:
 - \rightarrow suppressed by CKM b couplings
 - \rightarrow suppressed by GIM cancellation broken by b quark

- Long distance:
 - \rightarrow low-energy QCD through on-shell resonances
 - \rightarrow theoretical prediction of x and y very challenging

Experimental state of the art – Mixing

- First observation of mixing in charm dates back to 2009 in $D^0 \rightarrow K^+ \pi^-$
- Today Charm global average largely dominated by LHCb results, which exploit the largest charm hadron dataset ever collected
- First observation of $x_{12} \neq 0$ in 2021 exploiting $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ decay PRL127,111801
- Recent $D^0 \rightarrow h^+h^-$ measurement PRD105.092013 and charm+beauty combination leads to a 3% relative precision on y_{12}

need for at least two interfering amplitudes with different weak ϕ and strong δ phases

$$a_f^d = \frac{|\mathcal{A}(M \to f)|^2 - |\mathcal{A}(\overline{M} \to \overline{f})|^2}{|\mathcal{A}(M \to f)|^2 + |\mathcal{A}(\overline{M} \to \overline{f})|^2} \propto \sin(\phi_2 - \phi_1)\sin(\delta_2 - \delta_1)$$

CP violation manifestations

• CPV in the decay $\stackrel{M}{\frown} \overbrace{f} \neq \stackrel{\overline{M}}{\frown} \overbrace{f}$ $a_f^d = \frac{|\mathcal{A}(M \to f)|^2 - |\mathcal{A}(\overline{M} \to \overline{f})|^2}{|\mathcal{A}(M \to f)|^2 + |\mathcal{A}(\overline{M} \to \overline{f})|^2} \neq 0$

Kagan & Silvestrini 2021

• CPV in the mixing $\frac{M^0}{\sqrt{M^0}} \neq \overline{M^0} = M^0$

In Charm, SM predict ϕ_2^M , ϕ_2^Γ to be O(2 mrad)

$$\arg\left(\frac{M_{12}}{\Gamma_{12}}\right) = \phi_2^M - \phi_2^\Gamma \neq 0 \qquad \qquad \phi_2^M \sim \arg\left(M_{12}\right), \ \phi_2^\Gamma \sim \arg\left(\Gamma_{12}\right)$$

• CPV in the interference

(of decay and mixing)

$$\underbrace{M^{0}}_{f} + \underbrace{\overline{M}^{0}}_{f} \underbrace{M^{0}}_{f} \neq \underbrace{\overline{M}^{0}}_{f} \underbrace{\overline{f}}_{f} + \underbrace{M^{0}}_{f} \underbrace{\overline{M}^{0}}_{f} \underbrace{\overline{f}}_{f}$$

Experimental state of the art – *CPV* **in the decay**

In 2019 LHCb report first observation of CPV in charm decay

$$\Delta A_{CP} = A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi^{-}) = (-15.4 \pm 2.9) \times 10^{-4} \quad (5.3 \, \sigma)$$

PRL122,211803

• Followed in 2023 by evidence of CPV in $D^0 \rightarrow \pi^+\pi^-$ decay

 $a_{\pi\pi}^d = (23.2 \pm 6.1) \times 10^{-4} \quad (3.8 \, \text{\sigma})$ PRL131.091802

LHCb-CONF-2022-003

• Theoretical interpretation is debated, is this NP or SM effect?

Experimental state of the art – Other *CPV* **sources**

- Crucial to search for other CPV manifestation in charm sector
- Still no evidence of CPV in mixing and interference
- $D^0 \rightarrow K^+ \pi^-$ decay channel allows to simultaneously measure mixing and all types of CPV, with excellent sensitivity to ϕ_2^M and y

$D^0 \rightarrow K\pi$ WS/RS

- Neutral *D* meson flavour tagged exploiting strong decay $D^{*+} \rightarrow D^0 \pi_s^+$ and $D^{*-} \rightarrow \overline{D}^0 \pi_s^-$
- Distinguish two processes: wrong sign (WS) and right sign (RS)

• Accounting for CPV we measure time dependence of WS/RS yield ratio $R^{\pm}_{\kappa\pi}(t)$

$$R^{+}_{_{K\pi}}(t) \equiv \frac{\Gamma(D^{0}(t) \to K^{+}\pi^{-})}{\Gamma(\overline{D}^{0}(t) \to K^{+}\pi^{-})} \quad \text{and} \quad R^{-}_{_{K\pi}}(t) \equiv \frac{\Gamma(\overline{D}^{0}(t) \to K^{-}\pi^{+})}{\Gamma(D^{0}(t) \to K^{-}\pi^{+})}$$

• Since $x_{12}, y_{12} \ll 1$ the ratio can be expanded as: $R^{\pm}_{\kappa\pi}(t) = R_{\kappa\pi}(1 \pm A_{\kappa\pi}) + \sqrt{R_{\kappa\pi}(1 \pm A_{\kappa\pi})} (c_{\kappa\pi} \pm \Delta c_{\kappa\pi}) t / \tau_{D^0} + (c'_{\kappa\pi} \pm \Delta c'_{\kappa\pi}) (t / \tau_{D^0})^2$

slow pions

$$D^{0} \rightarrow K\pi \text{ WS/RS}$$

$$R_{K\pi}^{\pm}(t) = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t/\tau_{D^{0}} + (c'_{K\pi} \pm \Delta c'_{K\pi})(t/\tau_{D^{0}})^{2}$$

$$R_{K\pi}^{\pm}(t) = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t/\tau_{D^{0}} + (c'_{K\pi} \pm \Delta c'_{K\pi})(t/\tau_{D^{0}})^{2}$$

$$R_{K\pi}(t) = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t/\tau_{D^{0}} + (c'_{K\pi} \pm \Delta c'_{K\pi})(t/\tau_{D^{0}})^{2}$$

$$R_{K\pi}(t) = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t/\tau_{D^{0}} + (c'_{K\pi} \pm \Delta c'_{K\pi})(t/\tau_{D^{0}})^{2}$$

$$R_{K\pi}(t) = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t/\tau_{D^{0}} + (c'_{K\pi} \pm \Delta c'_{K\pi})(t/\tau_{D^{0}})^{2}$$

$$R_{K\pi}(t) = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t/\tau_{D^{0}} + (c'_{K\pi} \pm \Delta c'_{K\pi})(t/\tau_{D^{0}})^{2}$$

$$R_{K\pi}(t) = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t/\tau_{D^{0}} + (c'_{K\pi} \pm \Delta c'_{K\pi})(t/\tau_{D^{0}})^{2}$$

$$R_{K\pi}(t) = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t/\tau_{D^{0}} + (c'_{K\pi} \pm \Delta c'_{K\pi})(t/\tau_{D^{0}})^{2}$$

$$R_{K\pi}(t) = R_{K\pi}(t) + R$$

• This measurement is dominated by previous LHCb result \rightarrow Run 1 + 2015/16: 0.7 MWS + 180 MRS PRD97,031101

- In 2017-2018 collected additional 1.1 M WS + 280 M RS
 → total yield more than doubled
- The measurement presented here uses the full Run 2 sample \rightarrow 2015-2016 re-analysed with improved strategy
- Average with Run 1 results performed to return the LHCb Run 1+2 legacy results

Online selection

- LHCb's excellent trigger capabilities reduce rate from 40 MHz bunch crossing to 12.5 kHz on tape
- Charm analysis pioneered "Turbo" data-taking paradigm

 \rightarrow only signal candidates recorded \rightarrow yield/fb⁻¹ x2 wrt Run 1

Comput.Phys.Commun. 208 (2016) 35-42

• Online selection designed to select signal with high purity while limited by a maximum bandwidth

Analysis workflow

- General philosophy of offline selection design is targeting robustness
- Sample is divided between D^0 final state ($K^+\pi^-$, $K^-\pi^+$), 18 D^0 decay-time intervals and 3 data-taking period (2015-16, 2017 and 2018).

In each subsample we determine:

- average D^0 decay time, t
- WS-to-RS ratio, *R*, fitting *D*^{*} mass to disentangle signal from combinatorial and ghost backgrounds
- And we correct them from the known systematic effects
 - bias to the ratio
 - bias to asymmetry
 - bias to D^0 decay-time
- Time dependence is fitted \rightarrow extract mixing and CPV parameters

Systematic sources of biases

Ratio biases - Ghost background

- Our normalization channel, $D^0 \rightarrow K^- \pi^+$, is also one of the main source of background \rightarrow much more abundant, if misidentified it can leak in our WS signal
- Ghost bkg result from misassociation of correctly-identified hits in VELO with hits in T-Stations from different particles

- Soft pion from RS decays seed the production of both RS and WS ghosts \rightarrow peak in D^* mass because even if π_c momentum is random, direction is correct
- Percent level contamination but we aim at sub-percent precision

Ratio biases – Ghost background proxy

- A fraction of D^0 candidates is used to reconstruct both WS D^{*_+} and RS D^{*_-}
- RS D^{*} within 3σ from D^{*} peak, are most likely genuine
 → common WS are are either ghost or combinatorial bkg and discarded to improve signal-to-noise ratio
- In this sample, ghost and combinatorial component can be disentangled looking at angle between π_s^+ and π_s^-
- This pure subsample of common ghost (CG) is used as a proxy for residual ghost bkg

Ratio biases – common WS removal

- Removing these WS-RS multiple candidates, a small fraction of proper WS decays are removed, biasing the ratio
- Estimated and subtracted bias $\sim \sigma(R_{K\pi})/5$

excluded region

Ratio biases - Test of ghost bkg. subtraction

- Test capability to correctly remove ghost bkg.
- Fit WS-to-RS ratio in 6 bin of $P_{\text{ghost}}(\pi_s^+)$ with and without ghost component
- When ghosts are neglected clear bias appears
- Adding ghost component removes any dependence
- The subtracted bias on $R_{\kappa\pi}$ from ghost bkg. is ~1%

Ratio biases – Particles misidentification

• Remove background from single mis-ID $D^0 \rightarrow K^+(\neg \pi^+) K^-$ and $D^0 \rightarrow \pi^+(\neg K^+) \pi^-$

 $|m(K\pi) - m(D^0)_{PDG}| < 24 \text{ MeV} (3\sigma)$

- Misreconstructed multibody charm decays found to be negligible in previous studies
- Reduce by factor of 5 background from double mis-ID $D^0 \rightarrow K^-(\neg \pi^-) \pi^+(\neg K^+)$ (RS \neg WS)

 $|m(K\pi)_{swap} - m(D^0)_{PDG}| > 16 \text{ MeV} (1.5 \sigma)$

Subtracted residual bias $\sim \sigma(R_{\kappa\pi})/10$

excluded region

Asymmetry bias – Nuisance asymmetry

• Differences in reconstruction efficiency between WS and RS may mimic CPV

$$\widetilde{R'}^{\pm} = R'^{\pm} \frac{\int [1 \pm A_P(D^*)] \epsilon(\pi_s^{\pm}) \epsilon(K^{\pm} \pi^{\mp}) \rho \ d\vec{p}_{D^0} d\vec{p}_{\pi_s}}{\int [1 \mp A_P(D^*)] \epsilon(\pi_s^{\mp}) \epsilon(K^{\pm} \pi^{\mp}) \rho \ d\vec{p}_{D^0} \ d\vec{p}_{\pi_s}} \simeq R'^{\pm} \frac{1 \pm [A_D(\pi_s) + A_P(D^*)]}{1 \mp [A_D(\pi_s) + A_P(D^*)]}$$

• $A_D(\pi_s) + A_P(D^*)$ measured exploiting a^d_{KK} LHCb analysis in $D^0 \rightarrow K^+ K^-$ CS decays PRL131.091802

Asymmetry bias – Nuisance asymmetry correction

- When $A_{D}(\pi_{s})$ is not small, correction terms appear in equations in previous slide
- Very high asymmetry regions are conservatively removed (15% signal loss)
 → collateral benefit: remove 40% of residual ghost contamination

Asymmetry bias – $A^{raw}(KK)$ measurement

- $A_D(\pi_s)$ depends on kinematics $\rightarrow D^0 \rightarrow K^+ K^-$ kinematics is equalized to $D^0 \rightarrow K^- \pi^+$
- Then $D^{*_{+}}$ and $D^{*_{-}}$ samples are fitted simultaneously to extract the raw asymmetry

Decay-time biases – Sources

LHCb

preliminar

 $D^0 \rightarrow K^+ \pi$

6 fb⁻¹

Candidates [a.u.] Candidates Candidates

 10^{-3}

 10^{-4}

Candidates / (5 μ m) $_{2}01$

 10^{5}

 10^{4}

0 0.1

2005

2010

0.2 0.3

К

π

D0

π_s

BD*

LHCb-PAPER-2024-008

 $t / \tau_{r^{0}} \in [0.4, 1.5]$

 $t / \tau_{n^0} \in [1.5, 3.0[$

 $t / \tau_{n^0} \in [3.0, 8.0]$

2015

secondary D^{*} long tail

 $m(D^0\pi_s^+)$ [MeV/c²]

LHCb

preliminary 6 fb⁻¹ $D^0 \rightarrow K^+ \pi^-$

2020

- Poor D^* vertex resolution (~1 cm) $\rightarrow D^*$ is constrained in the PV
- Due to this constraint, contamination from **secondary** D^* from *b*-hadrons decays
 - bias decay time towards higher values
 - feature a deformed D^* mass line-shape

- Reject this background as much as possible requiring $IP(D^0) < 60 \,\mu m$
- Total bias, in each decay-time bin *i*, is computed as the weighted sum

$$\begin{array}{l} \delta t_i \equiv \langle \delta t \rangle_i^P (1 - f_i^S) + \langle \delta t \rangle_i^S f_i^S & \quad \text{secondary } D^* \text{ fraction} \\ & \swarrow \\ \text{bias in prompt } D^* & \quad \text{bias in secondary } D^* \end{array}$$

PV

0.4 0.5 0.6

 $IP(D^0)$ [mm]

Decay-time bias – Simulation tunings

- Time biases and f_i^S in each decay-time bin determined by a 2D template fit to $t(D^0)$ vs. IP(D^0)
- Templates generated with LHCb simulation
 - Kinematics of simulated samples weighted to data
 - ~10 µm VELO misalignment, which degrades IP resolutions in data, identified and injected in simulation
 - PV and D^0 decay vertex (DV) resolutions tuned to reproduce the features observed in data \rightarrow scale factors to PV and DV resolutions are applied and treated as nuisance parameters
 - The knowledge of the cocktail of b-hadron to D^* decay is partial. As an effective correction a small fraction of $B^0 \rightarrow D^{*+}X$ decays are added
 - $\rightarrow m(X)$ and relative fraction treated as nuisance parameters

LHC seminar, Mar 26th 2024

Roberto Ribatti | Mixing and CPV in $D^0 \rightarrow K^+ \pi^-$

WS/RS measurements & results

WS/RS Ratio determination – D^* mass fit

- Constraining *D*^{*} in the PV improve mass resolution by a factor of 2
- A χ^2 binned fit is performed simultaneously to D^* mass distributions of WS, RS and CG
- Each subsample independently fitted (decay-time interval, data-taking period, and D^0 final state)
- Signal and Ghost bkg pdf are shared

Roberto Ribatti | Mixing and CPV in $D^0 \rightarrow K^+ \pi^-$

Mixing + CPV fit - Model

• Minimize a χ^2 that incorporates all systematic biases:

Mixing + *CPV* fit - Results

Mixing + *CPV* **fit – Systematic uncertainties**

- Main systematic sources are D^{*+} mass fit model and ghost bkg pdf
- Instrumental asymmetry and a^d_{KK} external input are relevant only for CPV observables
 → statistically dominated
- Dominant systematic in previous iteration (decay-time bias) reduced by one order of magnitude PRD97,031101
- Total systematic uncertainty improved by a factor of 2

$R_{\kappa\pi} [10^{-5}]$	$c_{\kappa\pi} \\ [10^{-4}]$	$c'_{\kappa\pi}$ [10 ⁻⁶]	$A_{\kappa\pi} [10^{-3}]$	$\frac{\Delta c_{\kappa\pi}}{[10^{-4}]}$	$\Delta c'_{K\pi}$ [10 ⁻⁶]
0.5	0.8	0.9	1.4	0.8	0.8
0.4	0.8	0.8	1.1	0.8	1.1
			1.2	0.7	0.7
-			1.1	_	—
—		_	_	0.1	0.1
0.1	0.1	0.1	_	-	_
0.2		-	_	-	_
0.1	0.2	0.1	0.1	—	=
_	0.1	0.1	—	—	_
0.7	1.1	1.2	2.4	1.3	1.4
1.9	3.3	3.5	5.5	3.3	3.5
2.0	3.5	3.7	6.0	3.6	3.8
	$\begin{array}{c} 0.5\\ 0.4\\ -\\ -\\ 0.1\\ 0.2\\ 0.1\\ -\\ 0.7\\ 1.9\\ \end{array}$	$ \begin{bmatrix} 10^{-3} \\ 0.5 \\ 0.8 \\ 0.4 \\ 0.8 \\ - \\ - \\ - \\ 0.1 \\ 0.1 \\ 0.2 \\ - \\ 0.1 \\ 0.2 \\ - \\ 0.1 \\ 0.2 \\ - \\ 0.1 \\ 0.2 \\ - \\ 0.1 \\ 0.3 \\ - \\ 0.1 \\ 0.3 \\ - \\ 0.3 \\ 0.3 \\ - \\ 0.3 \\ 0.3 \\ - \\ 0.3 \\ 0.3 \\ - \\ 0.3$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Mixing + *CPV* fit – LHCb Run 1+2 Legacy result

• Simultaneous minimization of Run 2 χ^2 and Run 1 χ^2 from PRD97,031101 [LHCb internal note]

	This result Run 1 + 2	PRD97,031101 Run 1 + 2015/16	
$R_{_{K\pi}}$	$(342.7 \pm 1.9) \times 10^{-5}$	$(345.2 \pm 3.1) \times 10^{-5}$	
	$(52.8 \pm 3.3) \times 10^{-4}$	$(53.3 \pm 5.1) \times 10^{-4}$	Results are compatible
$c_{K\pi} \ c'_{K\pi} \ A_{K\pi}$	$(12.0 \pm 3.5) \times 10^{-6}$	$(15.8 \pm 5.2) \times 10^{-6}$	Total uncertainty improved by 1.6x
$A_{K\pi}$	$(-6.6 \pm 5.7) \times 10^{-3}$	$(-0.9 \pm 8.9) \times 10^{-3}$	Total uncertainty improved by 1.0x
$\Delta c_{K\pi}$	$(2.0 \pm 3.4) \times 10^{-4}$	$(-2.0 \pm 5.1) \times 10^{-4}$	
$\Delta c'_{K\pi}$	$(-0.7 \pm 3.6) \times 10^{-6}$	$(4.4 \pm 5.2) \times 10^{-6}$	

Impact on World average – *CP* **violation**

Impact on World average – Mixing

• $c_{K\pi} \approx y_{12} \cos \Delta_{K\pi} + x_{12} \sin \Delta_{K\pi}$

 \rightarrow sensitivity to y_{12} is limited by independent $\Delta_{{\it K}\pi}$ measurements

• Conversely, combining $c_{K\pi}$ with LHCb measurements

• Further improvements expected from future charm + beauty LHCb combination

expected 4σ evidence of U-spin symmetry breaking

Conclusions

- Presented for the first time the LHCb full Run 2 measurement of mixing and CPV parameters in prompt $D^0 \rightarrow K^+\pi^-$ and legacy Run 1+2 LHCb combination \rightarrow total uncertainties improved by 1.6x
 - \rightarrow strong systematics reduction makes the measurement statistically dominated \rightarrow it was one of the last missing Run 1+2 measurement in Charm mixing & CPV
- Future charm+beauty LHCb fit will be significatively impacted
- The way is paved for Run 3 and beyond LHCb plans to collect $D^0 \rightarrow hh'$ decays with doubled efficiency/fb⁻¹ wrt Run 2 Uncertainties expected to halve by the end of Run 3
- Still more to come from Run 1+2, stay tuned!

Thank to for the second second

Phenomenological vs Theoretical parametrization

 $|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle$

Phenomenological Theoretical

 $x = \Delta m / \Gamma$ $x_{12} = 2|M_{12}| / \Gamma$ $x_{12} \approx |x|$

 $y = \Delta \Gamma / 2\Gamma \qquad \qquad y_{12} = 2|\Gamma_{12}| / \Gamma$

 $y_{12} \approx |y|$

intrinsic CPV mixing phases, defined with respect to the dominant $\Delta U = 2$ dispersive and absorptive mixing amplitudes Kagan & Silvestrini 2021

Roberto Ribatti | Mixing and CPV in $D^0 \rightarrow K^+ \pi^-$

Bias on *A*^{raw}(*KK*) **determination**

- Both Eq. (1) and (2) (slide 21) assume that $A_D(\pi_s)$ is small, however if fiducial cuts are not applied, regions with high detection asymmetry are present
- Removing this assumption, Eq. (1) becomes:

$$\tilde{R}_i^{\pm} \simeq R_i^{\pm} \cdot \left(1 \pm 2 \int^{t_i} A(D^*\pi_s) \omega \, dt d\vec{p} + 2 \int^{t_i} \underline{A(K\pi)A(D^*\pi_s)\omega \, dt d\vec{p}} \right)$$

• While Eq. (2) becomes:

$$A_{\mathsf{raw}}^{\mathsf{rwgt},i}(\mathsf{K}\mathsf{K}) - A_{\mathsf{CP}}^{\mathsf{K}\mathsf{K},i} \simeq \int^{t_i} A(D^*\pi_s)\omega'(t)\,dt\,d\vec{p} - \int^{t_i} \underline{A^2(D^*\pi_s)\left[A(\mathsf{K}\pi) + A_{\mathsf{CP}}^{\mathsf{K}\mathsf{K}}\right]\omega'(t)\,dt\,d\vec{p}}$$

• Correcting R_{CP} and A_{D} , neglecting these two additional terms, could produce a bias O(stat. unc.)

$$\overline{R}_{CP} \simeq R_{CP} \left(1 + 2 \int A(K\pi) A(D^*\pi_s) \,\omega \,dt \,d\vec{p} \right)$$
$$\overline{A}_D \simeq A_D + 2 \int A^2(D^*\pi_s) \left[A(K\pi) + A_{CP}^{\mathsf{KK}} \right] \omega \,dt \,d\vec{p}$$

 $A(D^*\pi_s) \equiv A_D(\pi_s) + A_P(D^*)$

Inclusive secondary D^* cocktail

se	condary decay	BR (× 10^{-3})	secondary decay		BR (×10 ⁻³)	
$D^{*-}e^+\nu_e$		50.5		$D^{*-}p^{+}\bar{n}^{0}$	1.4	
	$D^{*-}\mu^+ u_\mu$	50.5		$D^{*-}K^+\bar{K}^0$	1.29	
	$D^{*-}D_{s}^{*+}$	17.7		$D^{*-}D^{*+}_{s1}(2700)$	0.83	
	$D^{*-}2\pi^+\pi^-\pi^0$	17.6		$D^{*-}D^{*+}$	0.8	
	$D^{*-}\tau^+ u_{ au}$	15.7		$D^{*-}D^{-}$	0.61	
	$D^{*-}\pi^+\pi^0$	15.	$B^0 ightarrow$	$D^{*-}K^+\pi^-\pi^+$	0.47	
	$D^{*-}a_1^+(1260)$	13.		$D^{*-}p^+\bar{p}^-\pi^+$	0.47	
	$D^{*-}D^{*0}(2007)K^+$	10.6		$D^{*-}K^{*+}(892)$	0.33	
	$D^{*-}D^{+}_{s1}(2460)$	9.3		$D^{*-}K^{0}\pi^{+}$	0.3	
	$D^{*-}D^{*+}K^{0}$	8.1		$D^{*-}K^{+}$	0.212	
$B^0 \rightarrow$	$D^{*-}D_{s}^{+}$	8.		$D^{*-}2\pi^{+}\pi^{0}$	15.	
	$D^{*-}2\pi^+\pi^-$	7.21		$D^{*+}\overline{D}^{*0}K^{0}$		
	$D^{*-}\rho^+$	6.8		Later and the second	9.2	
	$D^{*-} ho^0\pi^+$	5.7		$D^{*+}\overline{D}^{0}K^{0}$	3.8	
	$D^{*+}D^{-}K^{0}$	4.7		$D^{*-}3\pi^{+}\pi^{-}$	2.6	
	$D^{*-}3\pi^{+}2\pi^{-}$	4.7	$B^+ \rightarrow$		1.35	
	$D^{*-}\pi^+$	2.74		$D^{*-}D^{*+}K^{+}$	1.32	
	$D^{*-}D^{0}K^{+}$	2.47		$D^{*+}\overline{D}^{*0}(2007)$	0.81	
	$D^{*-}\omega(782)\pi^+$	2.46		$D^{*+}D^{-}K^{+}$	0.63	
	$D^{*-}D^{+}K^{0}$	1.8		$D^{*-}D^{+}K^{+}$	0.6	
	$D^{*-}D_{s0}^{*+}(2317)$	1.5		$D^{*+}\overline{D}^{0}$	0.39	

Decay-time bias – Template fit

- Systematic uncertainties on PV and DV res. scale, m(X) and f_X are treated with the template profile likelihood approach:
 - templates produced with PV and DV resolution independently scaled by a factor of -10%, 1, +10%, m(X) is chosen between 0.5, 1.5, 2.5 GeV/ c^2 and f_x between 0%, 3%, 6%
 - templates corresponding to intermediate values obtained through linear interpolation
- Uncertainties on simulation statistics treated with Beeston-Barlow prescription:
 - each template bin became a nuisance parameter constrained (in the likelihood) with its statistical uncertainty
- The parameters of interest are the normalizations of prompt and secondary templates

Impact on World average – Superweak approximation

- Superweak approximation PRL13.562assumes that the only CPV source is interaction with BSM particles with mass much higher than D^0
 - \rightarrow only parameter responsible for CPV would be $\phi^{\scriptscriptstyle M}_2$
- In the fit, this limit is implemented by fixing $A_{K\pi} = 0$ and $\phi_2^{\Gamma} = 0$
 - \rightarrow under this assumption, precision on ϕ_2^M improves by 20% reaching 13 mrad precision

