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Introduction

I General relativity connects the geometrical properties of
the spacetime to its matter content.
Matter tells spacetime how to curve itself, the spacetime
geometry tells matter how to move.

I Cosmological singularities constitute one of the main
problems of modern cosmology.

I The discovery of cosmic acceleration stimulated the
development of “exotic” cosmological models of dark
energy; some of these models possess the so called soft or
sudden singularities characterized by a finite value of the
radius of the universe and its Hubble parameter.



I The geodesics in these cases are regular and one can
describe the passing through the singularities in a simple
way.

I In some models with soft singularities an interplay
between the geometry and matter forces matter to
change some of its basic properties, such as the equation
of state for fluids and even the form of the Lagrangian.

I “Traditional” or “hard” singularities are associated with a
zero volume of the universe (or of its scale factor), and
with infinite values of the Hubble parameter, of the energy
density and of the pressure –Big Bang and Big Crunch

I One can describe the transition through the singularity in
Friedmann-Lemâıtre cosmological models including scalar
fields

I The procedure includes a change of a field
parametrization (for example, the transition between
Einstein and Jordan frames)



I Is it possible to describe the singularity crossing in
anisotropic universes?

I Can quantum cosmology eliminate the singularities arising
in classical General Relativity?

I What happens with quantum particles at the singularity
crossing?

I When is it possible and when it is not possible to describe
the transition through the singularity?
An attempt of a general approach.



Big Bang – Big Crunch crossing

I The idea that the Big Bang - Big Crunch
singularity can be crossed appears very
counterintuitive.

I Some approaches to the description of this
crossing were elaborated during the last couple
of decades (I. Bars, S.H. Chen, P.J. Steinhardt
and N. Turok, C. Wetterich, P. Dominis
Prester).



I There is an analogy with the horizon which
arises due to a certain choice of the spacetime
coordinates: the singularity arises because of
some choice of the field parametrization.

I On choosing some convenient field
parametrization one can provide a matching
between the characteristics of the universe
before and after the singularity crossing.

I Analogy to the Kruskal coordinates for the
Schwarzschild metric.



I On choosing appropriate combinations of the
field variables we can describe the passage
through the Big Bang - Big Crunch singularity,
but this does not mean that the presence of
such a singularity is not essential. Indeed,
extended objects cannot survive this passage.



Singularity crossing in a Bianchi - I universe
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In the vicinity of the singularity in the Einstein
frame

ã ∼ t̃
1
3 .

In the Jordan frame
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1
3 (t̃γ + t̃−γ)→ 0,
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3
.

Thus, one also encounters the Big Bang singularity
in the Jordan frame.



Mixing between geometrical and matter degrees of

freedom and the singularity crossing
The Friedmann-Lemâıthe model with a massless scalar field
can be described by the Lagrangian
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and the Friedmann equation is

ẋ2 − ẏ 2 = 0.



Inversely,

ã3 =
3(x2 − y 2)

16U1
,
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x

y
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Initially
x > |y |.

The solution

x = x1t̃ + x0, y = y1t̃ + y0, x
2
1 = y 2

1 .

Choosing the constants as

x0 = y0 = A > 0, x1 = −y1 = B > 0,

we have

ã3 =
3ABt̃

4U1
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We can make a continuation in the plane (x , y), to
x < |y | or, in other words, to t̃ < 0. Such a
continuation implies an antigravity regime and the
transition to the phantom scalar field, just as in the
more complicated schemes, discussed before.

How can we generalize these considerations

to the case when the anistropy term is

present ?
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We can again consider the plane (x , y) as

x = r cosh Φ,

y = r sinh Φ,

where a new hyperbolic angle Φ is defined by

Φ =

∫
dt̃
√
ϕ̇2

1 + ϕ̇2
2 + ϕ̇2.



We have reduced a four-dimensional problem to the
old two-dimensional one, on using the fact that the
variables α1, α2 and φ enter into the equation of
motion for the scale factor ã only through the
squares of their time derivatives.

The behaviour of the scale factor before and after
the crossing of the singularity can be matched by
using the transition to the new coordinates x and y ,
which mix geometrical and scalar field variables in a
particular way.

To describe the behaviour of the anisotropic factors
it is enough to fix the constants βi0.



Duality between static spherically or hyperbolically

symmetric solutions and cosmological solutions in

scalar-tensor gravity

I A duality between spherically symmetric static solutions
in the presence of a massless scalar field and the
Kantowski-Sachs cosmological models which instead
possess hyperbolic symmetry was found.

I The spherically symmetric Kantowski-Sachs universes are
connected by a duality transformation to the static
solutions possessing hyperbolic symmetry.



I The main ingredient of this duality is the exchange of
roles between the radial coordinate and the temporal
coordinate combined with the exchange between the
spherical two-dimensional geometry and the hyperbolical
two-dimensional geometry.

I We have found exact solutions for static spherically and
hyperbolically symmetric geometries in the presence of a
massless scalar field conformally coupled to gravity and
their respective Kantowski-Sachs cosmologies.
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For γ = 1/2
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This metric is regular at t = 0 and has singularities at
t = ±π and at t = t0 = −2arctan 1

A0
.

At t → ±π the scale factor a→ 0 while b →∞. At t → t0

both scale factors vanish.
At t < 0, we find ourselves in the region with antigravity
because Uc < 0.
The expression contains only integer powers of the
trigonometrical functions and one can describe the crossing of
the singularities in a unique way.
Thus, we can imagine an infinite periodic evolution of the
universe.



In the vicinity of the moment t → π, the asymptotic
expressions for the metric coefficients are

ds2 = dT 2 − c2
1Tdθ

2 − c2
2T sin2 θdφ2 − c3

1

T
dr 2.

This form has a structure similar to that of the Kasner
solution for a Bianchi-I universe, where the Kasner indices
have the values
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2
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1

2
, p3 = −1

2
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These indices do not satisfy the standard Kasner relations
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In the vicinity of the singularity at t = t0:

ds2 = dT 2 − c2
1Tdθ

2 − c2
2T sin2 θdφ2 − c3Tdr

2.

This behavior is isotropic.



Quantum cosmology and singularities
Speaking about quantum cosmology and singularities people
mean two different things:
Modification of the Friedmann equation.

ȧ2

a2
+

k

a2
= ρmatter + ρquantum corrections.

Vanishing of the quantum state of the universe.

Ψ(geometry + matter)geometry is singular = 0.

Wheeler-DeWitt equation

ĤΨ = 0.

Where is the time ?
What is the probability ?



A time can be defined as a certain function of
geometrical variables.
After that the wavefunction describing matter
variables satisfies an effective Schrödinger equation.
The singularity is associated with such values of the
matter variables when this singularity arises in the
classical theory.
Our analysis of some simple models tells that the
probability of the arising of soft singularities is not
suppressed by the wave function of the universe,
while the probability of Big Bang – Big Crunch
singularity tends to zero.



The suppression of the Big Bang – Big Crunch singularity
follows from the requirement of the normalizability of the wave
function of the Universe∫

dφΨ̄(φ)Ψ(φ) <∞.

When |φ| → ∞, the probability density Ψ̄Ψ should tend to
zero rapidly.

If |φ| → ∞ corresponds to Big Bang – Big Crunch singularity,
when this singularity is suppressed.



Particles, fields and singularities

What happens with particles (in quantum field theoretical
sense) when the universes passes through the cosmological
singularity ?
The scalar field in the flat Friedmann universe satisfies the
Klein-Gordon equation:

�φ + V ′(φ) = 0.

One can consider a spatially homogeneous solution of this
equation φ0, depending only on time t as a classical
background.
A small deviation from this background solution can be
represented as a sum of Fourier harmonics satisfying linearized
equations

φ̈(~k , t) + 3
ȧ

a
φ̇(~k , t) +

~k2

a2
φ(~k , (t)) + V ′′(φ0(t))φ(~k , (t)) = 0.



The corresponding quantized field is

φ̂(~x , t) =

∫
d3~k(â(~k)u(k , t)e i

~k·~x + â+(~k)u∗(k , t)e−i
~k·~x),

where the creation and the annihilation operators satisfy the
standard commutation relations:

[â(~k), â+(~k ′)] = δ(~k − ~k ′).

The basis functions should be normalized so that the
canonical commutation relations between the field φ and its
canonically conjugate momentum P̂ were satisfied

[φ̂(~x , t), P̂(~y , t ′)] = iδ(~x − ~y).



u(k , t)u̇∗(k , t)− u∗(k , t)u̇(k , t) =
i

(2π)3a3(t)
.

The linearized Klein-Gordon equation has two independent
solutions.
To define a particle it is necessary to have two independent
non-singular solutions.
It is a non-trivial requirement in the situations when a
singularity or other kind of irregularity of the spacetime
geometry occurs.
It is convenient also to construct explicitly the vacuum state
for quantum particles as a Gaussian function of the
corresponding variable. Let is introduce an operator

f̂ (~k , t) = (2π)3(â(~k)u(k , t) + â+(−~k)u∗(k , t)).

Its canonically conjugate momentum is

p̂(~k , t) = a3(t)(2π)3(â(~k)u̇(k , t) + â+(−~k)u̇∗(k , t)).



We can express the annihilation operator as

â(~k) = i p̂(~k , t)u∗(k , t)− ia3(t)f̂ (~k , t)u̇+(k , t).

Representing the operators f̂ and p̂ as

f̂ → f , p̂ → −i d
df
,

one can write down the equation for the corresponding
vacuum state in the following form:(

u∗
d

df
− ia3u̇∗f

)
Ψ0(f ) = 0.

Ψ0(f ) =
1√
|u(k , t)|

exp

(
ia3(t)u̇∗(k , t)f 2

2u∗(k , t)

)
.



In the case of the Big Bang - Big Crunch singularity, one of
the basis functions in the vicinity of the singularity becomes
singular and it is impossible to construct a Fock space.

In the case of the Big Rip singularity, when in finite interval of
time the universe achieves an infinite volume and infinite time
derivative of the scale factor, the Fock space can be
constructed for a spectator scalar field, but it does not exist
for the phantom scalar field driving the expansion.

In the case of the model with tachyon field, presented above,
we have considered three situations.



The non-singular transformation of the tachyon into
pseudo-tachyon. In this case both basis functions are regular
and hence the operators of creation and annihilation are well
defined.
However, at the moment of the transformation the dispersion
of the Gaussian wave function of the vacuum becomes infinite
and then becomes finite again.

In the vicinity of the Big Brake singularity it is impossible to
define a Fock vacuum.

However, if we add to the universe dust, the character of the
soft singularity is slightly changed and then the presence of the
Fock vacuum is restored.



Covariant approach to singularities

The crossing of the Big Bang - Big Crunch singularities looks
rather counterintuitive.
However, it can be sometimes described by using the
reparametrization of fields, including the metric.
One can say that to do this, it is necessary to resort to one of
two ideas, or a combination thereof.
One of these ideas is to employ a reparameterization of the
field variables which makes the singular geometrical invariant
non-singular.



Another idea is to find such a parameterization of the fields,
including, naturally, the metric, that gives enough information
to describe consistently the crossing of the singularity even if
some of the curvature invariants diverge.
The application of these ideas looks in a way as a craftsman
work.
Our goal is to develop a general formalism to distinguish
“dangerous” and “non-dangerous” singularities, considering
the field variable space of the model under consideration.
When the spacetime singularities can be removed by a
reparametrization of the field variables?



Our hypothesis: when the geometry of the space of the field
variables is non-singular.
The field space S was developed in order to treat on the same
(geometrical) footing both changes of coordinates in the
spacetime M and field redefinitions in the functional approach
to quantum field theory.
This approach requires introducing a local metric G in field
space S and computing the associated geometric scalars by
defining a covariant derivative which is compatible with G .
G is actually determined by the kinetic part of the action and
its dimension depends on the field content of the latter.



After some cumbersome calculations in the functional space,
we have shown that the Kretschmann scalar

K = RABCD RABCD

is finite in every theory of pure gravity

K =
n

8

(
n3

4
+

3n2

4
− 1

)
,

where n is the spacetime dimension.
It can be interpreted as a statement that all the singularities in
empty universe can be crossed.



Another hypothesis: quantum effective action and to
homotopy group

Let us introduce the functional

ψ[ϕ] = e i Γ[ϕ],

where Γ[ϕ] is the effective action. We shall call ψ[ϕ] the
functional order parameter because ψ plays the analogous role
of an order parameter in the theory of phase transitions in
ordered media or cosmology.
The field space M can be thought of as the ordered medium
itself, whereas functional singularities correspond to
topological defects.
The functional order parameter ψ defines the map

ψ :M→ S1,

from the field space to the unit circle, the latter playing the
role of the order parameter space.



The singularities can be characterized by the fundamental
group (first homotopy group).
If this group is trivial the singularity can be removed.
We have checked on the example of some simple systems with
removable singularity that the corresponding homotopy group
is indeed trivial.



Bianchi-I cosmologies, magnetic fields and

singularities

We have studied a Bianchi-I universe filled with a magnetic
field oriented along one of the spatial axes.
In the vicinity of the initial singularity, such a universe is
described by the Kasner solution.
The Kasner indices satisfy the standard Kasner relations for an
empty Bianchi-I universe.
At the “end of the evolution” i.e. when the volume of the
universe tends to infinity, the solution again becomes Kasner
one.
Again the Kasner indices satisfy the standard relations.
The transition between these two Kasner regimes coincides
with that arising in an empty Bianchi-II universe.



The mechanisms of the description of the crossing of the
singularities in an empty Bianchi-I universe and in a Bianchi-I
universe filled with a scalar field work well in this case too.



Conclusions and discussion

I General relativity contains many surprises

concerning relations between matter and

geometry. It is enough to take it seriously.

I There is no need to be afraid of

singularities!


