The charm and the beauty associated with the EWK gauge bosons

Camilla Vittori

camilla.vittori@cern.ch

on behalf of the ATLAS Collaboration

CERN Seminar 30 April 2024

V + jets at hadron collider

Standard Model Production Cross Section Measurements

Camilla Vittori

Status: October 2023

V(=W/Z) + jets production has the largest cross-section after multijet and inclusive V-boson production

◆ At LHC, 1/3 of W/Z production is in association with a jet ($p_T > 30 \text{ GeV}$)

V + HF jets at hadron collider

Heavy-Flavour (HF) jets = jets originating from the hadronisation of *c*- and *b*-quarks

Perform perturbative-QCD (pQCD) studies at a wide kinematic range and jet multiplicities

Increase our understanding of Parton **Distribution Functions (PDFs)**

Improve background modelling in Monte Carlo (MC) simulation in New Physics (NP) searches

High-order QCD calculations

- State of the art MC generators with matrix-element (ME) calculations at NLO in QCD, interfaced with parton-shower (PS) for the description of the soft QCD emissions
 - MADGRAPH + PYTHIA (MGAMC@NLO + PY8 with FXFX merging) up to 3 partons in NLO ME
 - SHERPA 2.2.11 up to 2 partons in NLO ME + 3,4,5 jets at LO
- Fixed-order theoretical predictions available up to NNLO in QCD

Effect of missing higher order terms not negligible

- Ambiguity in the algorithm used to identify the jet-flavour In the measurements the definition of the jet-flavour is not infrared and
 - collinear (IRC) safe
 - direct comparison with theoretical predictions not possible
 - add corrections which affect the precision of the results

The complexity of V+HF processes requires calculations with high order precision in QCD

Phys. Rev. Lett. 130 (2023) 161901

Flavour Schemes

related to the treatment of the *c*- and *b*-quark masses

Example for *Z* + *b*-jets:

- \rightarrow 4FS: massive b-quarks \rightarrow b-quarks do not contribute to proton wave functions • b-quarks can only be generated in the hard scattering by gluon splitting $(g \rightarrow bb)$ b-quarks do not enter in pQCD calculations and PDF evolution
 - $ln(Q^2/m_h^2)$ terms appear at any order in pQCD
 - suitable for kinematic region with energy scale
- 5FS: massless b-quarks \rightarrow b-quark density is allowed in the initial state via a b-quark PDF • $ln(Q^2/m_h^2)$ terms affect the convergence of the perturbative expansion $(m_h \rightarrow 0)$ • resummation of $\alpha_s ln(Q^2/m_h^2)$ to all orders in α_s into b-quark PDF with DGLAP evolution

 - suitable for kinematic region with $Q^2 >> m_h^2$

The ambiguity between the FSs is expected to reduce including higher oder pQCD corrections Source of the process of the process.

Different theoretical approximations - Flavour Schemes (FS) - in the ME of the calculations

$$Q^2 \sim m_b^2$$

PDFs

Precise measurements allow to constrain PDF uncertainties

Unique access to s-, c- and b-quark PDFs in proton

W + c production sensitive to s-quark PDF in the proton

- It allows to study the s-quark asymmetry at the initial scale in PDF evolution
 - \diamond At NNLO in QCD, $s \bar{s}$ asymmetry appears as intrinsic property of the DGLAP evolution
 - \diamond Various PDF fits assume different hypotheses on the $s \bar{s}$ asymmetry at the initial state: • NNPDF: $s \neq \overline{s}$ coming from independent fit of s and \overline{s}
- - CT18: $s = \overline{s}$ at low scale

 \rightarrow Precise measurements allow to test the $s - \bar{s}$ at the analysed Bjorken-x regions

- + V + HF data probe proton PDFs at medium and high x-Bjorken and momentum transfer (Q^2)

PDFs

Z + c production sensitive to c-quark PDF in the proton

- It allows to explore the sensitivity to Intrinsic-Charm (IC) component in the proton
 - Hypothesis of *IC*-existence postulated 40 years ago
 - c-quarks pairs not only generated perturbatively by gluon splitting (short-time scale), contribute to the proton structure
 - \bullet IC assumed to exist over a timescale independent of any probed Q^2 c-quarks pairs are considered as part of the proton wave function at rest

 - A = Z + c is expected to enhance IC-sensitivity at high Bjorken-x (>0.1): larger production of hard c-jets in the forward region
- \rightarrow Open research field since *IC* has never been observed experimentally!

IC:
$$\psi_p = |uudc\bar{c}\rangle$$

not only via $g \rightarrow c\bar{c}$

V + HF jets as background for other processes

◆ Example $VH(\rightarrow bb, c\bar{c})$:

♦ V+HF jets dominant background

- jet multiplicity and kinematics used to distinguish the signal from V+HF jets background processes
- ♦ V+HF jets modelling limiting factor

Camilla Vittori

Are high precision measurements possible?

- \diamond Performing high precision measurements of V+HF QCD production is challenging... • final state selection strongly relies on the reconstruction of b- and c-quarks poor modelling description by MC generators
- ...but possible
 - typically 5-10% precision in cross-sections and down to percent level in normalised cross-sections

Need for:

Precise calibrations for electrons, muons, MET, jets and flavour tagging

MC generators with precise modelling for large jet multiplicities, gluon splitting

Heavy flavours tagging

Inclusive tagging

Using jet reconstruction and flavour tagging (FTAG) algorithms

- × Rely on jet reconstruction, FTAG and the related uncertainties
- Large selection efficiency for b-jets and c-jets
- X The information on the quark charge is lost
- Measurements can be used in PDF fits

Exclusive tagging

Using specific heavy hadrons decays (e.g. $D \rightarrow \mu X$ or $D \rightarrow K \pi \pi$)

- ✓ No (less) need for jet reconstruction and FTAG
- X Low selection efficiency
- Very reliable determination of the quark charge
- Measurements with high precisions, requires to include Fragmentation Functions

Two recents results from the **ATLAS** experiment are presented:

★W production in association with charmed-hadron

Phys. Rev. D 108 (2023) 032012

 $\star Z$ production in association with 1 or 2 *b*-jets and with *c*-jets Submitted to EPJC, arXiv:2403.15093

performed with data from *pp* collisions at $\sqrt{s} = 13 \text{ TeV}, \mathcal{L} = 140 \text{ fb}^{-1}$

CERN Seminar

11

The ATLAS Detector

Run-2 with largest dataset available for physics

$\mathcal{L} = 140 \text{ fb}^{-1} \text{ at } \sqrt{\text{s}} = 13 \text{ TeV}$

W+charmed hadron

Introduction

Measurements of the W boson production in association with charmed hadrons

◆ Dominant *W*+*c* production mode at LO from: $gs \rightarrow W^-c$ unique sensitivity to s-quark PDF crucial measurement for constraining the PDF uncertainties \rightarrow constrain $s - \bar{s}$ asymmetry

+ Reconstruct the c-quark exploiting the charmed-hadron decays:

$$D^+ \to K^- \pi^+ \pi^+$$
$$D^{*+} \to D^0 \pi^+ \to (K^- \pi^+) \pi^+$$

★Integrated cross-section $\sigma(W+D)$ **★Normalised differential cross-sections** in bins of D-meson p_T and lepton η $R_{c} = \sigma(W^{+} + D^{-})/\sigma(W^{-} + D^{+})$ **Cross-section ratio**

op collisions at $\sqrt{s} = 13$ TeV $\mathcal{L} = 140 \text{ fb}^{-1}$

Phys. Rev. D 108 (2023) 032012

Camilla Vittori

★<u>Main challenges:</u>

- correctly reconstruct D-meson decays
- estimate background from mis-reconstructed D^+ and D^* , $t\bar{t}$ and multijet

Analysis strategy

- Backgrounds are mostly charge-symmetric same contribution of opposite-signed and same-signed (SS) W+D
 - in the proton

Camilla Vittori

Signal signature with opposite-signed (OS) W and D-meson

• Example: $W + c\bar{c}/b\bar{b}$ where the *D*-meson is not connected to the *s*-quark

Exploit OS-SS strategy to reduce the background contribution

Dataset and event selection

Dataset:

- full Run-2 data, $L = 140 \text{ fb}^{-1}$
- Monte Carlo samples:
 - NLO ME+PS state-of-the art generators with high parton-multiplicity in ME (SHERPA 2.2.11 and MGAMC@NLO + PY8 with different setups)

veto on *b*-jets to reduce $t\bar{t}$ bac

Reconstruction of I

with E_T^{miss} and m_T cuts to reduce multijet bac

Reconstruction of *D***-meso**

1000

	Detector-level selection		
	Requirement	$W+D^{(*)}$ SR	Top CR
kground	N(b-jet)	0	≥ 1
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 30 C	GeV
W decay	m_{T}	> 60 GeV	
ckground	Lepton $p_{\rm T}$	> 30 C	GeV
U	Lepton $ \eta $	< 2.	5
	$N(D^{(*)})$	≥ 1	
n decay	$D^{(*)} p_{\mathrm{T}}$	> 8 GeV and	< 150 GeV
	$D^{(*)} \left \eta ight $	< 2.	2

Exclusive D-meson decay reconstruction

Identify events with c-quarks by reconstructing the charmed-hadron decays $D^+ \rightarrow K^- \pi^+ \pi^+$ and $D^{*+} \rightarrow (K^- \pi^+) \pi^+$

- Tracks from the Inner Detector are used

+ several SV-based requirements to distinguish signal from background • Example: N_{tracks}, charge of tracks, flight-length L_{xy}, d₀, etc D⁺ meson + Candidates K/π are assigned based on the charge \boldsymbol{y} of the track $\bullet D^+$: N_{tracks} = 3, 2 tracks with same charge assigned to π and the other to K $ec{p}_T(D^{\pm})$ $\rightarrow D^0$: N_{tracks} = 2, matching with prompt π from D^{*+} decay Secondary vertex \checkmark_{K} \bullet Tracks from the $D^+(D^0)$ candidates are inputs to (SV) Kalman-Filter algorithm which fits tracks to SV Primary vertex

 \boldsymbol{x}

Signal and background modelling

♦ <u>W+D(*):</u>

MC truth information is used to categorise W+D(*) events according to the origin of the tracks used to reconstruct **D(*) decays** (track-based truth matching):

- W+D(*) signal = all tracks belong to a D-meson decaying $K^{-}\pi^{+}\pi^{+}$
- W+c (match) = tracks belong to different decays modes of D*meson* or to different charmed-hadrons ($D_s^+ \rightarrow K^+ K^- \pi^+$ or $D^+ \rightarrow K^+ K^- \pi^+$)
- W+c (mis-match) = not all tracks truth-matched to a D-meson
- W+jets: no tracks are matched to a truth D-meson
- Additional background from:
 - \bullet Top ($t\bar{t}$, single-top and $t\bar{t}X$) constrained in control region (CR) with \geq 1 b-jet
 - Other: diboson, Z+jets
 - Multijet determined from data in enriched CR

MC samples are used to model signal and background mass templates (except for multijet)

Likelihood fit unfolding

Cross sections are extracted with likelihood fits at particle level

• Differential cross-sections are measured in $p_T(D)$ and $|\eta(lep)|$ bins

- OS and SS regions fitted simultaneously
- \bullet To measure R_c, W⁺ and W⁻ regions fitted at the same time
 - \rightarrow 10 Parameters of Interest (POIs) in the fit
- Systematics implemented as Nuisance Parameters (NPs) in the likelihood fit

	1	D ⁺ channel			O*+ channel	
Uncertainty [%]	$\left \sigma_{\rm fid}^{\rm OS-SS}(W^-+D^+) \right $	$\sigma_{\rm fid}^{\rm OS-SS}(W^+\!\!+\!D^-)$	$R_c^{\pm}(D^+)$	$\sigma_{\rm fid}^{\rm OS-SS}(W^-+D^{*+})$	$\sigma_{\rm fid}^{\rm OS-SS}(W^+\!\!+\!D^{*-})$	$R_c^{\pm}(D^{*+})$
SV reconstruction	3.0	2.9	0.5	2.3	2.3	0.4
Jets and $E_{\rm T}^{\rm miss}$	1.7	1.9	0.2	1.5	1.5	0.4
Luminosity	0.8	0.8	0.0	0.8	0.8	0.0
Muon reconstruction	0.6	0.7	0.3	0.7	0.7	0.3
Electron reconstruction	0.2	0.2	0.0	0.2	0.2	0.0
Multijet background	0.2	0.2	0.1	0.1	0.1	0.1
Signal modeling	2.1	2.1	0.1	1.2	1.2	0.0
Signal branching ratio	1.6	1.6	0.0	1.1	1.1	0.0
Background modeling	1.1	1.2	0.3	1.3	1.3	0.5
Finite size of MC samples	1.2	1.2	1.1	1.4	1.4	1.3
Data statistical uncertainty	0.5	0.5	0.7	0.7	0.7	1.0
Total	4.6	4.6	1.4	3.7	3.7	1.7

Camilla Vittori

- Precision on inclusive cross section ~5%
- Precision on R_c ~1% for cancellation of correlated systematics in W⁺ and W⁻

Inclusive cross-section results

Results in good agreement with predictions from different PDF sets

- and smaller than total theoretical uncertainty (grey)
- High-precision measurements can constrain theoretical predictions

Experimental precision (~5% syst-dominated) is comparable to the PDF uncertainties (black)

Cross-section ratio results

- $+ R_c$ with experimental precision ~1%, comparable contribution from statistical and systematic uncertainties
- PDFs imposing symmetric strange-sea $(s = \overline{s})$ have smaller uncertainties: i.e. CT18, AMBP16 and ATLASpdf21_T3
- \diamond predictions with $s \bar{s}$ asymmetry at the initial scale largely dominated by PDF uncertainty
 - \Rightarrow s s asymmetry small in the Bjorken-x region probed by this measurement

 \rightarrow Uncertainty on R_c smaller than PDF uncertainties without $s = \overline{s}$ asymmetry

 $R_{c} = \sigma(W^{+} + D^{-}) / \sigma(W^{-} + D^{+})$

Differential cross-section results

 \diamond All predictions have similar $p_T(D)$ shape, not sensitive to PDFs • n(lep) has smaller systematics and good sensitivity to PDF variations + broader |η(lep)| in data than predictions - discrepancy covered by PDF uncertainties → measurements provide useful constraints for global PDF fits

Comparison with several PDF sets

\diamond The compatibility between measurements and predictions is tested with a χ^2 test

Adding the PDF uncertainty largely increase the p-value

Channel				
<i>p</i> -value for PDF [%]	Exp. Only	QCD Scale	\oplus Had. and Matching	⊕ PDF
ABMP16_5_nnlo	7.1	11.8	12.9	19.8
ATLASpdf21_T3	9.0	9.7	11.5	84.7
CT18ANNLO	0.7	1.0	1.1	76.0
CT18NNLO	1.4	6.1	6.3	87.6
MSHT20nnlo_as118	2.7	2.9	3.3	45.6
PDF4LHC21_40	3.9	5.3	5.6	75.8
NNPDF31_nnlo_as_0118_hessian	1.5	2.6	2.8	50.7
NNPDF31_nnlo_as_0118_strange	9.1	14.7	15.2	59.9
NNPDF40_nnlo_as_01180_hessian	9.9	10.2	10.2	43.7

+ PDF uncertainty has significant impact on the shape of $\eta(lep)$ differential measurements This measurement can provide useful constraints on PDF uncertainties in a global PDF fit

Inclusive and differential cross-sections of *Z*+≥1 *b*-jet, *Z*+≥2 *b*-jets and *Z*+≥1 *c*-jet

 $\star Z \rightarrow 1$ b-jet and $Z \rightarrow 2$ b-jets: update 36 fb⁻¹ results with larger statistics, new flavour-tagging algorithm and optimised strategy for main background

★<u>Z+≥1 *c*-jet:</u> first time in ATLAS!

Test effect of missing higher-order terms in QCD

- Investigate different Flavour-Schemes in predictions
- Explore possible sensitivity to Intrinsic-Charm

pp collisions at $\sqrt{s} = 13$ TeV

 $\mathcal{L} = 140 \text{ fb}^{-1}$

- data-driven tt in dedicated CR
- Z+jets from fit to data ("*flavour-fit*")
- other minor backgrounds from MC samples

correction for resolution and efficiency effects with Bayesian unfolding

Cross-section measurements

Comparison with theoretical predictions

★Main challenge:

correctly reconstruct the flavour of the jet

- dedicated categorisation of the events at both reconstructed and particle level
- fit to data ("flavour fit") to correct shape and normalisation of measured observables

Dataset and event selection

Dataset:

- full Run-2 data, $L = 140 \text{ fb}^{-1}$
- Monte Carlo samples:
 - NLO ME+PS state-of-the art generators with high parton-multiplicity in ME (MGAMC@NLO + PY8 with FxFx merging and SHERPA 2.2.11)

Event selection:

- Define 2 Signal Regions (SR) based on the number of flavour-tagged jets: **1-tag:** $Z \rightarrow 1$ *b*-jet and $Z \rightarrow 1$ *c*-jet measurements
 - **2-tag:** *Z*+≥2 *b*-jets measurement

2 good leptons: $e^+e^- \mu^+\mu^$ with $p_T > 27$ GeV, $|\eta| < 2.5$ $76 \text{ GeV} < m_{\parallel} < 106 \text{ GeV}$ \geq 1 good jet with p_T>20 GeV, |y|<2.5 flavour-tagging DL1r @ 85%

Inclusive flavour-tagging

Eur. Phys. J. C 83 (2023) 681

Flavour of the jets determined with DL1r @ 85% algorithm

 high level algorithm operating on outputs from intermediate track and vertex algorithms

+ based on b-hadron decay signature: displaced tracks, secondary vertex, high-track multiplicity, longitudinal impact parameter, semi-leptonic decays

$$D_{\text{DL1r}} = \ln(\frac{p_b}{f_c \cdot p_c + (1 - f_c \cdot p_{light})})$$

 DL1r discriminant calculated from pb, pc and plight which are the *b*-, *c*- and light-jet probabilities

Inclusive flavour-tagging

Different selections (working-points WP) are provided based on DL1r values: ♦ 60%, 70%, 77% and 85% efficiency WPs 5 exclusive bins, with calibrated b-tagging and c/light-jet mis-tagging efficiency

Eur. Phys. J. C 83 (2023) 681

Eur. Phys. J. C 79 (2019) 970

6	DL1				
сb	Selection	Rejection			
	Selection	<i>c</i> -jet	au-jet	Light-flavour jet	
60%	> 2.74	27	220	1300	
70%	> 2.02	9.4	43	390	
77%	> 1.45	4.9	14	130	
85%	> 0.46	2.6	3.9	29	

DL1r @ 85% WP retains 85% b-jets and (1/2.6=) 38% c-jets

Data-driven tt background

 \bullet Dileptonic $t\bar{t}$ events represent the second largest background

Method of the Transfer Factors

- opposite flavour e CR enhanced with $t\bar{t}$ events (>90%)
- tt template ttbar^{CR}_{Data}: by subtracting from data all MC in CR
- *tt* normalisation in SR: by multiplying for Transfer Factors (TFs) obtained from MC

$$t\bar{t}^{SR} = t\bar{t}^{CR}_{Data} \cdot TR^{CR \to SR}$$

$$TF^{CR \to SR} = \frac{t\bar{t}_{MC}^{SR (ee/\mu\mu)}}{t\bar{t}_{MC}^{CR (e\mu)}} \bullet Strong reduces 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions of the strong reduces 0.5 \text{ Strong reduces 0.5 CR} \bullet CR \to SR extractions 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions 0.5 \text{ Strong reduces 0.5 CR} \bullet SR extractions 0.5 \text{ Strong reduce$$

Camilla Vittori

- Using data-driven technique to avoid large modelling uncertainties (up to $\sim 70\%$ at high $Z p_T$)

- <u>S:</u>
- uction of detector-level systematics propagated through TFs xtrapolation uncertainty
- **CERN** Seminar

Z+jets background and flavour fit

 \star Z+jet process with jet-flavour different from the one measured is the largest source of background

1-tag SR

Analysis	<i>Z</i> +≥1 <i>b</i> -jet
<i>Z</i> +jets bkg	Z+c, Z+l

Correct Z+jets flavour components and constrain systematics with flavour-fit

Maximum-likelihood fit to data based on flavour sensitive distribution

Example for 1-tag SR:

- Fit of flavour-tagging score (DL1r) in calibrated bins
- 3 free parameters corresponding to Z+≥1 b-jet, Z+≥1 c-jet and *Z*+≥light jets normalisation

Z+jets background and Flavour Fit

Fit performed in individual (optimised) bins of each measured observable

Bin-by-bin scale factors allow to correct both **normalisation** and **shape** of *Z*+flavoured-jets contributions

Systematics:

- Detector-level systematics affect Z+jets templates repeat flavour fit
- uncertainty on Z+jets background yields from comparison of two MCs

From detector to particle level

 $Z+\geq 1$ b-jet, $Z+\geq 1$ c-jet and $Z+\geq 2$ b-jets cross sections measured at particle level in fiducial phase space

Object Selection	Acceptance cuts
Lepton <i>b-</i> jet <i>c-</i> jet	$ \begin{vmatrix} p_{\rm T} > 27 \text{ GeV}, \eta < 2.5 \\ 2 \text{ same flavour and opposite charge, 76 GeV} < m_{\ell\ell} < 106 \text{ GeV} \\ p_{\rm T} > 20 \text{ GeV}, y < 2.5, \Delta R(b\text{-jet}, \ell) > 0.4 \\ p_{\rm T} > 20 \text{ GeV}, y < 2.5, \Delta R(c\text{-jet}, \ell) > 0.4 \end{aligned} $
Event Selection	Acceptance cuts
$Z + \ge 1 \ b\text{-jet}$ $Z + \ge 2 \ b\text{-jets}$ $Z + \ge 1 \ c\text{-jet}$	$Z + \ge 1$ <i>b</i> -jet and a <i>b</i> -jet is the leading heavy-flavour jet $Z + \ge 2$ <i>b</i> -jets and a <i>b</i> -jet is the leading heavy-flavour jets $Z + \ge 1$ <i>c</i> -jet and a <i>c</i> -jet is the leading heavy-flavour jet
Rapidity regions	Acceptance cuts
Central rapidity Forward rapidity	$\begin{vmatrix} Z \text{ boson rapidity } y(Z) < 1.2 \\ Z \text{ boson rapidity } y(Z) \ge 1.2 \end{vmatrix}$

 (Data-Bkg) corrected for selection efficiency, resolution effects and differences between detector level and fiducial phase spaces

Differential cross sections corrected to particle level with iterative Bayesian unfolding

Uncertainties on the cross section measurements

- Dominant uncertainty contributions from: flavour-tagging, jet energy scale and resolution and unfolding
- Statistical uncertainty on data <1%

Source of uncertainty	$Z(\rightarrow \ell\ell) + \geq 1 \ b$ -jet	$ Z(\rightarrow \ell \ell) + \geq 2 b$ -jet
	[%]	[%]
Flavour tagging	3.6	5.7
Jet	2.4	4.3
Lepton	0.3	0.3
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.4	0.5
Z+jets background	0.6	1.5
Top background	0.1	0.3
Other backgrounds	< 0.1	0.2
Pile-up	0.6	0.6
Unfolding	3.3	5.8
Luminosity	0.8	0.9
Total [%]	5.6	9.4

* x2 improved precision on Z + b-jets measurements with respect to previous ATLAS results

Differential distributions: total unc. <5% in $Z + \ge 1$ b-jet, ~10-15% in $Z + \ge 2$ b-jets and $Z + \ge 1$ c-jet

35

Theoretical predictions

Measured cross-sections compared with several predictions, test sensitivity to:

Different FS in matrix-element calculatio

IC-component in proton PDF

MGAMC+PY8 FxFx with several PDF sets with differe IC-models (PDF reweightin

Higher order terms in QC

Fixed-order predictions with jet flavour dressing (infrared and collinear saf

	' Generator/settings	Flav. scheme	PDF
	MGaMC+Py8 FxFx Sherpa 2.2.11	N 5FS 5FS	Iain MC samples NNPDF3.1 (NNLO) LuxQED NNPDF3.0 (NNLO)
on	MGAMC+Py8 MGAMC+Py8 <i>Zbb</i> MGAMC+Py8 <i>Zcc</i>	Predictions to 5FS 4FS 3FS	o test various flavour schemes NNPDF2.3 (NLO) NNPDF3.1 (NLO) рсн NNPDF3.1 (NLO) рсн
-s		Intrinsic	charm (IC) predictions NNPDF4.0 (NNLO) рсн (no IC) NNPDF4.0 (NNLO) NNPDF4.0 (NNLO) EMC+LHCbZ
ent ng)	MGAMC+Py8 FxFx	5FS	CT18 (NNLO) (no IC) CT18FC – CT18 BHPS3 CT18FC – CT18 MCM-E
			CT14 (NNLO) (no IC) CT14 (NNLO)IC – BHPS1 CT14 (NNLO)IC – BHPS2
Dng fe)	NLO NNLO	Fixe 5FS 5FS	ed-order predictions PDF4LHC21 PDF4LHC21

Inclusive cross-section results

- $\sigma(Z + \ge 1 \text{ b-jet}) = 10.49 \pm 0.02 \text{ (stat.)} \pm 0.59 \text{ (syst.) pb}$
- $\sigma(Z + \ge 2 b \text{-jets}) = 1.39 \pm 0.01 \text{ (stat.)} \pm 0.13 \text{ (syst.) pb}$
 - $\sigma(Z + \ge 1 \text{ c-jet}) = 20.89 \pm 0.07 \text{ (stat.)} \pm 2.77 \text{ (syst.) pb}$

Z+≥1 *b*-jet

Good description from 5FS

4FS with large underestimation

♦ 4FS and 5FS in agreement with data

Results consistent with previous ATLAS measurement with 36 fb⁻¹

Camilla Vittori

Z+≥2 *b*-jets

Z+≥1 *c*-jet

♦ 5FS in agreement with data

<u>5FS</u>: good description by both NLO ME+PS state-of-the-art MCs (MGAMC+PY8 FxFx and SHERPA 2.2.11)

Fixed-order: at high pT NNLO calculations in worst agreement than NLO ME+PS. Large uncertainty on NNLO due to **different jet flavour** algorithms \rightarrow importance of using IRC-safe jet-flavour algorithm in measurements

<u>4FS</u>: similar modelling of 5FS, but large underestimation of data - **no log**term resummation in PDF evolution!

CERN Seminar

Fixed-order: NLO discrepancies improved with NNLO. Calculations suffer from divergences at $\Delta R(Z, b - jet) \sim \pi$, where uncertainties increase

Camilla Vittori

<u>5FS</u>: good description by both NLO ME+PS state-of-the-art MCs (MGAMC+PY8 FxFx and SHERPA 2.2.11)

<u>4FS</u>: mismodelling of collinear and large $\Delta R(Z, b - jet)$

• $\Delta \phi_{bb}$: good modelling by all predictions

<u>m_{bb}</u>: similar description by all predictions, with steep decrease for m_{bb}>80 GeV none of the predictions in agreement with data in the full spectrum

Camilla Vittori

- ◆ <u>5FS</u>: soft p_T spectra well described by NLO ME+PS state-of-the-art MCs (MGAMC+PY8 FxFx and SHERPA 2.2.11)
 - Different results from CMS: better modelling from LO MCs, NLO up-todate MCs with off normalisation
- ◆ <u>3FS</u>: better modelling than 5FS but large underestimation of normalisation by a factor ~3 - **no log-term** resummation in PDF evolution!
- Fixed-order: NLO predicts softer pT spectra, small improvement with NNLO

MGAMC+PY8 with several PDF sets testing different /C-models

Large reduction of systematics in the ratio (~8%)

Similar trend by all *IC* models from NNPDF, CT14 and CT18
 PDF sets with only perturbative charm (no *IC*): NNPDF40 (pch), CT14NNLO and CT18NNLO
 The measurement has small constitutity to *IC*

The measurement has small sensitivity to *IC*

MGAMC+PY8 with several PDF sets testing different *IC*-models

Similar trend by all IC models The measurement has small sensitivity to IC

 \Rightarrow BHPS2 (with <x_c>~2%) improves the description of data • In more realistic scenarios (NNPDF and CT18) the improvement is still marginal

Conclusions

an essential ingredient of Standard Model

requires good performance in reconstructing final state objects and precise modelling by Monte Carlo generators

ATLAS W+D and Z+HF jets measurements with 140 fb⁻¹ (pp collisions) reach high precision results

- useful inputs for global fit PDF, sensitive to s-, c- and b-quark PDF In the second explore the sensitivity to new phenomenon, i.e. IC

The interplay between theoretical and experimental effort is necessary to progress even further

- Associated production of EWK gauge bosons with c- or b-quarks represents
- The era of high precision measurements with c- and b-quarks has started

THANK YOU FOR THE ATTENTION!

ANY QUESTIONS?

High-order QCD calculations

Z + b-jets NNLO predictions compared with CMS results at 8 TeV

 $pp \rightarrow Z+b-jet$ **NNLO**JET $\sqrt{s} = 8 \text{ TeV}$ $d\sigma/dp_{T, b}$ [pb/GeV] $d\sigma/dp_{T, b}$ Unfolded CMS data flavour- k_T , R = 0.5, $\alpha = 2$ FONLL α_s^2 FONLL α_s^3 10^{-3} 10^{-4} Ratio to data .5 to NLO 5fs — NNLO 5fs NLO 5fs 1**E**-Ratio 0.9 300 p_{T, b} [GeV] 100 200

Phys. Rev. Lett. 125(22), 222002 (2020)

Camilla Vittori

and the second s

Z + c-jets NNLO predictions in LHCb fiducial phase space

Jet-flavour algorithms

Difficult to have a definition of a flavoured jet which is infrared and collinear safe (= insensitive to soft emissions and collinear splittings) due to large singularities

Different flavour-dressing algorithms in literature:

- flavour-kt [Banfi, Salam, Zanderighi] Eur.Phys.J.C47:113-124,2006
- flavour dressing [Gauld, Huss, Stagnitto] Phys. Rev. Lett. 130 (2023) 161901
 - \rightarrow IRC safe to all orders in pQCD \rightarrow applied to fixed-order-predictions
 - combined with any IRC safe definition of a jet, such as anti-kT
 - flavour assignment can be applied to quarks, HF-hadrons
- flavoured anti-kT [Czakon, Mitov, Poncelet] JHEP 04 (2023) 138
- flavour nautralisation [Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler] arXiv:2306.07314

practical jet flavour through NNLO [Caletti, Larkoski, Marzani, Reichelt] Eur. Phys. J. C 82 (2022), 632

Camilla Vittori

ATLASpdf21

Eur. Phys. J. C 82 (2022) 438

CERN Seminar

S – **S** asymmetry

• to different probability $q \rightarrow q'$ of and $q \rightarrow \bar{q}'$ splitting

- role of u and d-quark valence densities at high Bjorken-x
- \diamond Various PDF fits assume different hypotheses on the s \bar{s} asymmetry at the initial state: • NNPDF: $s \neq \overline{s}$ coming from independent fit of s and \overline{s}
- - CT18: $s = \overline{s}$ at low scale

-				
PDF set	$V_{ m cd}$	$\sigma_{\mathrm{W^+j_c}} \; [\mathrm{pb}]$	$\sigma_{\rm W^-j_c} ~[pb]$	I
NNDDE91 I O	= 0	9.8395(4)	10.4654(4)	0.94
NNPDF31 LU	$\neq 0$	12.0725(4)	14.2624(5)	0.84
NNPDF31 NLO	= 0	22.593(2)	23.718(2)	0.9
INIT DE SI INLO	$\neq 0$	24.500(9)	27.29(1)	0.8
CT18 NI O	= 0	21.675(2)	21.675(2)	1.0
	$\neq 0$	23.477(9)	25.252(8)	0.9

+ At NNLO in QCD, $s - \bar{s}$ asymmetry appears as intrinsic property of the DGLAP evolution

$$R_c = \frac{\sigma(W^+ + D^-)}{\sigma(W^- + D^+)}$$

- in NLO CT18 prediction, $R_c = 1$ since no $s - \bar{s}$ asymmetry is considered
- in NLO NNPDF31, $R_c < 1$

♦ V_{cd}≠0:

 \diamond reduced the sensitivity to $s - \bar{s}$

S – **S** asymmetry

 Scale uncertainty decreases with the inclusion of NNLO corrections significant reduction of the theoretical uncertainty due to missing order terms

 Large uncertainty from PDF \rightarrow unique opportunity for high quality fitting of the *s*-quark PDF and test $s - \bar{s}$ asymmetry

NNLO PDF not in good agreement with ATLAS 7 TeV data: • different jet-flavour algorithm

- Vcd ≠0 only at LO in calculations
- large PDF uncertainty

 W^+i_c

W⁻j_c

 $R_{W^{\pm}j_c}$

R_c in W+D production

♦ W+D production:

dominated by CKM diagonal terms (|Vcs|~90%), |Vcd|~10% at LO

- off-diagonal |Vcd |~10% at LO (negligible at higher orders)
- \Rightarrow R_c < 1 due to valence *d*-quark contribution
- \rightarrow R_c \rightarrow 1 including higher order corrections

$R_{c} = \frac{|V_{cs}|\bar{s} + |V_{cd}|d}{|V_{cs}|s + |V_{cd}|d}$ LO:

Intrinsic-Charm

- \diamond PDFs give the probability of finding a parton with a certain momentum fraction x at a given scale μ • for $\mu < 1/\mu_0$ (long-distance scale): PDF cannot be calculated from QCD • for $\mu > \mu_0$ (short-distance scale): PDF can be calculated within pQCD (DGLAP evolution)
- \bullet Global analyses usually assume the HF-content of the proton to be negligible at $\mu = m_{s,c,b}$ HF-quarks arise only perturbatively through gluon-splitting
- ◆ 40 years ago the coexistence of an *extrinsic* and *intrinsic* contribution to the structure of the proton was postulated
 - \diamond extrinsic (ordinary) HF-quarks generated on a short -time scale \rightarrow PDFs satisfy QCD evolution equations \bullet intrinsic HF-quarks are assumed to exist over a timescale independent of any probed Q^2
- Intrinsic Charm: c-quark pairs as part of proton wave function at rest → *IC* expected at high Bjorken-x (>0.1)
 - expected higher sensitivity with hard c-jets in the forward region

IC: $\psi_p = |uudc\bar{c}\rangle$ not only via $g \rightarrow c\bar{c}$

W + charmed hadron

State of the art

 $\sigma(W+c) = 1026 \pm 31 \text{ (stat)}^{+76}_{-72} \text{ (syst) pb}$

Eur. Phys. J. C 79 (2019)269

MC Samples

- SHERPA 2.2.11 up to 2 partons in NLO Matrix Element (ME) nominal MC
- NLO with finite *c*-quark mass)
- into $K^-\pi^+\pi^+$ mode

Process	ME generator	QCD accuracy	ME PDF	PS generator	UE tune	HF decay	
W+jets (background modeling)							
W+ jets	Sherpa 2.2.11	0-2j@NLO+3-5j@LO	NNPDF3.0nnlo	Sherpa	Default	Sherpa	
W+ jets	AMC@NLO (CKKW-L)	0–4j@LO	NNPDF3.0nlo	Ρυτηία 8	A14	EvtGen	
W+ jets	AMC@NLO (FxFx)	0-3j@NLO	NNPDF3.1nnlo_luxqed	Pythia 8	A14	EvtGen	
$W+D^{(*)}$ (signal modeli	ng and theory predictions)						
W+D ^(*)	Sherpa 2.2.11	0–1j@NLO+2j@LO	NNPDF3.0nnlo	Sherpa	Default	EvtGen	
$W+D^{(*)}$	AMC@NLO (NLO)	NLO	NNPDF3.0nnlo	Ρυτηία 8	A14	EvtGen	
$W+D^{(*)}$	AMC@NLO (FxFx)	0-3j@NLO	NNPDF3.1nnlo_luxqed	Ρυτηία 8	A14	EvtGen	
Backgrounds							
Z + jets	Sherpa 2.2.11	0-2j@NLO+3-5j@LO	NNPDF3.0nnlo	Sherpa	Default	Sherpa	
$t\bar{t}$	Powheg Box v2	NLO	NNPDF3.0nlo	Ρυτηία 8	A14	EvtGen	
Single-t, Wt	Powheg Box v2	NLO	NNPDF3.0nlo	Ρυτηία 8	A14	EvtGen	
Single-t, t-channel	Powheg Box v2	NLO	NNPDF3.0nlo	Ρυτηία 8	A14	EvtGen	
Single-t, s-channel	Powheg Box v2	NLO	NNPDF3.0nlo	Ρυτηία 8	A14	EvtGen	
$t\bar{t}V$	AMC@NLO	NLO	NNPDF3.0nlo	Ρυτηία 8	A14	EvtGen	
Diboson fully leptonic	Sherpa 2.2.2	0-1j@NLO+2-3j@LO	NNPDF3.0nnlo	Sherpa	Default	Sherpa	
Diboson hadronic	Sherpa 2.2.1	0-1j@NLO+2-3j@LO	NNPDF3.0nnlo	Sherpa	Default	Sherpa	

alternative MCs: MGAMC@NLO+Py8 with different setups (multi-jet merged with FxFx or CKKW and

• Samples generated by requiring the presence of a single lepton and $D^{+(*)}$, the latter forced to decay

Event Selection

$D^{(*)}$ cut	D^+ cut value	D^{*+} cut value $(D^0\pi \to (K))$
N _{tracks} at SV	3	
SV charge	±1	
SV fit quality	$\chi^2 < 8$	χ^2
Track $p_{\rm T}$	$p_{\rm T} > 800 {\rm MeV}$	$p_{\rm T} > 600$
Track angular separation	$\Delta R < 0.6$	$\Delta R <$
Flight length	$L_{xy} > 1.1 \mathrm{mm} \left(p_{\mathrm{T}}(D^{+}) < 40 \mathrm{GeV} \right)$	$L_{ry} > 0$
	$L_{xy} > 2.5 \mathrm{mm} \left(p_{\mathrm{T}}(D^{+}) \ge 40 \mathrm{GeV} \right)$	$-\chi y = 0$
SV impact parameter	$ d_0 < 1 \mathrm{mm}$	$ d_0 < 1$
SV 3D impact significance	$\sigma_{3D} < 4.0$	$\sigma_{ m 3D}$ <
Combinatorial background rejection	$\cos\theta^*(K) > -0.8$	
Isolation	$\sum p_{\rm T} \frac{\Delta R < 0.4}{\rm tracks} / p_{\rm T}(D^+) < 1.0$	$\Sigma p_{\mathrm{T}_{\mathrm{tracks}}}^{\Delta R < 0.4} / p_{\mathrm{T}}(D^{*+}) < 0$
$D_s^{\pm} \rightarrow \phi \pi^{\pm}$ rejection	$m(K^+K^-) > m_{\phi} - 8 \text{ MeV}$	
D^{*+} background rejection	$m(K\pi\pi) - m(K\pi) > 160 \mathrm{MeV}$	
D^0 mass		$ m_{K\pi} - m_{D^0} < 40$
$\pi_{\rm slow} p_{\rm T}$		$p_{\rm T} > 500$
$\pi_{\rm slow}$ angular separation		$\Delta R(\pi_{ m slow}, D^0) <$
$\pi_{\text{slow}} d_0$		$ d_0 < 1$
QCD background rejection	$\Delta R(D^+, \ell) > 0.3$	$\Delta R(D^{*+},\ell) >$
$D^{(*)} p_{\mathrm{T}}$	$8 \text{GeV} < p_{\mathrm{T}}(D^+) < 150 \text{GeV}$	$8 \text{GeV} < p_{\mathrm{T}}(D^{*+}) < 150$
$D^{(*)} \eta$	$ \eta(D^+) < 2.2$	$ \eta(D^{*+}) <$
Invariant mass	$1.7 \text{GeV} < m(D^+) < 2.2 \text{GeV}$	$140 \mathrm{MeV} < m(D^{*+} - D^0) < 180$

	Electrons		Muons		
Features	baseline loose	tight	baseline loos	se tight	
рт	> 20 GeV > 2	30 GeV	> 20 GeV > 30 GeV		
$ \Delta z_0^{\rm BL}\sin(\theta) $	< 0.5 mm	1	< 0.5 m	n	
$ d_0^{\mathrm{BL}}/\sigma(d_0^{\mathrm{BL}}) $	< 5		< 3		
Pseudorapidity	$(\eta < 1.37) (1.52 <$	$ \eta < 2.47$)	$ \eta < 2.$	5	
Identification	Tight		Tight		
Isolation	No	Yes	No	Yes	

D Meson Properties

D Species	D Mass [GeV]	Production Fraction (%)	Final State	BR (%)
D+	1.87	24.04	K⁻ π⁺ π⁺	9.46
D ^{*+} -> D ⁰ π ⁺ (D [*] properties)	1.86 (2.01)	60.86 (24.29)	(К⁻ π⁺) π⁺	67.7 × 3.95

COLUMN TWO

Multijet background

Multijet (MJ) background modelled using Matrix-Method (data-driven)

- Matrix-method measures fake/real lepton efficiencies and estimates MJ from anti-Tight data
 - real lepton efficiencies in W+D SR
 - fake lepton efficiencies measured in CR defined by
 - Inverted W selection (E^{™iss}<30 GeV, m^T<40 GeV)
 - inverting isolation
- systematics on the dependence of the fake efficiency from E^{Tmiss} ~ 50-60%
- → MJ contribution at ~% level, so the large associated uncertainties are subdominant in the fit

Inclusive cross-section results

Camilla Vittori

Channel	$\sigma_{\text{fid}}^{\text{OS-SS}}(W+D^{(*)}) \times B(W \rightarrow \ell \nu) \text{ [pb]}$
W^-+D^+	50.2 ± 0.2 (stat.) $^{+2.4}_{-2.3}$ (syst.)
W^++D^-	48.5 ± 0.2 (stat.) $^{+2.3}_{-2.2}$ (syst.)
$W^{-}+D^{*+}$	51.1 ± 0.4 (stat.) $^{+1.9}_{-1.8}$ (syst.)
$W^{+}+D^{*-}$	50.0 ± 0.4 (stat.) $^{+1.9}_{-1.8}$ (syst.)
	$R_{c}^{\pm} = \sigma_{\rm fid}^{\rm OS-SS}(W^{+}+D^{(*)})/\sigma_{\rm fid}^{\rm OS-SS}(W^{-}+D^{(*)})$
$R_c^{\pm}(D^+)$	0.965 ± 0.007 (stat.) ± 0.012 (syst.)
$R_c^{\pm}(D^{*+})$	0.980 ± 0.010 (stat.) ± 0.013 (syst.)
$R_c^{\pm}(D^{(*)})$	0.971 ± 0.006 (stat.) ± 0.011 (syst.)

Differential cross-section results

Camilla Vittori

Differential cross-section results

State of the art

Z + *b*-jet

ATLAS: resolved and boosted with 36 fb⁻¹ ◆ CMS: with 137 fb⁻¹

Phys. Rev. D 105, 092014

Event selection

()
`	,

	Electron channel	Muon channel			
Leptons	$\begin{vmatrix} \text{Single electron trigger} \\ \text{Tight} \\ \text{Isolated} \\ d_0/\sigma_{d_0} < 5, z_0 \sin(\theta) < 0.5 \text{ mm} \\ p_{\text{T}} > 27 \text{ GeV} \\ \eta < 1.37 \text{ or } 1.52 < \eta < 2.47 \end{vmatrix}$	$\begin{vmatrix} \text{Single muon trigger} \\ \text{Medium} \\ \text{Isolated} \\ d_0/\sigma_{d_0} < 3, z_0 \sin(\theta) < 0.5 \text{ mm} \\ p_{\text{T}} > 27 \text{ GeV} \\ \eta < 2.5 \end{vmatrix}$			
Jets	$p_{\rm T} > 20 \text{ GeV and } y < 2.5$ $\Delta R(\text{jet}, \ell) > 0.4$				
Flavour-tagged jets	$p_{\rm T} > 20 \text{ GeV and } y < 2.5$ DL1r@85%				
Event selection					
Leptons $m_{\ell\ell}$ $E_{\rm T}^{\rm miss}$ Flavour-tagged jets	Exactly 2, same-flavou 76 GeV $< m_{\ell\ell} < 106$ GeV $E_{\rm T}^{\rm miss} < 60$ GeV if $p_{\rm T}^{\ell\ell}$ ≥ 1 or ≥ 2 jets, DL1r@	r, opposite-charge GeV < 150 GeV 985%			
Signal regions					
1-tag ≥ 1 flavour-tagged jets2-tag ≥ 2 flavour-tagged jets					
Rapidity regions					
Central rapidity Forward rapidity	ity dity Z boson rapidity $ y(Z) < 1.2Z boson rapidity y(Z) \ge 1.2$				

	- 11	L	
		T	

Jet flavour algorithm

Jet flavour classification in measurement: cone-based algorithm

- only the closest in ΔR is taken
- hadron with $p_T > 5$ GeV.
- \rightarrow light-jets = all the others

Corrections to fixed-order predictions to compare with measurements

- hadronisation and multi-parton interactions (MPI)
 - hadron-level / parton-level distributions of PYTHIA 8.3831 samples

• jet flavour definition

- hadron level distributions with cone-based algorithm / flavour-dressing algorithm
- derived with MGAMC@NLO+PY8 FXFX and SHERPA and the difference is taken as systematic

 \bullet b-jets = jets lie within $\Delta R=0.3$ of at least one b-hadron with $p_T > 5$ GeV. If a b-hadron matches two jets,

 \bullet c-jets = jets not classified as b-jets, are considered to be c-jets if they lie within $\Delta R=0.3$ of at least one c-

Flavour fit in 2-tag SR

2-tag SR:

- Discriminating variable: combination of leading and sub-leading flavour-tagged jet DL1r score

• 4 free parameters corresponding to Z+≥2 b-jets, Z+1 b-jet, Z+≥1 c-jet and Z+≥light jets normalisation

Post-fit signal and background contribution

Z+jets background are scaled by the scale factors from flavour-fit

Uncertainties on the cross section measurements

- ◆ b-jet tagging, Jet, Lepton, E^{miss}, Pile-up and Luminosity
- Z+jets bkg: (i) post-fit MGAMC+PY8 FXFX vs SHERPA 2.2.11 difference and (ii) MGAMC+PY8 FXFX QCD scale
- \bullet tt bkg: extrapolation from eµ-CR to SR
- Other bkg: QCD scale for diboson and overall normalisation for ZH, single-top and $Z \rightarrow \tau \tau$

Differential distributions: total systematic uncertainties <5% in $Z + \ge 1$ b-jet (except some bins in $Z p_T$), ~10-15% in *Z*+≥2 *b*-jets and *Z*+≥1 *c*-jet (except some bins at the edges)

5FS: good description of data by both MGAMC+PY8 FXFX and SHERPA 2.2.11 MGAMC+PY8 with softer leading *b*-jet p_T and higher $\Delta R(Z, b)$ jet)~ π production (back-to-back)

4FS: MGAMC+PY8 underestimates data in the full spectra no log-term resummation in PDF evolution!

Fixed-order: very good descrition

◆ <u>5FS</u>: good description of soft p_T spectrum by both MGAMC+PY8 FxFx and SHERPA 2.2.11

 \rightarrow **4FS:** similar p_T modelling than 5FNS, large underestimation of collinear Z-bjet emission

Camilla Vittori

★ <u>mbb</u>: Soft mbb well described by SHERPA 2.2.11, while MGAMC+PY8 descriptions are off in the full and the second spectrum

CMS results of m_{bb} better described by LO MGAMC+PY8.

- ◆ <u>5FS</u>: soft p_T spectra well described by MGAMC+PY8 FxFx and SHERPA 2.2.11, not true for $p_T > 100 \text{ GeV}$
- Sector A no log-term resummation in PDF evolution!
- ◆ Fixed-order: NLO predicts softer p_T spectra, small improvement with NNLO

Differential Z+≥1 c-jet cross-section results

◆ <u>5FS</u>: soft p_T spectra well described by MGAMC+PY8 FxFx and SHERPA 2.2.11, not true for p_T>100 GeV ◆ <u>3FS:</u> large mismodelling of all observables

- Similar trend with respect to data by all IC models from NNPDF, CT14 and CT18
- The measurement has small sensitivity to IC

reweighting)

Camilla Vittori

Differential Z+≥1 c-jet cross-section results

MGAMC+Py8 with different PDF sets testing several *IC*-models (PDF

Electrons and muons

Camilla Vittori

Vertex

Flavour tagging

- Using unique characteristics of b-hadron decays
 - ♦ long lifetime (~1.5 ps →~ 3 mm decay length)
 - high-mass (~5 GeV)
 - number of tracks per jet (~5 per b-jets)

High-level DL1r algorithm operating on outputs from layer of intermediate algorithms

- <u>Secondary vertex based:</u> SV1 and JetFitter
- Track IP based: IP3D and RNNIP (RNN based)

Eur. Phys. J. C 83 (2023) 681

Flavour tagging

Eur. Phys. J. C 83 (2023) 681

