

Investigation of Double-Parton Scattering (DPS) at the LHC Focusing on 3Jet+Gamma Topologies

(With emphasis on Monte Carlo simulations)

Connected to CMS - QCD 10 - 039

Hugh Tay

Supervisor: Paolo Bartalini

Lecture by Torbjörn Sjöstrand, April 2005

• Factorization theorem:

2 protons collisions described in terms of ONE parton-parton (hard) scattering

• However, observations (AFS, CDF, D0) indicate that things are more complicated...

Lecture by Torbjörn Sjöstrand, April 2005

- Multiple-Parton Interactions!
 - Usually soft; contribute to Underlying Event
 - Sometimes hard;

Can give rise to additional hard interactions!

 Instead of using 4-jet events to study DPS, We concentrate on the "cleaner" 3jet+γ final state:

Define Gamma-Jet as Process A, Di-Jet as Process B
 Theory predicts ~ process/scale independency of correlations
 [Treleani et al.; rich bibliography]

• Cross-section for getting both processes together:

$$\sigma_{AB} = (\sigma_A \sigma_B) / \sigma_{effective}$$

In terms of Probabilities:

$$P(B \mid A) = \sigma_B / \sigma_{effective}$$

• Trivial case : $\sigma_{effective} = \sigma_{inelastic}$ – when **no** correlations.

Monte Carlo Simulation - PYTHIA

- PYTHIA 6, 8 What they are & what they do:
 - General-purpose Monte Carlo Simulations for HEP
 - Random; Stochastic implementation of QM
 - Can be used by both theorists & experimentalists
 - Parton showers, underlying event, min. bias, MPI's, etc.
 - Additional plug-ins (HepMC, PDF, SUSY, Higgs, etc.)
 - Adequate for generating multiparticle events
 - In PYTHIA 8, we can force Double-Parton Scattering

The Project

- Extracting $\sigma_{effective}$ at different working points (scales) for various tunes to test PYTHIA performance in handling MPI's
- Cross-check against CDF data; LHC data still being analyzed
- Necessary to know PYTHIA features in the DPS simulation Also useful in defining the backgrounds of new physics.

The Project

Need to *distinguish* double-parton-scattering from bremsstrahlung!

- Easiest way look at the jet p_{τ} 's
- Additional MPIs at the 2-3 GeV/c scale \rightarrow UE
- We want the MPI's giving rise to a clear jet structure
- Hence set minimum p_{τ} cut-off

The Project

- Pythia 8 2C, 4C tunes;
 Pythia 6 CW, DW, D6T tunes (in CMSSW framework)
- Set Process A (Gamma-Jet) as the leading jet with minimum *p_T* of 20, 50, 100, 200 GeV/c
- Look for Process B (di-Jet) events with p_{τ} cut-offs of 5, 10, 20, 50 GeV/c
- So we have 16 working points altogether

Plots for A=50 and 200 GeV/c Showing overall statistics

- Red
 –
 A=200 GeV

 Blue
 –
 A=50 GeV
- Process A Gamma Jet Process B – Di-jet

Plots for A=200,50 Showing statistics for **B>5**

- Red
 A=200

 Blue
 A=50
- Process A Gamma Jet Process B – Di-jet

Plots for A=50,200 Showing statistics for **B>20**

- Red
 A=200

 Blue
 A=50
- Process A Gamma Jet Process B – Di-jet

Tevatron @ Pythia 8, 4C Tune

Gamma-Jet (Process A) cross-section @ 50 GeV/c
 - 4C Tune : 421.7 ± 2.275 pb

• Di-Jet (Process B) cross-section @ 20 GeV/c - 4C Tune : $37.90 \pm 0.062 \mu b$

NOTE: LO cross-section as predicted by Pythia-8, no K factors applied!

Tevatron @ Pythia 8, 4C Tune

• Free (Inclusive, units - mb)

$\sigma_{eff}(A_n+B_m)$	B>5	B>10	B>20	B>50
A=20	4.81E+01	3.59E+01	6.71E+01	#DIV/0!
A=50	5.01E+01	3.90E+01	3.58E+01	7.25E+01
A=100	5.34E+01	4.18E+01	4.45E+01	4.23E+01
A=200	6.26E+01	5.40E+01	6.02E+01	8.46E+01

• Forced (Exclusive, units - mb)

$\sigma_{eff}(A_n+B_m)$	B=5	B=10	B=20	B=50
A=20	2.96E+01	3.08E+01	3.19E+01	3.44E+01
A=50	3.08E+01	3.24E+01	3.44E+01	3.93E+01
A=100	3.20E+01	3.44E+01	3.94E+01	4.80E+01
A=200	3.63E+01	4.13E+01	5.00E+01	7.46E+01

LHC – Pythia 8, 2C and 4C Tunes

- Gamma-Jet (Process A) cross-section @ 50 GeV/c
 - 2C Tune : 3.504 ± 0.018 nb
 - 4C Tune : 3.535 ± 0.018 nb

- Di-Jet (Process B) cross-section @ 20 GeV/c
 - 2C Tune : $344.6 \pm 0.586 \mu b$
 - 4C Tune : $344.1 \pm 0.584 \mu b$

NOTE: LO cross-section as predicted by Pythia-8, no K factors applied!

LHC @ Pythia 8, 2C Tune

• Free (Inclusive, units - mb)

$\sigma_{eff}(A_n+B_m)$	B>5	B>10	B>20	B>50
A=20	7.97E+01	3.91E+01	6.03E+01	1.83E+03
A=50	8.05E+01	3.86E+01	3.42E+01	6.66E+01
A=100	8.20E+01	3.99E+01	3.54E+01	2.99E+01
A=200	8.38E+01	4.19E+01	3.66E+01	3.62E+01

• Forced (Exclusive, units - mb)

$\sigma_{eff}(A_n+B_m)$	B=5	B=10	B=20	B=50
A=20	3.14E+01	3.12E+01	3.19E+01	3.28E+01
A=50	3.14E+01	3.22E+01	3.27E+01	3.41E+01
A=100	3.27E+01	3.30E+01	3.39E+01	3.52E+01
A=200	3.30E+01	3.38E+01	3.59E+01	3.77E+01

LHC @ Pythia 8, 4C Tune

• Free (Inclusive, units - mb)

$\sigma_{eff}(A_n+B_m)$	B>5	B>10	B>20	B>50
A=20	7.81E+01	3.97E+01	6.27E+01	1.03E+03
A=50	7.88E+01	3.94E+01	3.43E+01	7.66E+01
A=100	8.05E+01	4.10E+01	3.66E+01	3.90E+01
A=200	8.23E+01	4.32E+01	3.79E+01	3.57E+01

• Forced (Exclusive, units - mb)

$\sigma_{eff}(A_n+B_m)$	B=5	B=10	B=20	B=50
A=20	3.37E+01	3.31E+01	3.41E+01	3.46E+01
A=50	3.41E+01	3.50E+01	3.50E+01	3.59E+01
A=100	3.48E+01	3.55E+01	3.58E+01	3.83E+01
A=200	3.49E+01	3.63E+01	3.74E+01	4.04E+01

LHC @ Pythia 8, 4C Tune

• (Free) 4C - 2C % Difference

$\sigma_{eff}(A_n+B_m)$	B=5	B=10	B=20	B=50
A=20	1.9	-1.6	-3.9	77.3
A=50	2.2	-1.9	-0.4	-13.1
A=100	1.8	-2.8	-3.1	-23.4
A=200	1.8	-3.0	-3.6	1.5

Issues with DPS Generation

(When Process B is Free/Inclusive)

- Limitation of PYTHIA For the processes included in the MPI's, the p_{τ} 's are generated in decreasing order.
- Secondary processes cannot exceed leading processes.
 - \rightarrow For B>50, A <u>must</u> >50 as well
 - ∴ Poor statistics for [A=20, B>50], and $\sigma_{effective}$ is overestimated by 1-2 orders of magnitude!

Plots for A=200 Showing statistics for all B's

Red	-	B>5
~		D. 40

- Green B>10
- Blue B>20
- Purple B>50

Finding the 'missing' DPS Events

- Invert the process : Now take B (di-Jet) as leading process and look for A processes (Gamma-Jet) in the MPI's
- Effective Cross-Sections for [A=20, B=50]
 -> With B Leading : 27.6 ± 15.9 mb
- In general, one should find the **HARMONIC MEAN** of $\sigma_{effective}$ for A and B set as the leading process, <u>in turn</u>.

→ NOTE: DO THE MASSIVE PRODUCTIONS FOLLOW THIS RULE?

LHC @ Pythia 8 4C Tune

• Corrected table for free (inclusive) production; units - mb

$\sigma_{eff}(A_n + B_m)$	B>5	B>10	B>20	B>50
A=20	7.81E+01	3.97E+01	1.92E+01	2.69E+01
A=50	7.88E+01	3.94E+01	3.43E+01	7.66E+01
A=100	8.05E+01	4.10E+01	3.66E+01	3.90E+01
A=200	8.23E+01	4.32E+01	3.79E+01	3.57E+01

Comparison with Experiment

• HOWEVER!

Measured $\sigma_{effective} \approx 11 \text{ mb}$ (3jet+ γ by **CDF**, corrected by Treleani) [*PRD76:076006,2007*]

— Means a factor of 3 lower than the Pythia 8 "predictions"!!!

- PYTHIA might be underestimating DPS in MPI's even at LHC!
- So we still need to wait for CMS/ATLAS to measure the this effective cross-section at 7 TeV...

Future Work

• Studying the signal vs. background for $3jet+\gamma$ final state.

• Background defined by the setting the second interaction to have a p_{τ}^{\prime} below a given threshold

Future Work

- More statistics for critical working points (inclusive samples)
- Repeat exercise for A = t-tbar and W processes

Backup Slides

CMSSW Framework

- Analyzed 7 TeV events using Pythia 6 tunes
 CW, DW, D6T database samples
 - (Z1, Z2 samples had technical glitch)
- Compared with Standalone PYTHIA (% Differences)
- Cross-checked with CDF data (LHC data coming soon)

Event Generator Flowchart

Lecture by Torbjörn Sjöstrand at CERN, April 2005

Pythia Tunes in CMS

- Pythia 6 Virtuality ordered showers, old MPIs
 - CTEQ5L pre-LHC Tune DW(T) and LHC (UE@0.9 TeV) Tune CW(T)
 - CTEQ6LL pre-LHC Tune D6(T)

[arXiv:1003.4220]

- Describe UE@Tevatron, describe other very important observables at Tevatron like p_T (heavy bosons) and Jet azimuthal decorrelation
- Pythia 6 new MPIs with interleaved p_T -ordered showers (MORE RADIATION, LESS MPIs)
 - **CTEQ5L** LHC Tune **Z1** uses Professor AMBT1 LEP fragm. & ATLAS Min Bias: Updated Color Rec.
 - **CTEQ6LL** LHC Tune **Z2** by hand from Z1: decreased p_T cut off

[arXiv:1012.5104, arXiv:1010.3558v1]

- Pythia 8, brand new MPI model, inteleaved p_{T} -ordered showers
 - **CTEQ5L** pre-LHC **Tune 1** first Pythia 8 Tune proposed by Peter Skands
 - **CTEQ6LL** Tevatron Tune 2C describes the relevant Tevatron phenomenology
 - CTEQ6LL LHC Tune 4C describes ATLAS MB & UE (leading track)
 [arXiv:1011.1759]

 $p_{T0}^{LHC} = p_{T0}^{Tevatron} (Vs^{LHC} / Vs^{Tevatron})^{\epsilon}$ Where $\epsilon = PARP(90)$ or MultipleInteractions:EcmPow

T versions (for example D6T) 2C, 4C \rightarrow small $\varepsilon \approx 0.16 - 0.21$ (CTEQ6LL) Tune 1, DW, Z1, Z2, CW \rightarrow large $\varepsilon \approx 0.24 - 0.30$ (CTEQ5L, guess in Z2 wrong?)

Still no coherent description of Tevatron and LHC (more info in backup slides)

BLANK PAGE