Analysis of the $t\bar{t}$ production in the all-hadronic channel at $\sqrt{s} = 7 T eV$ with CMS detector:

kinematical selection, mass reconstruction and cross-section measurement

Mauro Sacco

The Top Quark

What is it?

- 3rd generation particle in the SM
- Heaviest particle in the SM
 - → decays almost immediately into a Wb pair

Motivation of the analysis

- Measurement of M_t and $\sigma_{t\bar{t}}$
- Check consistency Standard Model predictions
- Test for physics contributions beyond the SM

Top Quark Production and Decay

Process: $pp \to t\bar{t} \to W^+ b W^- b$

Three decay channels:

- Dilepton channel
- Single-lepton channel
- All-hadronic channel

The all-hadronic channel

- Characterized by the highest branching ratio (46 % of the decays)
- **BUT** overwhelmed by a huge QCD multijet production

dominates by 3 orders of magnitude (after High Level Trigger)

Event Selection

<u>Datasets</u>: • May 10, 2011: L=204.2 pb-1 $(S/B \approx 1/600)$

• Signal simulation: MC dataset with 1.16 million events

Isolate the **six-jet decay mode** of top-pair production from the **QCD background**

• First step: Select event with $N_{jet} \ge 6 + p_T$ larger than a certain threshold Data: 237696 events ($S/B \approx 1/80$)

MC: I20463 events

 <u>Second step</u>: A tight kinematical selection, exploiting a series of variables which have been proven to be effective in the discrimination between signal and background

Kinematical Selection

Some discriminative variables: Centrality, Sphericity, Aplanarity, Sum of transverse

energy of the jets, ...

Combine the discriminative power of all the variables: multivariate analysis

Tuesday, August 16, 2011

Multivariate Analysis Classification

- Toolkit for Multivariate Analysis integrated in ROOT
- Multivariate techniques: make use of training events, for which the desired output is know (ex. Signal and Background) to determine the mapping function that describes a decision boundary.
- Technique implemented in the analysis: Boosted Decision Tree (BDT)

<u>Results</u>

LEVEL	N MC	S	EFFICENCY	В	S/B	S/SQRT(S+B)
$6 \le N_{jet}$	120462	3340	10.38%	237696	1/81	6.9
Original NN	41809	1155	3.6%	33507	1/28	6.3
BDT1	71046	1970	6.1%	14256	1/6.3	16.5
Original NN + \geq 2 Medium b-tag	20958	579	1.8%	3337	1/5	10.0
BDT1 + \geq 2 Medium HE b-tag	47413	1315	4.1%	8057	1/5	14.7

- We use b-tagging in order to reach a better S/B
- Comparing the BDT and the Neural Network approaches we see that BDT > NN !
- BDT + b-tagging give a good S/B!
- Apply the same procedure to Summer 2011 Dataset (L=1096 pb-1) -> S/B=1/2 !!!!
 - Compute cross section

Mass distribution and cross-section

Cross section: $\sigma_{t\bar{t}} = 203 \pm 35(stat.) \pm 12(lumi.) \ pb$ Theoretical: $\sigma_{t\bar{t}} = 165 \pm 10 \ pb$