Stephen K N PORTILLO, supervised by James L PINFOLD CERN Summer Student Sessions
16 August 2011

Towards searching for trapped slepton decays in ATLAS

Supergravity

- Supergravity: supersymmetry + general relativity
- Gravitino interacts only gravitationally
- Gravitino lightest supersymmetric particle (LSP): next-lightest supersymmetric particle (NLSP) decays to standard model partner and gravitino in 0.1-1000 days

Cosmology

- Late NLSP decays affect cosmology
- Gravitino LSP is superWIMP dark matter
- Charged slepton NLSP favoured, particularly right-handed stau
- NLSP lifetime of a month solves ⁷Li abundance anomaly

Astronomy Workshop, D. P. Hamilton

Motivation

- Detectors trap sleptons, observe their late decays in cosmic ray runs
- Eliminate cosmic rays by only considering upward-going muons
- Trapped slepton decay muons will not hit both sides of the outer layers
- Neutrino-induced muons (and staus?) interesting
- Distinguish upward going muons using timing

J. L. Pinfold and L. Sibley, Phys. Rev. D 83, 035021 (2011).

Software Chain

- Monitored drift tube (MDT) timings in event summary data (ESD) with full reconstruction output
- Athena framework to write C++ programs accessing ESDs and outputting ROOT files
- Ganga to run Athena programs on the Grid to access entire runs of data
- ROOT to do final analysis

MDT Timing

- Drift time determines distance of hit from wire
- Drift time offset by time of flight, cable propagation, electronics
- t_{flight} calibration assumption
 - t_{flight,collision} muon originates from interaction point in time with bunch crossing
 - Cosmics have $t_{jitter} \mp t_{flight,collision}$ in top and bottom of detector

R. Aben, M. S. thesis, Universiteit van Amsterdam, 2010.

t_o Correction

- Muon reconstruction determines $t_{0,refit}$ to best fit segment, correction recorded
- Taking difference in correction in different layers removes jitter
- Can differentiate between $(0,2)\Delta t_{flight}$

```
expected for collision muons
t_{measured}
            = t_{drift} + t_{flight,collision}
            + t_{propogation} + t_{0,calibration}
reality for cosmic muons
t_{measured}
            = t_{drift} + t_{jitter} \pm t_{flight,collision}
             + t_{propogation} + t_{0,calibration}
t_{0,refit} = t_{measured} - t_{drift} - t_{propogation}
             -t_{flight,collision}
            = t_{jitter} - (0.2)t_{flight,collision}
             +t_{0.calibration}
t_{0 \ correction} = t_{0,refit} - t_{0,calibration}
\Delta t_{0 \ correction} = (0,2) \Delta t_{flight}
```

N. Benekos, J. Coggeshall and T. M. Liss (unpublished).

Cleaning the t_o Correction

 $\Delta t_{0\;correction}$ (ns) cosmic rays in upper half of detector

 μ corresponds to 11.44 m 3 hours of cosmic data

Cosmic ray tracks in upper half of detector

Conclusion

- More research needed to use t_o correction to find upward muons in cosmic ray runs
- Current triggers will be replaced with triggers involving timing and pointing requirements
 - Will reduce cosmic ray background, but also need to be careful sleptons aren't filtered out too
- Technique could be used to research neutrino-induced muons, neutrino-induced staus as well as slepton decays