Quantum Theory of the Lemaitre Model for
Gravitational Collapse

Claus Kiefer

Institut fur Theoretische Physik
Universitat zu Koln




THE NEW YORK TIMES MAGAZINE. FEBRUARY 19, 1933.

3

LEMAITRE FOLLOWS TWO PATHS TO TRUTH

By DUNGAN AIKMAN
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Lemaitre (1933)

Main result of Lemaitre’s 1933 paper Lunivers en expansion:
derivation of a spherically symmetric dust solution of Einstein’s
equations. In addition:

» Possible mechanism to describe the formation of clusters
of galaxies (nébuleuses)

» Proof that the Schwarzschild horizon at » = 2GM/c? is
only a coordinate singularity (Schwarzschild solution is the
vacuum limit of the LTB solution)

» Introduction of Misner—Sharp mass thirty years before
Misner and Sharp



The Lemaitre—Tolman—Bondi (LTB) model

LTB model: spherically-symmetric solution of the Einstein
equations with non-rotating dust of mass density ¢ as its source
(for constant density we have the special case of the
Oppenheimer—Snyder scenario).

R"?(p)
ds* = —cdr? 4+ —=— dp? + R*(p) dQ?,
1+2f(p) (°)
e F' R? F

where 7 is the dust proper time and p the radial coordinate that
labels the dust shells comprising the dust cloud; F'(p) is twice
the active gravitational mass inside the shell with label p.

Topic here: Quantization — how to proceed?









Main Approaches to Quantum Gravity

No question about quantum gravity is more difficult
than the question, “What is the question?”
(John Wheeler 1984)

» Quantum general relativity
» Covariant approaches (perturbation theory, path integrals,
spin foam, ...)
» Canonical approaches (geometrodynamics, connection
dynamics, loop dynamics, ...)

» String theory

» Other approaches
(Causal sets, group field theory, .. .)

Approach used here: Canonical quantum geometrodynamics
(For more details on all approaches, see e.g. C.K., Quantum Gravity, 3rd ed.,
Oxford 2012)



Collapse of a thin dust shell

» Spherically-symmetric thin shell consisting of particles with
zero rest mass (“null dust shell”);

» Classical theory: collapse to a black hole, or expansion
from a white hole (usually excluded for thermodynamical
reasons)

» Our quantization will lead to a singularity-free quantum
state (“superposition of black and white hole”)

(Hajicek and C.K. 2001)



Dynamics of a null dust shell

Figure: Penrose diagram for the outgoing shell in the classical theory.
The shellis at U = w.



Our approach: reduced quantization

» Separation of variables into pure gauge degrees of
freedom (‘embedding variables’) and physical degrees of
freedom (plus the respective canonical momenta)

» General existence of this ‘Kuchaf decomposition’ can be
shown by making a transformation to the standard ADM
phase space of general relativity (Hajicek and Kijowski 2000)

» In this construction, a formal ‘background manifold’ plays a
crucial role.



Wave packets

Exact time evolution for a wave packet describing the shell:
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Important consequence:
lim W5\ (t,7) =0
r—0

This means that the probability of finding the shell at vanishing
radius is zero! In this sense, the singularity is avoided in the
quantum theory. The quantum shell bounces and re-expands,
and no event horizon forms.



Expectation value and variance of the shell radius:

l2
(Ro)r = 2G(E) o = (25 + I)XP’
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It turns out that the wave packet can be squeezed below its
Schwarzschild radius if its energy is greater than the Planck
energy—a genuine quantum effect!

“Superposition of black and white hole”



Astrophysical relevance?

Central question: what is the timescale ¢, for shell collapse and
re-expansion?
» Ambrus and HajiCek (2005): t, is of order M, which would
be too short for an observational significance of the model;
» later investigations (e.g. in loop quantum gravity) led to
other timescales,! e.g. t, < M?;
» question also relevant for the LTB model, see below.

'See e.g. D. Malafarina, Universe 3 (2017) 2,48 for a review.



Quantization of the LTB model

» Wheeler—DeWitt quantization: semiclassical solutions can
be found from which Hawking radiation and corrections
can be calculated

» Similar attempts in loop quantum gravity

» here: reduced quantization in analogy to treatment of thin
shells
Assumption: the different shells in the cloud decouple, so we
can focus on a single shell. The Hamiltonian for the outermost
shell (with radius R,) turns out to read

P2
2R,’
which is the negative of the ADM energy. (P, is the momentum

conjugate to R,.) Restriction is made to the marginally bound
case.

H=-

C.K. and T. Schmitz, Phys. Rev. D 99, 126010 (2019)



As in the case of the collapsing shell, we seek for a unitary evolution
(here with respect to the dust proper time 7).
Schrédinger quantization:

d

P, — P, = —ih—.
— 1 dRO

The operator R, acts by multiplication. (In the following we will
suppress the subscript o.)
Hamilton operator:

d d
— R *“—R7?,

SN
=" pita
2 dR dR

where a and b encode factor ordering ambiguities. Schrédinger
equation: (B.1)
_OV(R, T
ih or
We impose square-integrability on wave functions and let them evolve
unitarily according to a self-adjoint Hamiltonian. This corresponds to
enforcing probability conservation in dust proper time.

= HU(R,T)



Singularity avoidance for wave packets

For a wide class of wave packets, the probability for the
outermost dust shell to be in the classically singular
configuration R = 0 is zero.

One explicit example:
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Figure: Probability amplitude for R as given by R*~2-20 |W(R, 7)|?,
compared to the classical trajectories (full green line) and the exterior
apparent horizon (dotted red line), witha =2 and b =1



» Discussion of Oppenheimer—Snyder models with flat®> and
non-flat® Friedmann sections describing the interior of the
dust cloud: Again, for certain parameter values, there is a
bounce of wave packets as seen by a stationary observer.

» Lifetime of bouncing solution (for an exterior observer)
turns out to be proportional to A/ (same order as
black-hole evaporation time); but more recent
investigations suggest 7, « M (Schmitz 2020) as in some
models of loop quantum gravity

2T. Schmitz, Phys. Rev. D 101, 026016 (2020)
3C. Kiefer and H. Mohaddes, Phys. Rev. D 107, 126006 (2023)



Quantum Oppenheimer—Snyder scenario

Closed slices: Bounce and oscillations inside the horizons:
eternal lifetime for the comoving observer
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Figure: Graph in the R — 7 space. The orange line represents the
Schwarzschild radius R = 2GM/c?, the green line the location where
equilibrium is reached after oscillations, where R = R = 0.



Reflections

» Lemaitre’s model from 1933 is well suited not only for
applications in classical cosmology, but also for addressing
fundamental issues in quantum gravity

» One can construct quantum models for gravitational collapse
which are singularity-free. There is a unitary evolution from a
collapsing to an expanding wave packet (bouncing solution). If
generally true, this would solve the cosmic-censorship problem.

> Lifetime of black-and-white hole? Compatible with observations?
Relevance for primordial black holes?

» Fate of naked singularities?

» Implementation of Hawking radiation? Fate of horizon and
relevance for information-loss problem? Most likely, horizon
disappears.

» Role of decoherence?



Figure credit: Wikimedia Commons
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