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I. General Relativity knows about its own quantum states

Two ways to determine the entropy of a system in a thermal state:

(1) In your lab, measure how much energy you have to add to raise the
temperature. Integrating

dS =
dE
T

.

yields S(T ).

(2) If you know the microscopic structure of the system (for example, a monatomic
ideal gas, a particular crystal, etc.), determine the spectrum and compute the
partition function. Let’s review how this works.



I. General Relativity knows about its own quantum states

Consider the unnormalized density operator

e−βH =
∞∑

k=0

e−βEk |k〉 〈k | .

The trace of this operator is the thermal partition function,

Z (β) ≡ Tr e−βH =
∑

k

e−βEk .

Notice that this trace can be evaluated by performing a path integral around a
Euclidean-time circle of length β. The action is I = βH.



I. General Relativity knows about its own quantum states

To get a normalized density operator, we need to divide by the partition function:

ρ(β) =
e−βH

Z (β)
.

The entropy of the state is:

S ≡ −Tr ρ log ρ = (1− β d
dβ

) log Z (β) .



I. General Relativity knows about its own quantum states

For a black hole, we have neither experimental access, nor do we know its
microscopic structure.

Nevertheless, we have tremendous confidence that the entropy of any black hole
is given by

S =
A

4G~
,

where G is Newton’s constant and A is the area of the event horizon of the black
hole. (I have set c = kB = 1.)

How can we possibly know this?



I. General Relativity knows about its own quantum states

Hawking (1974) computed the state of the quantum fields in the presence of a
black hole, assuming no new matter is added. He found that the outgoing modes
far from the black hole are in a thermal state, with temperature ~/(8πGE), where
E is the mass of the black hole. The most outrageous aspect of this result is not
that black holes radiate, but the claim that they radiate thermally with a particular
temperature. This is like computing the radiation spectrum of an unknown
substance given only its thermal energy. Indeed, Hawking’s calculation determines
the entropy of a black hole, via the first law:

S =
A

4G~
.

(See also Bekenstein 1972.)



I. General Relativity knows about its own quantum states

Gibbons and Hawking (1977) reproduced this result in a new, suggestive way,
starting with two radical assumptions:

1. Quantum gravity is a conventional quantum-mechanical theory that can be
associated to the boundary of the spacetime.

2. The boundary path integral can be evaluated by integrating over geometries
that “fill in” the boundary conditions.

These assumptions were not spelled out by Gibbons and Hawking. But they are,
in hindsight, how we can make sense of their calculation.



I. General Relativity knows about its own quantum states

The first assumption implies that we should compute Z (β) of an unknown
quantum theory associated with the boundary of spacetime.

Z (β) = Tr e−I ,

where I = βH is the action of the unknown theory.

The second assumption instructs us to perform this “impossible” task by evaluating
a gravitational path integral with boundary conditions given by a large sphere ×
Euclidean-time circle of length β, and I given by the Einstein-Hilbert action.



I. General Relativity knows about its own quantum states

One finds that the gravitational path integral is dominated not by flat space
(B3 × S1), but by a cigar-shaped geometry (topologically, B2 × S2) that
corresponds to the analytic continuation of a black hole solution. More precisely,
the dominant geometry is the Schwarzschild black hole that has Hawking
temperature 1/β.

Figure: Almheiri et al. 2020



I. General Relativity knows about its own quantum states

Computing the Einstein-Hilbert action of this geometry, one thus finds

Z (β) ∼ e−I(β) .

The entropy turns out to be

S = (1− β d
dβ

) log Z (β) =
A

4G~
,

where A is the area of the event horizon of the black hole.



I. General Relativity knows about its own quantum states

Holography, broadly understood, is the fact that in the presence of gravity
information is associated with the boundary of regions.

Here, the unknown quantum theory lives on the boundary, and the path integral is
carried out over geometries matching the boundary. A nontrivial partition function
is obtained in the saddlepoint approximation, from classical solutions of General
Relativity, with no knowledge of the quantum spectrum.

→ Jacobson’s talk this afternoon
→Witten’s talk on Friday



I. General Relativity knows about its own quantum states

Recent addendum:

In general, eS is not an integer, because the thermal state is really a weighted
ensemble of infinitely many pure states. Moreover, there are subleading
corrections to S = A/4G~ in the gravitational path integral.

However, for certain supersymmetric black holes one expects a degenerate
ground state Hilbert space of dimension approximately given by exp(A/4G~). In
this case the dimension should of course be an integer. One of the greatest
triumphs of string theory was the use of string dualities to compute this integer in
some special cases (Strominger, Vafa 1996).



I. General Relativity knows about its own quantum states

Iliesiu, Murthy, and Turiaci (2020) were able to
reproduce this result using only the
gravitational path integral. This required its
exact evaluation using supersymmetric
localization techniques. Gravity produces
many non-integer terms that coincide with the
Hardy-Ramanujan-Rademacher expansion
developed in analytic number theory, and
which thus sum up to an integer.



II. General Relativity knows about the quantum states of matter

Covariant Entropy Bound (RB 1999):

Smatter(L) ≤ A
4G~

.

time L

V

B

Today we understand this to be an implication of the
Quantum Focussing Conjecture (RB, Fisher, Leichenauer, Wall 2015), a
semiclassical generalization of the classical GR result that classical matter
focusses lightrays (e.g., bending of light by the sun).



II. General Relativity knows about the quantum states of matter
These conjectures have highly nontrivial implications for Quantum Field Theory
without gravity, which can be proven (laboriously, in some cases):
I Bekenstein bound (Bekenstein 1981; Casini 2008):

S ≤ 2π
~

∫
z>0

dx dy dz z 〈Ttt〉 ≈
πE∆z

~

I Quantum Null Energy Condition (RB, Fisher, Koeller, Leichenauer, Wall 2015;
Ceyhan, Faulkner 2018):

〈Tkk 〉 ≥
~

2π
S′′



III. General Relativity knows that information is lost preserved

Hawking (1976) found that information about the initial quantum state is lost when
a black hole forms and fully evaporates:

ρ = e−βH .

The entropy S(ρ) of the Hawking radiation grows monotonically.



III. General Relativity knows that information is lost preserved

One can also use the gravitational path integral to compute the entropy of the
radiation directly, without first computing ρ.

Penington 2019; Almheiri, Engelhardt, Marolf, Maxfield 2019



III. General Relativity knows that information is lost preserved
One finds a phase transition at the “Page time”, when the coarse-grained black
hole and radiation entropies are equal. The entropy will first increase as predicted
by Hawking. But after the Page time, the entropy decrease back to zero.

This is exactly how
the entropy of the
radiation should
behave, if the black
hole returns all
information.

(Page 1993)

Figure:
Almheiri et al. 2020



III. General Relativity knows that information is lost preserved

How does this work?

The von Neumann entropy can be written as an analytic continuation of the
n = 2,3,4, . . . Renyi entropies:

S = lim
n→1

Sn ; Sn = (1− n)−1 log Tr ρn .

Tr ρn can be computed from a gravitational path integral with n times replicated
boundary conditions (Lewkowycz, Maldacena 2013).



III. General Relativity knows that information is lost preserved

Figure:
Lewkowycz,
Maldacena
2013



III. General Relativity knows that information is lost preserved

The analytic continuation of Renyi entropies to n = 1 can be performed
geometrically. Find a minimal surface homologous to a given boundary region, in
the original spacetime. Its area gives the (fine-grained) von Neumann entropy of
the unknown theory in one step (Lewkowycz, Maldacena 2013).

In some cases the fundamental theory is known: AdS/CFT Maldacena (1997).
Then the gravitational predictions for the entropy can be checked directly. In fact,
this is how the “RT” prescription was first discovered (Ryu, Takayanagi 2006;
Hubeny et al. 2007; Engelhardt, Wall 2014).



III. General Relativity knows that information is lost preserved
The RT prescription implies that
spacetime induces a fundamental
quantum state as if it were a
quantum error correcting code. Not
all of the boundary is needed to
reconstruct the gravitating
spacetime. The homology region
between the minimal surface and
any boundary portion is precisely
the bulk region that can be
described (Wall 2014). The
reconstructible region is called the
entanglement wedge of the
boundary region.
Figure credit: Nishioka et al. 2009



III. General Relativity knows that information is lost preserved

The RT or Quantum Extremal Surface prescription arises from the Gravitational
Path Integral and is unrelated to AdS/CFT.

It can be used to compute, for example, the fine-grained entropy of the Hawking
radiation emitted by a black hole, for example in asymptotically flat spacetime.



III. General Relativity knows that information is lost preserved

Both Hawking’s calculation of the state of the radiation, and the recent direct
calculation of its entropy, used the gravitational path integral. This apparent
contradiction may offer an interesting hint: suppose that the gravitational path
integral computes some kind of average. Then it is consistent that S(ρ) 6= S(ρ).

RB, Tomasevic 1999;
RB, Wildenhain 2000



III. General Relativity knows that information is lost preserved

In general, it is not known what (if anything) gravity is averaging over. However,
certain 2-dimensional toy models of gravity were previously shown to be dual to an
ensemble average of quantum mechanical theories such as the
Sachdev-Ye-Kitaev model, or random matrix models. In the SYK model, the
average is over couplings; more generally, over matrices drawn from an ensemble.
See e.g. Saad, Shenker, Stanford (2018, 2019).



III. General Relativity knows that information is lost preserved

Another example: Euclidean wormholes connect two
unrelated boundaries, so that

ZL(βL) ZR(βR) 6= Zboth(βL, βR)

Without averaging, this would be a contradiction!
Figure credit:

Saad, Shenker, Yao 2021



IV. Gravity as Single-Shot Quantum Communication

In quantum (and classical) communication theory, one distinguishes between
single-shot and asymptotic tasks.

Single-shot means (roughly) that you would like to send someone a message
once, with success probability 1− ε. The minimum capacity of the communication
channel required for this task is set by smallest number of messages whose total
probability exceed 1− ε. This is controlled by a quantity called the smooth max
entropy. It has a counterpart called the smooth min entropy, related to the capacity
required for ε probability of success.

Asymptotic means that you intend to send n→∞ messages simultaneously, all
drawn from the same ensemble. The capacity per message can be smaller than in
the single-shot setting because of compression. In the quantum case, it can also
be useful to entangle the messages. The capacity required is now set by the von
Neumann entropy, which is always less than the max entropy.



IV. Gravity as Single-Shot Quantum Communication

A yet more obscure task is known as quantum state merging: Alice and Bob share
a quantum state that is entangled with a third system. Alice would like to send her
share of this entanglement to Bob, so that only Bob is entangled with the third
system. Again this task comes in one-shot and asymptotic variants. The required
capacities are quantified by the smooth conditional max- and min-entropies
(Renner, Wolf 2004); and in the asymptotic case, simply by the conditional von
Neumann entropy.



IV. Gravity as Single-Shot Quantum Communication
It turns out that the size of the entanglement wedge is correctly determined only if
we treat the bulk-to-boundary isometry as a one-shot communication task (Akers,
Penington 2020; Akers, Levine, Penington, Wildenhain 2024).

This implies that in general there are two entanglement wedges, emax ⊂ emin. emax
is the largest region that can be completely reconstructed from boundary data.
emin is the smallest region such that nothing at all can be reconstructed in its
complement.



IV. Gravity as Single-Shot Quantum Communication

When reconstructing from a boundary region, emax = emin unless the bulk matter
is in an “incompressible” quantum state. Such states are rarely considered.

Recently, RB, Penington (2022, 2023) generalized the notion of entanglement
wedges to arbitrary spacetimes, not just AdS. Our construction suggests that it is
possible to reconstruct from gravitating (bulk) regions, in the sense that the full
algebra of operators generated by the semiclassical operators in a region can
access a larger region. Our main long term goal was to generalize quantum
gravity beyond AdS/CFT, to our own universe. But we encountered a big surprise
right away.



IV. Gravity as Single-Shot Quantum Communication

A consistent prescription for bulk-bulk entanglement wedges required us to
distinguish between emax and emin already at the level of classical geometry!

Thus, sophisticated concepts from quantum communication theory are baked
deep into the classical structure of space and time.



V. Some Implications For Cosmology

Spacetime organizes quantum information.

Everything I talked about is true in semiclassical gravity, for arbitrary spacetimes
including cosmological solutions. Not limited to AdS.

The Page curve calculation demonstrates that semiclassical gravity is a far more
rigorous tool than many had anticipated. Solve Gab = 8πG 〈Tab〉 to all orders in
cG~, where c is the number of matter fields. The quantum fields evolve unitarily.



V. Some Implications For Cosmology

Unitary evolution of quantum fields is incompatible with the global description of
eternal inflation, where vacuum decay is assumed to happen stochastically at
specific times and locations. Indeed, a local description is sufficient for
understanding how vacua like ours can be produced (RB 2006). This is important
for solving the cosmological constant problem via a large vacuum landscape (RB,
Polchinski 2000).



V. Some Implications For Cosmology

Singularities: Original singularity theorems
were based on assumptions that are known to
be false in Nature, either classically (SEC) or
at the level of QFT (NEC).

Robust singularity theorems can be proven by
assuming the Generalized Second Law (Wall
2011) or the Quantum Focussing Conjecture
(RB, Shahbazi-Moghaddam 2022, 2023).



VI. Summary

The workings, ultimate power, and limitations of the gravitational path integral
remain mysterious.

There are indications that at least in some settings it must be given an
interpretation involving ensemble averaging.

At present, gravity is oracular – you have to ask nicely, and come up with clever
strategies for extracting its wisdom.

Yet, the fact that General Relativity gives us any information about quantum theory
at all (let alone highly nontrivial discoveries like the QNEC) is utterly remarkable.


