TPAC – One path to the ALICE ITS upgrade

Carl-Johan Haster – Summer student 2011

The University of Manchester

ALICE and its Inner Tracking System

Optimised for heavy ion collisions to study strongly interacting matter at the at high energy densities at LHC.

Hybrid vs. monolithic pixel sensors

Currently two layers of SPD (r=3.9 cm and 7.6 cm)

Monolithic pixel

Figure from Stanitzki [2]

Upgrade has at least three layers of pixel detectors – starting closer to the beampipe (first layer ~ r=2.2 cm)

Both technologies are being investigated for the upgrade

Different options of monolithic sensors

INMAPS

TPAC (SPIDER collaboration) [2]

ULTIMATE (STAR) [3]

Picture from Greiner et al. [3]

Carl-Johan Haster

Picture from FEE meeting in Bergamo [4]

TPAC

Deep p-well shields transistors -> signal registered at diode

Is the INMAPS technology suited as a starting point for the new ITS?

Irradiation tests

Carl-Johan Haster

- Tungsten X-ray tube 10 keV peak energy
- X-ray beam covering the whole sensor
- Dose rates between 3.3-33 krad/min
- Observe noise signals from the pixels
- Monitor 8 current values accessible on the readout card

Current monitoring - hardware

<u>Voltmeter</u> Keithley 2410

<u>Switch unit</u> Agilent 34970A with Agilent 34904A (4x8 Matrix Switch)

Current monitoring - software

Carl-Johan Haster

in 1 Col 1 OV

Currents before irradiation

Currents after 200 krad

Effect of irradiation on currents

- Small changes at low doses
- Increase in uncertainties due to spikes
- Effects on loading the sensor configuration observed at very high doses

0

200

400

600

Irradiated dose (krad)

800

1000

1200

1400

1600

35 -200

Conclusions

- Calibrate the on-board power supply for the SRAM to study the calibration loading process
- Need more granular dose steps
- Experiment with varying dose rates
- Investigate annealing behaviour

• Still early in the R&D phase

Picture references

- 1. Rossi, L., Fischer, P., Rohe, T. & Wermes, N. (2006). *Pixel Detectors: from Fundamentals to Applications*. Berlin: Springer.
- 2. Stanitzki, M. (2010). Nucl. Instr. and Meth. A doi:10.1016/j.nima.2010.11.166
- L. Greiner et al., A MAPS based vertex detector for the STAR experiment at RHIC, Nuclear Instruments and Methods Section A, 2010, In Press, 10.1016/j.nima.2010.12.006
- 4. <u>http://indico.cern.ch/conferenceOtherViews.py?view</u> <u>=standard&confId=122027</u>
- 5. Mansuy, C. (2011). CERN PH-AID-DT