# Binning optimisation for unfolded data spectra

Applications for the inclusive jet cross section

By Jacob Kempster Supervisor: Bogdan Malaescu

## Aim:

- Implement and test a newly devised method for optimising the binning of unfolded data spectra, specifically focused on inclusive jet cross-sections from the ATLAS experiment.
- Explore and study the effects of this binning optimisation.

### Normalised Gaussian<sup>\*</sup> Plot



\* Entries are randomly generated (100 bins).



(Final 78<sup>th</sup> Iteration)

#### **Covariance Matrix**

$$cov(X_i, X_j) = \langle (X_i - \overline{X}_i)(X_j - \overline{X}_j) \rangle$$

| 0.773104  | 3.04969 | 13.0517 | 3.10553 | 0.0231037 |
|-----------|---------|---------|---------|-----------|
| 3.04969   | 501.559 | 1722.82 | 409.93  | 3.04969   |
| 13.0517   | 1722.82 | 7796.8  | 1754.36 | 13.0517   |
| 3.10553   | 409.93  | 1754.36 | 518.247 | 3.10553   |
| 0.0231037 | 3.04969 | 13.0517 | 3.10553 | 0.773104  |

| 0.773104  | 8.05069 | 3.10553 | 0.0231037 |
|-----------|---------|---------|-----------|
| 8.05069   | 2936    | 1082.15 | 8.05069   |
| 3.10553   | 1082.15 | 518.247 | 3.10553   |
| 0.0231037 | 8.05069 | 3.10553 | 0.773104  |



#### **Steeply Falling Spectra**





(Final 437<sup>th</sup> Iteration)



(Final 438<sup>th</sup> Iteration)

### Outliers (2) – Monte Carlo

Merge Sig < 3.0 = Trigger Boundary



(Final 437<sup>th</sup> Iteration)

## Summary

- This method may be used on many shapes of data spectra.
- A (model independent) rebinning method may be useful for identifying outlying points in data.
- The use of Monte Carlo methods can avoid rebinning to enhance a false outlier.

#### **Future Plans**

- Test rebinning method on data spectra before and after unfolding – compare the results.
- Study the effect of changing the regularisation parameters for unfolding to give minimal bias and correlations.