

Probing QCD-based model predictions with charm-hadron production measurements with ALICE at the LHC

Mattia Faggin, CERN

CERN EP seminar 9th April 2024

Heavy quarks: a unique probe for high-density QCD

mfaggin@cern.ch 2/35

- Charm and beauty quarks: $m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2$ Significantly larger than Λ_{OCD} (~200 MeV)
- - Produced in hard scattering processes among partons \rightarrow

Charm- and **beauty- quarks dynamic** tested via **measurements** of charm- and beauty- hadron production

pp collisions

Test of pQCD calculations

- heavy-quark production
- parton distribution functions (PDFs) \bigcirc
- hadronization \bigcirc
- No first-principle description of hadronization
 - Non-perturbative problem, pQCD calculations not applicable Ο
 - Necessary to resort to models and make use of phenomenological 0 parameters

Hadron production at large $Q^2 - e^+e^-$ collisions

Factorization approach

• → • • e⁺e⁻ collisions

- "Vacuum-like" system
- Hadronization described with string models

Hadronization in event generators: **clusters** and strings

mfaggin@cern.ch

Event generators: final stage of parton shower interfaced with non-perturbative hadronization models

Cluster decay (HERWIG)

Eur. Phys. J. C 76 no. 4, (2016) 196

- Parton shower evolved up to a softer scale
- All gluons forced to split in $q\bar{q}$ pairs
- Color-singlet clusters of partons identified following the color flow
- Cluster decays into hadrons according to the available phase space

Hadronization in event generators: clusters and strings

mfaggin@cern.ch 6/35

^{6/35} AL

Event generators: final stage of parton shower interfaced with non-perturbative hadronization models

Cluster decay (HERWIG)

Eur. Phys. J. C 76 no. 4, (2016) 196

- Parton shower evolved up to a softer scale
- All gluons forced to split in qq pairs
- **Color-singlet clusters** of partons identified following the color flow
- Cluster decays into hadrons according to the available phase space

String fragmentation (e.g. Lund model in PYTHIA)

Phys. Rept. 97 (1983) 31–145
 Eur. Phys. J. C 78 no. 11

- Strings: colour-flux tubes between q and q endpoints

 gluons: kinks
- Strings break via vacuum-tunneling of (di)quark-anti(di)quark pairs

Tunneling probability

 $P(\text{string breaking}) \propto \exp\left(-\frac{\pi m_{T,q}^2}{\kappa}\right) = \exp\left(-\frac{\pi m_q^2}{\kappa}\right) \exp\left(-\frac{\pi p_{T,q}^2}{\kappa}\right)$

$$u: d: s: c \simeq 1: 1: 1/3: 10^{-11}$$

charm mostly produced in the hard scattering

The success of factorization and independent fragmentation (1/2)

- Factorization in terms of squared momentum transfer Q^2 : collinear factorization
- At LHC energies, calculations available in:
 - general-mass variable-flavour-number scheme (GM-VFNS) approach
 - fixed order plus next-to-leading logarithms (FONLL) approach

both having NLO accuracy with all-order resummation of next-to-leading logarithms

D-meson measurements described by model predictions

- → Theoretical uncertainties: (i.) renormalization and factorization scales; (ii.) c-, b-quark mass; (iii.) PDFs
- → main source of theoretical uncertainty: scales for perturbative calculations (up to ~100%)

ALI-PUB-314123

The success of factorization and independent fragmentation (2/2)

mfaggin@cern.ch

- Charm-hadron production in e⁺e⁻ collisions described by PYTHIA (backup)
- Heavy-flavour meson-to-meson ratios in pp collisions:
 - \circ no significant $p_{\rm T}$ -dependence
 - described by models based on factorization and with fragmentation functions constrained from e⁺e⁻collisions
 - compatible with results in e⁺e⁻ collisions

Hadronization in PYTHIA 8 - colour reconnection with MPIs

mfaggin@cern.ch

PYTHIA

PYTHIA 8 default tune

► <u>IHEP 08 (2015) 003</u>

Colour reconnection (CR) within Leading Color

- **CR allowed** among partons from **different MPIs** to minimize string length
- Implemented in PYTHIA 8 Monash

CR beyond Leading Color approximation (CR-BLC)

- String length minimization over all possible configurations, even those beyond the LC topology
- Enhanced leading color among MPIs and beam remnants
 - baryon production enhanced by junctions

The baryon enhancement in the charm sector

mfaggin@cern.ch

- Significant baryon-to-meson ratio enhancement in pp compared to e⁺e⁻ collisions
- PYTHIA 8 Monash predictions and pQCD-based calculations based on factorization and fragmentation functions tuned on e⁺e⁻ underestimate the results in pp collisions
- PYTHIA 8 predictions with junctions better describe the measured Λ_c^+/D^0 at |y| < 0.5
 - Beauty baryon-to-meson ratio at forward rapidity not well described

Charm production at mid-*y* in pp collisions at $\sqrt{s} = 13$ TeV (1/2)

<u> JHEP12 (2023) 086</u>

"Charm production and fragmentation fractions at midrapidity in pp collisions at \sqrt{s} = 13 TeV"

Contents

- 1. Most precise and granular measurements of $p_{\rm T}$ -differential production cross section of prompt D⁰, D⁺, D⁺, D⁺, D⁺, mesons at mid-y in pp at $\sqrt{s} = 13$ TeV
- 2. Extended measurements down to lower p_T values of prompt Λ_c^+ and Ξ_c^+ -baryon production cross sections at mid-y in pp at $\sqrt{s} = 13$ TeV
- 3. Measurement of the cc production cross section and charm-quark fragmentation fractions at mid-y in pp at \sqrt{s} = 13 TeV
 - a. based on the sum of D⁰, D⁺, D_s⁺, Λ_c^+ , $\Xi_c^{0,+}$, J/ ψ cross sections
 - b. first measurement of Ξ_c^+ and $\Sigma_c^{0,+,++}$ fragmentation fractions at mid-y in pp collisions

Goals

- 1. Overview of charm-hadron production measurements with ALICE at mid-*y* in pp collisions
- 2. Provide new inputs to:
 - a. test the validity of the factorization approach and independent fragmentation
 - b. **constrain gluon PDF** at low Bjorken-*x*
 - c. further study the baryon enhancement at the LHC

Charm production at mid-*y* in pp collisions at $\sqrt{s} = 13$ TeV (1/2)

mfaggin@cern.ch

<u>JHEP12 (2023) 086</u>

"Charm production and fragmentation fractions at midrapidity in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ "

1. Most precise and granular measurements of $p_{\rm T}$ -differential production cross section of prompt D⁰, D⁺, D⁺, D⁺, D⁺, mesons at mid-*y* in pp at \sqrt{s} = 13 TeV

Cacciari, Mangano, Nason: Eur. Phys. J. C (2015) 75:610

Constrain gluon PDF

• Double ratio in rapidity and energy: scale and mass uncertainties reduced \rightarrow PDF uncertainties dominant

• Low ($\leq 10^{-5}$) and high ($\geq 10^{-2}$) Bjorken-*x* regime accessible with measurements at $p_T \leq 2 \text{ GeV}/c$ and $p_T \geq 30 \text{ GeV}/c$, respectively

The ALICE detector in Run 1 and Run 2

Charm-hadron decay channels

$$\begin{array}{lll} D^{0} {\rightarrow} K^{-} \pi^{+} & \Lambda_{c}^{ +} {\rightarrow} p K^{-} \pi^{+}, p K_{s}^{ 0} \\ D^{*+} {\rightarrow} D^{0} \pi^{+} {\rightarrow} K^{-} \pi^{+} \pi^{+} & \Xi_{c}^{ 0} {\rightarrow} \Xi^{-} e^{+} \nu_{e} \\ D^{+} {\rightarrow} K^{-} \pi^{+} \pi^{+} & \Xi_{c}^{ 0} {\rightarrow} \Xi^{-} \pi^{+} \\ D_{s}^{ +} {\rightarrow} \phi \pi^{+} {\rightarrow} K^{+} K^{-} \pi^{+} & \Xi_{c}^{ +} {\rightarrow} \Xi^{-} \pi^{+} \pi^{+} \\ D_{s1}^{ +} {\rightarrow} D^{*+} K_{s}^{ 0} & \Sigma_{c}^{ 0, + +} {\rightarrow} \Lambda_{c}^{ +} \pi^{-, +} \\ D_{s2}^{ * +} {\rightarrow} D^{+} K_{s}^{ 0} & \Omega_{c}^{ 0} {\rightarrow} \Omega^{-} \pi^{+} \end{array}$$

Representation of the province of the provinc

Datasets

pp \sqrt{s} = 5.02 TeV pp $\sqrt{s} = 7$ TeV pp $\sqrt{s} = 13$ TeV p-Pb $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \longrightarrow \mathcal{L}_{\text{int}} \sim 287 \text{ }\mu\text{b}^{-1} \text{ (MB)}$ Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV} \rightarrow \mathcal{L}_{int} \sim 130 \text{ }\mu\text{b}^{-1} \text{ (0-10\%)}$

$\rightarrow \mathcal{L}_{int} \sim 19 \text{ nb}^{-1} \text{ (MB)}$ $\rightarrow \mathcal{L}_{int} \sim 5.9 \text{ nb}^{-1} \text{ (MB)}$ $\rightarrow \mathcal{L}_{int} \sim 32 \text{ nb}^{-1} \text{ (MB)}$

 $\rightarrow \mathcal{L}_{int} \sim 56 \ \mu b^{-1} \ (30-50\%)$

1. Track selections

- ITS-TPC matched tracks \rightarrow selection of <u>primaries</u> (<u>ALICE-PUBLIC-2017-005</u>)
- particle identification (PID)

2. Secondary-vertex reconstruction

- Impact parameter resolution to primary vertex ~ 75 μ m @ p_{T} = 1 GeV/c
- Evaluation of topological variables
 - \rightarrow intrinsic displacement ($c\tau$ (D⁺) ~ 310 µm)

3. Topological selections

- Separate signal from background candidates exploiting topological variables
 - \rightarrow BDT exploited for most challenging analyses
- Measure the reconstructed signal with an invariant-mass analysis

$$\frac{\mathrm{d}\sigma^{\mathrm{H}}}{\mathrm{d}p_{\mathrm{T}}}\Big|_{|y|<0.5} = \frac{1}{2} \frac{1}{\Delta p_{\mathrm{T}}} \times \frac{f_{\mathrm{prompt}} \times N_{|y|< y_{\mathrm{fid.}}}^{\mathrm{H}+\overline{\mathrm{H}}}}{c_{\Delta y} (\mathrm{Acc} \times \varepsilon)_{\mathrm{prompt}}} \times \frac{1}{\mathrm{BR}} \times \frac{1}{\mathcal{L}_{\mathrm{int}}}$$

Prompt D-meson cross section in pp collisions at \sqrt{s} = 13 TeV

 $\frac{d^2 \sigma}{d \rho_T d y} (\mu b \text{ GeV}^1 c)$ (μb GeV⁻¹ *c*) 10³ = ALICE |y| < 0.5ALICE |y| < 0.5pp, $\sqrt{s} = 13 \text{ TeV}$ pp, $\sqrt{s} = 13 \text{ TeV}$ ALICE ALICE 10^{2} Prompt D⁰ Prompt D⁺ $\frac{d^2\sigma}{dp_Tdy}$ Data Data FONLL FONLL k_{τ} -fact. $k_{\rm T}$ -fact. 10**GM-VFNS GM-VFNS** 10- 10^{-1} 10⁻² 10⁻² 0.8% BR unc. not shown 1.7% BR unc. not shown 10^{-3} 1.6% lumi, unc. not shown 1.6% lumi. unc. not shown data model data model 40 50 ρ_T (GeV/c) 10 20 30 10 20 30 40 50 p_{τ} (GeV/c)

Factorization in terms of:

• squared momentum transfer Q^2 \rightarrow collinear factorization

mfaggin@cern.ch

15/35

E IHEP12 (2023) 086

- **GM-VFNS**
- FONLL
- parton transverse momentum $k_{\rm T}$ $\rightarrow k_{\rm T}$ -factorization

Model **calculations describe** the **measurements** within uncertainties

- measurement on the lower (upper) edge of GM-VFNS and $k_{\rm T}$ -factorization (FONLL) calculations at high $p_{\rm T}$
- main source of theoretical uncertainty: scales for perturbative calculations

ALI-PUB-567841

D-meson yield ratios

mfaggin@cern.ch 16/35 ALICE

from factorization ...

$$\frac{\frac{\mathrm{d}\sigma^{\mathrm{H_{c}^{1}}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{H_{c}^{1}}}}(p_{\mathrm{T}};\mu_{\mathrm{F}},\mu_{\mathrm{R}})}{\frac{\mathrm{d}\sigma^{\mathrm{H_{c}^{2}}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{H_{c}^{2}}}}(p_{\mathrm{T}};\mu_{\mathrm{F}},\mu_{\mathrm{R}})} \sim \frac{D_{\mathrm{c}\to\mathrm{H_{c}^{1}}}(z=p_{\mathrm{H_{c}^{1}}}/p_{\mathrm{c}},\mu_{\mathrm{F}})}{D_{\mathrm{c}\to\mathrm{H_{c}^{2}}}(z=p_{\mathrm{H_{c}^{2}}}/p_{\mathrm{c}},\mu_{\mathrm{F}})}$$

• Hint of increasing $D_c/(D^0+D^+)$ vs. p_T for $p_T < 8 \text{ GeV}/c$

- No significant p_{T} dependence for non-strange D-meson ratios
- The measured yield ratios do not depend significantly on collision energy

No energy dependence of charm quark **fragmentation functions** into pseudoscalar or vector D mesons, and on strange or non-strange D mesons

Charm fragmentation fraction ratio $f_s / (f_u + f_d)$

E IHEP12 (2023) 086

17/35

mfaggin@cern.ch

Charm-hadron production at different collision energies

ALICE |y| < 0.5

- Cross section ratio of D⁰, D⁺, D^{*+} and D⁺_s between $\sqrt{s} = 13$ TeV and $\sqrt{s} = 5.02$ TeV
- Increasing trend with p_{T} , and compatible values for different species
 - similar for Λ_c^+ and $\Xi_c^{0,+}$ baryons

Similar $p_{\rm T}$ -spectrum hardening from $\sqrt{s} = 5.02$ TeV to $\sqrt{s} = 13$ TeV for charm mesons and baryons

D-meson cross section ratio mid-y / forward-y

- Mid-y / forward-y ratio of prompt D⁰-meson cross section
- Compatible results among D-meson species
- Hint of increasing ratio vs. *p*_T with increasing rapidity separation between mid- and forward-*y*
 - softer p_{T} spectrum at forward-y

D⁰-meson double ratio (ρ)

€ ALICE: <u>IHEP12 (2023) 086</u>

- LHCb: <u>IHEP03(2016)159</u>
 LHCb: <u>IHEP09(2016)013</u>
 LHCb: <u>JHEP05(2017)074</u>
- Mid-y / forward-y ratio of prompt D⁰-meson cross section
- Compatible results among D-meson species
- Double ratio mid-y / forward-y && 13 TeV / 5.02 TeV of prompt D⁰-meson cross section

$$\rho = \left(\sigma_{\text{mid-}y}^{13 \text{ TeV}} \middle/ \sigma_{\text{forward-}y}^{13 \text{ TeV}} \right) \middle/ \left(\sigma_{\text{mid-}y}^{5.02 \text{ TeV}} \middle/ \sigma_{\text{forward-}y}^{5.02 \text{ TeV}} \right)$$

- ρ decreasing vs. $p_{\rm T}$ with increasing rapidity gap
 - different Bjorken-*x* tested (~ 10^{-6} - 10^{-4})
 - \circ harder p_{T} spectrum at lower energy
- FONLL calculations with <u>NNPDF30</u> PDFs
- Dominant uncertainties at low p_{T} : NNPDF30 PDFs
 - \circ measurement with X~2-3 smaller uncertainties
 - quantitative constraints on gluon PDF possible

Baryon-to-meson ratio at mid-*y*

- ALICE: <u>IHEP12 (2023) 086</u>
- LEP: <u>Eur. Phys. J. C (2015) 75:19</u>

- Extended measurement of Λ_c^+/D^0 (Ξ_c^+/D^0) baryon-to-meson ratio down to $p_T = 0$ (3) GeV/*c* at mid-*y* in pp at $\sqrt{s} = 13$ TeV
- No significant energy dependence from 5.02 TeV to 7 TeV and 13 TeV
 - Λ_c^+/D^0 in pp at the LHC larger than e^+e^- collisions, by a factor of ~5 at low p_T^-

baryon enhancement

mfaggin@cern.ch

Statistical approach

- Hadron formation driven by the mass $m_{\rm i}$ at a hadronization temperature $T_{\rm H}$
- Strong feed-down from an augmented set of excited charm baryon states
 - $\circ \qquad \text{PDG: 5 } \Lambda_{\text{c}}, \text{3} \Sigma_{\text{c}}, \text{8} \Xi_{\text{c}}, \text{2} \Omega_{\text{c}}$
 - RQM: additional (not yet measured) 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c
 - \rightarrow some discovered by LHCb

$n_{\rm i} [\times 10^{-4} {\rm fm}^{-3}]$ ($T_{\rm H} [{\rm MeV}]$)	Λ_{c}^{+}	Ξ _c ^{0,+}	$\Omega_c^{\ 0}$
PDG (170)	0.3310	0.0874	0.0064
RQM (170)	0.6613	0.1173	0.0144

mfaggin@cern.ch

Statistical approach

- Hadron formation driven by the mass m_i at a hadronization temperature $T_{\rm H}$
- Strong feed-down from an augmented set of excited charm baryon states
 - $\circ \qquad \text{PDG: 5 } \Lambda_c, 3 \Sigma_c, 8 \Xi_c, 2 \Omega_c$
 - RQM: additional (not yet measured) $18 \Lambda_c$, $42 \Sigma_c$, $62 \Xi_c$, $34 \Omega_c$
 - \rightarrow some discovered by LHCb

Total angular momentum degeneracy **2J** + **1** $n_i = \frac{d_i}{2\pi^2} m_i^2 T_{\rm H} K_2$

Quark Coalescence Mechanism (QCM)

Eur. Phys. J. C (2018) 78: 344

- Coalescence between a charm quark (perturbative), and equal-velocity light quarks from fragmentation (not perturbative)
- Thermal weights to account for relative production of scalar and vector mesons

Statistical approach + coalescence

$n_{i} [\times 10^{-4} \text{ fm}^{-3}] (T_{H} [\text{MeV}])$	Λ_{c}^{+}	Ξ _c ^{0,+}	$\Omega_c^{\ 0}$
PDG (170)	0.3310	0.0874	0.0064
RQM (170)	0.6613	0.1173	0.0144

Charm "baryonization" in pp collisions - different approaches (3/4)

Catania coalescence model

PLB 821, 136622

Thermalised system + fragmentation + coalescence

- Thermalised system of u, d, s and gluons
- Charm quark can hadronize either via fragmentation or coalescence with light quarks from the bulk
- Charm hadronization into ground and (PDG) excited states
 - Statistical "penalty" weight $[m_{H^*}/m_H]^{3/2} \times \exp(-\Delta E/T)$

Charm "baryonization" in pp collisions - different approaches (4/4)

Catania coalescence model

PLB 821, 136622

Thermalised system + fragmentation + coalescence

- Thermalised system of u, d, s and gluons
- Charm quark can hadronize either via fragmentation or coalescence with light quarks from the bulk
- Charm hadronization into ground and (PDG) excited states
 - Statistical "penalty" weight $[m_{H^*}/m_H]^{3/2} \times \exp(-\Delta E/T)$

POWLANG E https://arxiv.org/abs/2306.02152

- Small, deconfined and expanding fireball in pp collisions
- Charm quark subject to rescattering and hadronization
 - **charm recombination** with **light quarks**, as in heavy-ion collisions
 - presence of diquark excitations, promoting the formation of charm baryons

Thermalised system + coalescence

Measured Λ_{c}^{+}/D^{0} ratio vs. model predictions

mfaggin@cern.ch

27/35

ALI-PUB-567876

- Λ_c^+/D^0 ratio described within uncertainties by several models despite the different mechanisms assumed
- Λ_c^+/D^0 ratio underestimated by a factor ~5 at low p_T by PYTHIA 8 Monash
- Maximum at $p_{T} \sim 4 \text{ GeV}/c$ predicted by POWLANG not observed in data

$\Sigma_{c}^{0,+,++}$ production in pp collisions

- e^+e^- : Σ_c states suppressed by a factor ~3-4 with respect to Λ_c ones \rightarrow string model: penalty due to $m(ud)_0 > m(ud)_1$
- pp: $\Sigma_c^{0,+,++}/D^0$ underestimated by PYTHIA 8 Monash (larger discrepancy than for Λ_c^+/D^0), and described by other models \rightarrow no diquark penalty factor assumed
- $\Lambda_c^+ (\leftarrow \Sigma_c^{0,+,++}) / \Lambda_c^+$ ratio overestimated by CR-BLC

 \rightarrow parameter tuning? Inputs from excited c-baryon measurements?

mfaggin@cern.ch

28/35

$\Xi_{c}^{0,+}/D^{0}$ ratio vs. model predictions

ALI-PUB-567881

- $\Xi_c^{0,+}/D^0$ underestimated by all the models
- $D_s^+/(D^0+D^+)$ in line with e^+e^- results \rightarrow are baryons "strange"?
- $\Xi_c^{0,+}/\Sigma_c^{0,+,++}$ described by PYTHIA 8 Monash

Strangeness enhancement missing in CR-BLC \rightarrow can it play any role?

Similar suppression in e^+e^- due to similar diquark masses? $\rightarrow m(uu, ud, dd)_1 \approx m(us)_0$

Charm-quark fragmentation fractions $f(c \rightarrow h_c)$ in pp collisions

E <u>IHEP12 (2023)</u> 086 $\rightarrow h_{c})$ ALICE, pp |y| < 0.5• $\sqrt{s} = 13 \text{ TeV}$ ALICE <u>)</u> ■ √*s* = 5.02 TeV 0.8 • B factories, e^+e^- , $\sqrt{s} = 10.5 \text{ GeV}$ + LEP, e^+e^- , $\sqrt{s} = m_7$ 0.6 • HERA, ep, DIS • HERA, ep, photoproduction 0.4 0.2 ۲ 11 ٤ $\times 20$ Ω Λ_{c}^{+} D⁰ Ξ_{0}^{0} Ξ_{c}^{+} D^+ D_s^+ J/ψ $\Sigma^{0,+,++}$ $f(\mathbf{c} \to \mathbf{h}_{\mathbf{c}}) = \frac{\sigma(\mathbf{h}_{\mathbf{c}})|_{|y|<0.5}}{\sum_{i} \sigma(\mathbf{h}_{\mathbf{c}}^{i})|_{|y|<0.5}}$

Sum of prompt D⁰, D⁺, D_s⁺, Λ_c^{+} , $\Xi_c^{0,+}$, J/ ψ production cross sections

• $f(c \rightarrow \Lambda_c^+)$ larger than e^+e^- , e^-p by $\times \sim 3$

•
$$f(c \rightarrow D^0)$$
 lower than e^+e^- , e^-p by $\times \sim 1.5$

• No significant energy dependence in pp collisions

Baryon enhancement at the LHC

- Evidence of different fragmentation fractions at the LHC compared to e^+e^- (ep) collisions at lower \sqrt{s}
- Independent fragmentation picture not valid in color-rich systems

 p_{τ} -integrated charm-anticharm production cross section at mid-y in pp collisions at $\sqrt{s} = 5.02$ TeV, 13 TeV measured as the sum of prompt D⁰, D⁺, $D_{c}^{+}, \Lambda_{c}^{+}, \Xi_{c}^{0,+}, J/\psi$ cross sections

pp collisions at $\sqrt{s} = 5.02$ *TeV* $d\sigma^{c\overline{c}}/dy \Big|_{|y|<0.5}$ (μb) $d\sigma |^{pp,\sqrt{s}=5.02 \text{ TeV}}$ ALICE ALICE $= 1148 \pm 43 \text{ (stat.)}_{-65}^{+62} \text{ (syst.)}_{-36}^{+98} \text{ (extrap.)} \pm 43 \text{ (BR)} \pm 24 \text{ (lumi.)} \pm 41 \text{ (y)} \mu b.$ 10³ $\left. \mathrm{d}y \right|_{|y| < 0.5}$ ♦ PHENIX *pp collisions at* \sqrt{s} = 13 *TeV* 10² $d\sigma |^{pp,\sqrt{s}=13 \text{ TeV}}$ $= 2031 \pm 61 \text{ (stat.)}^{+135}_{-141} \text{ (syst.)}^{+196}_{-63} \text{ (extrap.)} \pm 97 \text{ (BR)} \pm 33 \text{ (lumi.)} \pm 73 \text{ (y)} \mu b.$ $\mathrm{d}y\,|_{|y|<0.5}$ FONLL

- Measurement on the upper edge of pQCD calculations
- Possible constraints to theoretical uncertainties

 10^{-1}

$c\bar{c}$ production at mid-y in pp collisions

10

Summary

<u>JHEP12 (2023) 086</u>

"Charm production and fragmentation fractions at midrapidity in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ "

Contents

- 1. Most precise and granular measurements of $p_{\rm T}$ -differential production cross section of prompt D⁰, D⁺, D⁺, D⁺, D⁺, mesons at mid-y in pp at \sqrt{s} = 13 TeV
- 2. Extended measurements down to lower p_T values of prompt Λ_c^+ and Ξ_c^+ -baryon production cross sections at mid-y in pp at $\sqrt{s} = 13$ TeV
- 3. Measurement of the $c\bar{c}$ production cross section and charm-quark fragmentation fractions at mid-y in pp at $\sqrt{s} = 13$ TeV
 - a. based on the sum of D⁰, D⁺, D_s⁺, Λ_c^+ , $\Xi_c^{0,+}$, J/ ψ cross sections
 - b. first measurement of Ξ_c^+ and $\Sigma_c^{0,+,++}$ fragmentation fractions at mid-*y* in pp collisions

Results

- 1. pQCD calculations based on factorization successfully describe the p_{T} -differential D-meson production
- 2. ALICE measurements precise enough to put constraints on theoretical uncertainties (e.g. gluon PDFs at $x \le 10^{-5}$)
- 3. Baryon enhancement
 - independent fragmentation violated
 - no model providing a satisfactory picture of all the measurements
 - \rightarrow limited predictive power

Open points - baryon-to-meson ratio vs. rapidity (1/2)

mfaggin@cern.ch

33/35

- No significant dependence vs. multiplicity of the p_{τ} -integrated Λ_c^+/D^0 ratio at mid-y across collision systems
- Model calculations do not catch either the magnitude or the multiplicity evolution
- $p_{\rm T}$ -integrated $\Lambda_{\rm c}^{+}/{\rm D}^0$ ratio at forward-y significantly lower than that at mid-y

Open points - baryon-to-meson ratio vs. multiplicity (2/2)

mfaggin@cern.ch 34/35

- No significant dependence vs. multiplicity of the p_{T} -integrated Λ_{c}^{+}/D^{0} ratio at mid-y across collision systems
- Model calculations do not catch either the magnitude or the multiplicity evolution
- $p_{\rm T}$ -integrated $\Lambda_{\rm c}^{+}/{\rm D}^0$ ratio at forward-y significantly lower than that at mid-y
- $p_{\rm T}$ -integrated $\Lambda_{\rm b}^{0}/{\rm B}^{0}$ ratio at forward-*y* significantly increasing with multiplicity

Outlook - the Run 3 era

- Continuous readout \rightarrow larger statistics than in Run 2 (~30 times more MB from 2022, ~500 times more for specific triggers)
- Improved pointing resolution due to the upgraded Inner Tracking System (ITS)
 - Better signal-to-background separation for heavy-flavour hadron signals

Thank you for your attention!

Heavy quarks: a unique probe for high-density QCD

- Charm and beauty quarks: $m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2$
- Produced in hard scattering processes among partons
- Ultrarelativistic heavy-ion collisions at the LHC: quark-gluon plasma (QGP)
 - $\circ~$ state of matter expected in the first $\sim 10~\mu s$ after the Big Bang
 - heavy quarks experience the full evolution of the system

Charm- and **beauty- quarks dynamic** tested via **measurements** of **charm-** and **beauty- hadron production**

- Test of pQCD calculations
 - heavy-quark production
 - hadronization
 - parton distribution functions (PDFs)

Hadronization

• **Hadronization**: the mechanism by which quarks and gluons produced in hard partonic scattering processes form the hadrons

• No first-principle description of hadron formation

- Non-perturbative problem, not calculable with QCD
- Necessary to resort to models and make use of phenomenological parameters

• Different mechanisms depending on the system size

- \circ e⁺e⁻, <u>pp collisions</u>: fragmentation
- heavy-ion collision (e.g. Au–Au, Pb–Pb): coalescence in the quark-gluon plasma (QGP)

Focus of the talk

Hadronization: string models

String fragmentation

(e.g. Lund model in PYTHIA)

Phys. Rept. 97 (1983) 31-145

κ: string tension

健 Eur. Phys. J. C 78 no. 11

Event generators: final stage of parton shower interfaced with non-perturbative hadronization models

Tunneling probability

 $u: d: s: c \simeq 1: 1: 1/3: 10^{-11}$

Strings: colour-flux tubes between q and qbar endpoints

Strings break via vacuum-tunneling of (di)quark-anti(di)quark

0000000000000000

സ്തന്തർ

Gluons: kinks along the string

mfaggin@cern.ch 40/35

charm mostly produced in the hard scattering

Cluster decay (HERWIG)

 $P(\text{string breaking}) \propto \exp\left(-\frac{\pi m_{T,q}^2}{\kappa}\right) = \exp\left(-\frac{\pi m_q^2}{\kappa}\right) \exp\left(-\frac{\pi p_{T,q}^2}{\kappa}\right)$

pairs

- Parton shower evolved up to a softer scale
- All gluons force to split in qqbar pairs
- Colour-singlet clusters of partons identified following the colour flow
- Cluster decays into hadrons according to the available phase space

€ <u>IHEP 08 (2015) 003</u>

- Initial state not insensitive to strong force (coloured partons, beam remnants)
- MPI \rightarrow crucial to explain underlying event

 q_2

CR within Leading Color

- CR allowed among partons from different MPIs to minimize string length
- Implemented in PYTHIA 8 Monash

mfaggin@cern.ch

41/35

The success of factorization and independent fragmentation (1/2)

pp, \s = 5.02 TeV

GM-VFNS, SACOT-m_T

35

30

 p_{τ} (GeV/c)

Prompt D^0 , |y| < 0.5

---- ALICE

20

25

2.1% lumi, ± 1.0% BR uncertainty not shown

15

10

- Factorization in terms of squared momentum transfer *Q*²: collinear factorization
- At LHC energies, calculations available in:

pp, \s = 5.02 TeV

Prompt D^0 , |y| < 0.5

FONLL

---- ALICE

2.1% lumi, ± 1.0% BR uncertainty not shown

15

20

25

30

• general-mass variable-flavour-number scheme (GM-VFNS) approach

d²σ/(d*p*₇d*y*) (μb GeV⁻¹

10

• fixed order plus next-to-leading logarithms (FONLL) approach

both having NLO accuracy with all-order resummation of next-to-leading logarithms

Measurements described by model predictions

→ Theoretical uncertainties: (i.) scale; (ii.) c-, b-quark mass; (iii.) PDFs

main source of theoretical uncertainty: scale for perturbative calculations

"At lower p_T values, where we can only rely on the fixed-order NLO QCD calculation, the scale dependence reaches values in the range of ~100 % in the case of the charm quark, and of ~50 % for the bottom quark."

Cacciari, Mangano, Nason: <u>Eur. Phys. J. C (2015) 75:610</u>

35

 10^{-}

10

d²σ/(dρ_Tdy) (μb GeV⁻¹

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

mfaggin@cern.ch

The success of factorization and independent fragmentation (2/2)

e+ PRD 97, 072005 (2018) 0.03 0.5 B (d) $\Sigma_{c}(2455)^{0}$ +c.c. \mathcal{B} (a) Λ_c +c.c. 0.45 0.025 w/o radiative •w/o radiative 0.4 correction correction 0.35 o w/ radiative 0.02 (qu) o w/ radiative (qu) correction 0.3 correction ^d 0.25 xp/ρ 0.2 ^dxp/op 0.01 **PYTHIA** PYTHIA default default tune tune 0.15 0.1 0.005 0.05 0 0 0.4 x_p 0.6 0.2 0.4 x_p 0.6 0.8 0.8 0 0.2 0

- Charm-hadron production in e^+e^- collisions described by PYTHIA
- Heavy-flavour meson-to-meson ratios in pp collisions:
 - \circ no significant $p_{\rm T}$ -dependence
 - described by models based on factorization and with fragmentation functions constrained from e⁺e⁻collisions
 - $\circ \quad \text{ compatible with results in } e^+e^- \text{ collisions }$

Bugs in our ears - baryon enhancement in pp collisions

- Significant baryon-to-meson ratio enhancement in pp compared to e⁺e⁻ collisions
- **PYTHIA** predictions and **pQCD**-based calculations based of factorization and fragmentation functions tuned on e⁺e⁻ underestimate the results in pp collisions

"**New" colour reconnection** (CR) model better describes the data

mfaggin@cern.ch

"Baryonization" in pp collisions - CR beyond leading color

E <u>IHEP 08 (2015) 003</u>

No CR

CR beyond Leading Color approximation (CR-BLC)

- "Simplified QCD" with 9 color indices to determine the string formation
- String length minimization over all possible configurations, even those beyond the Leading Color topology
 → PYTHIA 8 Monash: only CR among LC
- Enhanced leading color among MPIs and beam remnants

PYTHIA

- <u>Conditions for color reconnections</u>:
 - Invariant mass of string j-th must be above a threshold m_0 $C = m_{0i}/m_0 > 1$: enhanced reconnections
 - Causality: two strings must resolve each other between formation and hadronization, considering the time dilation due to the relative boost →Mode 0, 2, 3: different "severity" on this condition

Baryon-to-meson ratio for charm and beauty

p ∰→ → ∰ p mfaggin@cern.ch

- PYTHIA 8 Monash predictions underestimate the measured Λ_c^+/D^0 at midrapidity up to $\sim 5x$
- CR Mode 2 agrees with Λ_c^+/D^0 at |y| < 0.5

Figure from *"Hadronization mechanism (via heavy-flavor hadrons): Experiment"* A. Rossi, Hard Probes 2023 (<u>link</u>)

Beauty baryon-to-meson ratio at forward rapidity not well described

Charm production at mid-y in pp collisions at $\sqrt{s} = 13$ TeV (1/2)

mfaggin@cern.ch 47/35

E IHEP12 (2023) 086

PUBLISHED FOR SISSA BY D SPRINGER RECEIVED: September 8, 2023

ACCEPTED: November 21, 2023 PUBLISHED: December 13, 2023

Charm production and fragmentation fractions at midrapidity in pp collisions at $\sqrt{s} = 13 \text{ TeV}$

E-mail: ALICE-publications@cern.ch

ABSTRACT: Measurements of the production cross sections of prompt D⁰, D⁺, D^{*+}, D⁺, Λ_{+}^{+} , and Ξ_{+}^{+} charm hadrons at midrapidity in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum $(p_{\rm T})$ are provided with improved precision and granularity. The ratios of $p_{\rm T}$ -differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Biorken-x $(10^{-5}-10^{-4})$. The measurements of $\Lambda_{\tau}^{+}(\Xi_{\tau}^{+})$ baryon production extend the measured p_{T} intervals down to $p_{T} = 0(3) \text{ GeV}/c$. These measurements are used to determine the charm-quark fragmentation fractions and the $c\bar{c}$ production cross section at midrapidity (|y| < 0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D^0 , D^+ , D^+_* , Λ^+_c , Ξ^0_c and, for the first time, Ξ_c^+ , and of the strongly-decaying J/ψ mesons. The first measurements of Ξ_{+}^{+} and $\Sigma_{-}^{0,++}$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e⁺e⁻ and ep collisions. The $c\bar{c}$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.

KEYWORDS: Hadron-Hadron Scattering , Heavy Quark Production, QCD

Contents

- Most precise and granular measurements of $p_{\rm T}\text{-}{\rm differential\ cross}$ 1. section of prompt D⁰, D⁺, D^{*+}, D⁺ mesons at mid-y in pp at \sqrt{s} = 13 TeV
- 2. Extended measurements down to lower $p_{\rm T}$ values of prompt Λ_c^{+} - and Ξ_s^+ -baryon cross sections at mid-*y* in pp at $\sqrt{s} = 13$ TeV
- 3. Measurement of the ccbar cross section and charm-quark fragmentation fractions at mid-y in pp at $\sqrt{s} = 13$ TeV
 - based on the sum of D⁰, D⁺, D_c⁺, Λ_c^+ , $\Xi_c^{0,+}$, J/ ψ cross sections a.
 - first measurement of Ξ_c^+ and $\Sigma_c^{0,+,++}$ fragmentation fractions at b. mid-*y* in pp collisions

Goals

N

N

- 1. Overview of charm-hadron production measurements with ALICE at mid-*y* in pp collisions
- 2. Provide new inputs to:
 - test the validity of the fragmentation approach and independent a. fragmentation
 - constrain gluon PDF at low Bjorken-x b.
 - study further the baryon enhancement at the LHC C.

ARXIV EPRINT: 2308.04877

Charm production at mid-*y* in pp collisions at $\sqrt{s} = 13$ TeV (2/2)

Ы

N

The ALICE collaboration

E-mail: ALICE-publications@cern.ch

ABSTRACT: Measurements of the production cross sections of prompt D⁰, D⁺, D^{*+}, D⁺, Λ_{+}^{+} , and Ξ_{+}^{+} charm hadrons at midrapidity in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$ with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum $(p_{\rm T})$ are provided with improved precision and granularity. The ratios of $p_{\rm T}$ -differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x $(10^{-5}-10^{-4})$. The measurements of $\Lambda_{\tau}^{+}(\Xi_{\tau}^{+})$ baryon production extend the measured p_{T} intervals down to $p_{T} = 0(3) \text{ GeV}/c$. These measurements are used to determine the charm-quark fragmentation fractions and the $c\bar{c}$ production cross section at midrapidity (|y| < 0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D^0 , D^+ , D^+_* , Λ^+_c , Ξ^0_c and, for the first time, Ξ_c^+ , and of the strongly-decaying J/ψ mesons. The first measurements of Ξ_{+}^{+} and $\Sigma_{-}^{0,++}$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e⁺e⁻ and ep collisions. The $c\bar{c}$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.

KEYWORDS: Hadron-Hadron Scattering , Heavy Quark Production, QCD

1. Most precise and granular measurements of $p_{\rm T}$ -differential cross section of prompt D⁰, D⁺, D⁺, D⁺, mesons at mid-*y* in pp at \sqrt{s} = 13 TeV

Cacciari, Mangano, Nason: Eur. Phys. J. C (2015) 75:610

mfaggin@cern.ch

48/35

- *Double-ratio in rapidity and energy*: scale and mass uncertainties reduced → *PDF uncertainties dominant*
- Low ($\leq 10^{-5}$) and high ($\geq 10^{-2}$) Bjorken-*x* regime accessible with measurements at low p_T and $p_T \geq 30$ GeV/*c*, respectively

The

ratios of $p_{\rm T}$ -differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x (10⁻⁵-10⁻⁴).

Charm-hadron reconstruction (1/3)

1. Track selections

- ITS-TPC matched tracks \rightarrow isolation of <u>primaries</u> (<u>ALICE-PUBLIC-2017-005</u>)
- particle identification (PID) in **TPC (***dE***/***dx***)** and **TOF (time-of-flight)**

mfaggin@cern.ch

49/35

Charm-hadron reconstruction (2/3)

1. Track selections

- ITS-TPC matched tracks \rightarrow isolation of <u>primaries</u> (<u>ALICE-PUBLIC-2017-005</u>)
- particle identification (PID) in **TPC (***dE***/***dx***)** and **TOF (time-of-flight)**

2. Secondary-vertex reconstruction

- $\circ \qquad D^0 \, decay-point \, reconstruction$
 - \rightarrow separate from primary vertex (PV)
 - \rightarrow pointing resolution to PV ~ 75 µm @ $p_{\rm T}$ = 1 GeV/c
- Calculation of topological variables
 - \rightarrow *intrinsic displacement* ($c\tau$ (D⁰) ~ 123 µm)

 $D^0 \longrightarrow K^- \pi^+$

Charm-hadron reconstruction (3/3)

1. Track selections

- ITS-TPC matched tracks →isolation of *primaries* (ALICE-PUBLIC-2017-005)
- particle identification (PID) in **TPC (***dE***/***dx***)** and **TOF (***time-of-flight***)**

2. Secondary-vertex reconstruction

- \circ D⁰ decay-point reconstruction
 - \rightarrow separate from primary vertex (PV)
 - \rightarrow pointing resolution to PV ~ 75 µm @ $p_{\rm T}$ = 1 GeV/c
- Calculation of topological variables
 - \rightarrow *intrinsic displacement* ($c\tau$ (D⁰) ~ 123 µm)

3. Topological selections

- Separate signal from background candidates exploiting topological variables
 - \rightarrow BDT exploited in some analyses
- Measure the reconstructed signal with an invariant-mass analysis

$$\frac{\mathrm{d}\sigma^{\mathrm{H}}}{\mathrm{d}p_{\mathrm{T}}}\Big|_{|y|<0.5} = \frac{1}{2} \frac{1}{\Delta p_{\mathrm{T}}} \times \frac{f_{\mathrm{prompt}} \times N_{|y|$$

mfaggin@cern.ch

51/35

Charm-hadron cross section measurement

- 1. Reconstructed signal
 - from invariant-mass analysis (previous slide)
- 2. Acceptance \times efficiency for prompt signal
 - PYTHIA 8 simulations
- 3. Fraction of prompt reconstructed signal
 - $\circ \qquad \text{b-quark production from FONLL}$
 - b-hadron production with fragmentation fractions from LEP for b→B mesons [1] and from LHCb for b→ $\Lambda_{\rm h}^{-0}$ [2]
 - b-hadron decay kinematics with PYTHIA 8
- 4. Branching ratio
- 5. Integrated luminosity

 $\circ \quad \mathcal{L}_{\rm int} \sim 32 \; \rm nb^{-1}$

[1] <u>Phys. Rev. D 100 (2019) 031102</u>
 [2] <u>Eur. Phys. J. C 75 (2015) 19</u>

mfaggin@cern.ch

D⁰-meson double ratio (ρ)

€ ALICE: <u>IHEP12 (2023) 086</u>

- LHCb: <u>JHEP03(2016)159</u>
 LHCb: <u>JHEP09(2016)013</u>
 LHCb: <u>JHEP05(2017)074</u>
- Ratio mid-y / forward-y of prompt D⁰-meson cross section
- Compatible results among D-meson species
- Double ratio mid-y / forward-y && 13 TeV/ 5.02 TeV of prompt D⁰-meson cross section

 ρ decreasing vs. $p_{\rm T}$ with increasing rapidity gap

- different Bjorken-*x* tested (~ 10^{-6} - 10^{-4})
- harder p_{T} spectrum at lower energy
- FONLL calculations with <u>CTEQ6.6</u> and <u>NNPDF30</u> PDFs
- Dominant uncertainties at low p_{T} : NNPDF30 PDFs
 - \circ measurement with X~2-3 smaller uncertainties
 - quantitative constraints on gluon PDF possible

Charm "baryonization" in pp collisions - different approaches

mfaggin@cern.ch

 $m_{\Lambda_{\rm b}^0\pi\pi}$

[GeV]

mfaggin@cern.ch 55/35 ALI

Statistical approach

 $\Xi_{c}^{0,+}$

0.0874

0.1173

 Ω_c^0

0.0064

0.0144

- Hadron formation driven by the mass m_{i} at a hadronization temperature T_{H}
- Strong feed-down from an augmented set of excited charm baryon states
 - $\circ \qquad \text{PDG: 5 } \Lambda_{c'} \text{ 3 } \Sigma_{c'} \text{ 8 } \Xi_{c'} \text{ 2 } \Omega_{c}$
 - RQM: additional (not yet measured) 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c

Quark Coalescence Mechanism (QCM)

Eur. Phys. J. C (2018) 78: 344

- Low *p*_T charm hadrons conceived as coalescence between a charm quark (perturbative), with light quarks from fragmentation (not perturbative)
- Co-moving approximation: charm quark coalesces with an equal-velocity light quark (quark pair) to produce a meson (baryon)
- **Thermal weights** to account for **relative production** of scalar and vector mesons

Statistical approach + coalescence

 Λ_{c}^{+}

0.3310

0.6613

 $n_{\rm i}$ [X10⁻⁴ fm⁻³]

(*T*_н [MeV])

PDG (170)

RQM (170)

Charm "baryonization" in pp collisions - different approaches (4/4)

Catania coalescence model

PLB 821, 136622

Thermalised system + fragmentation + coalescence

- Thermalised system of u, d, s and gluons
- Charm quark can hadronize either via **fragmentation** or **coalescence** with light quarks from the bulk
- Charm hadronization into ground and (PDG) excited states
 - \circ The latter ones increase the abundance of the former ones
 - Statistical "penalty" weight $[m_{H^*}/m_H]^{3/2} \times \exp(-\Delta E/T)$

POWLANG In https://arxiv.org/abs/2306.02152

Thermalised system + coalescence

- Small, deconfined and expanding fireball in pp collisions
- Charm quark subject to rescattering and hadronization
 - local color neutralization
 - \rightarrow ~ charm recombining with light quarks from the system
 - \rightarrow same processes as in heavy-ion collisions
 - \circ presence of diquark excitations, promoting the formation of charm baryons
- Predictions employing transport coefficients calculated by weak-coupling (Hard-Thermal-Loop, HTL) and the most recent lattice-QCD (lQCD) calculations

$\Lambda_{c}^{+}(\leftarrow \Sigma_{c}^{0,+,++})$ production in pp collisions at the LHC

• Fraction of prompt Λ_c^+ production from $\Sigma_c^{0,+,++}$ decays at midrapidity in pp collisions at $\sqrt{s} = 13$ TeV at the LHC:

 $(2 \le p_{\rm T} < 12 \text{ GeV}/c) \quad 0.38 \pm 0.06 \pm 0.06$

• ~2 times larger than $e^+e^- \rightarrow$ relative increase of $\Sigma_c^{0,+,++}$

 $\Lambda_c^+(\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ ratio overestimated by CR-BLC

- * * * * * * * *
- Default parameter tunes not fully describing the inclusive prompt Λ_c^+ production?
- New: c-diquark role crucial in CR_BLC modes. Re-tuning needed?
- Inputs from production measurements of excited c-baryons? (e.g. $\Lambda_c^+(2595)$, $\Lambda_c^+(2625)$, $\Lambda_c^+(2880)$, $\Lambda_c^+(2940)$)

1 1 1 1 1 1 1

$c\bar{c}$ production at mid-y in pp collisions

Charm-anticharm production cross section at midrapidity in pp collisions at \sqrt{s} = 5.02 TeV, 13 TeV measured as the sum of prompt D⁰, D⁺, D⁺, Λ_c^+ , $\Xi_c^{0,+}$, J/ψ cross sections

pp collisions at \sqrt{s} = 13 *TeV*

 $d\sigma |^{pp,\sqrt{s}=13 \text{ TeV}}$ $= 2031 \pm 61 \text{ (stat.)}_{-141}^{+135} \text{ (syst.)}_{-63}^{+196} \text{ (extrap.)} \pm 97 \text{ (BR)} \pm 33 \text{ (lumi.)} \pm 73 \text{ (y)} \mu b.$ $\mathrm{d}y\,|_{|y|<0.5}$

- Measurement on the upper edge of pQCD calculations
- Possible constraints to theoretical uncertainties

mfaggin@cern.ch

59/35