The Hubble Tension: New Results from JWST

Wendy L. Freedman University of Chicago

JWST

June 18, 2024 Lemaître Conference 2024 Vatican Observatory Planck

HST

Georges Lemaître

First to make a connection between observations and theory of the expanding universe (Lemaître 1927).

Hubble-Lemaître law

Hubble (1929)

 $H_0 = 500 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $H_0 = 625 \text{ km s}^{-1} \text{ Mpc}^{-1}$ Credit H. Duerbeck

History of H₀ Measurements

History of H₀ Measurements

Final HST Key Project Combined Results

HST Key Project resolved "factor of two" debate

$$H_0 = 72 \pm 3 \text{ (stat.)} \pm 7 \text{ (sys.)}$$

km/sec/Mpc

Freedman et al. 2001

Recent Measurements of the Hubble Constant

The Route to Higher Accuracy in H₀

What are the challenges in measuring an accurate local value of H₀?

HST Near-IR Data

Cepheid in NGC 7250 at a distance of 20 Mpc.

New JWST Near-IR Data

Cepheid in NGC 7250 at a distance of 20 Mpc.

HST: SNR 1-23 JWST : SNR 35-120

JWST

HST: SNR 1-23 JWST : SNR 35-120

New JWST Results To Date

•	Tip of the Red Giant Branch (TRGB)	JWST alone
•	JAGB / Carbon stars	JWST alone
•	Cepheid PL-Color-Metallicity Relation	JWST + HST

• L2 orbit

- 1.5 x 10⁶ km from Earth
- 6.5 meter primary mirror
- Infrared optimized
- 18 gold-coated beryllium segments

James Webb Space Telescope

The CCHP JWST Program

• JWST has

- almost 10x the sensitivity of HST at NIR wavelengths
- >3x the resolution.
- Program: measure distances using three independent methods applied to the same SNIa host galaxies
- BLIND analysis

Our Blinding Procedure

- Random numbers applied to each of our photometry catalogs
- All analysis carried out with arbitrary zero points and no knowledge of distances or H₀

(PL relations for Cepheids; Luminosity functions for TRGB and JAGB; artificial star tests)

• Only once all of the analysis complete were the data unblinded

The CCHP JWST Program

CCHP JWST Program

Three Independent Methods in the Same SN Ia Galaxies

- Tip of the Red Giant Branch (TRGB)
 JAGB/carbon stars
 Cepheids
- a. Independent techniques
- b. Different environments crowding, dust, chemistry
- c. Different evolutionary stages (masses)
- d. Advantage of same detectors, filters, PSFs, software, absolute calibration

Method 1. Lifting the Degeneracy in the Helium Core for Low-mass Stars (TRGB)

- Well-understood nuclear physics determines the temperature at which the electron degeneracy in the core is lifted, followed by helium core ignition
- $T_c \sim 10^8$ K, M_c=0.47 M_{\odot}
- Because of the degeneracy, the helium ignition happens at almost constant core mass. Thus the ignition occurs at a predictable luminosity.

Extended convective envelope

Not to scale

Observing the TRGB

Measuring the TRGB

Two approaches

I. Jang, D. Hatt

TRGB Results from JWST

Hoyt et al., in prep.

Method 2. Carbon/J-band Asymptotic Giant Branch (JAGB) Stars

Convective envelope

Not to scale

- Class of luminous red carbon AGB stars
- Small intrinsic dispersion in near-IR (0.2 mag)
- Carbon mixed up to surface (why appear red)
 - For massive stars carbon is burned before it reaches the surface
 - For lower masses, the carbon never reaches the surface

JAGB (Carbon) Stars

WLF + Madore, ApJ 2020

JWST: JAGB Distances

Lee et al., in prep

Method 3. Cepheids: Historical Standard For the Extragalactic Distance Scale

Multiwavelength Cepheid PLs

Fit to Galactic `Extinction Curve'

WLF et al. (1990, 1991) Madore & WLF (1991) Monson + WLF et al (2012) Monson + WLF et al. (2024, in prep.) Monson + WLF et al. (2012)

Why is 1% so hard?

Requires a slight digression...

New JWST, Reanalysis of HST, Multiple Cross-checks

- New, updated STScI pipeline analysis (Feb. 2024)
- Re-analysis of V,I archival HST data for Cepheids
- We have not included the (crowded) HST H-band data
- New JWST J-band data
- Artificial star experiments 1000 stars for each Cepheid
- VIJ extinction (dust-correction) plots
- 2 independent PSF-fitting packages for internal check
- Independent STScI aperture photometry external check
- Completely blind analysis
- 2 Supernova samples (Pantheon+ and CSP)
- Maser galaxy NGC 4258 geometric distance calibration

WLF et al., in prep

Improvement in the Near-IR

Cepheids: Near-Infrared

Near- and Mid-IR LMC PL (Leavitt) Relations

Carnegie Hubble Project (CSP) Spitzer mid-IR (2012)

Las Campanas Swope1-m Telescope JHK (Persson et al. (2004)

Spitzer 3.6 and 4.5 µm Milky Way light curves

Spitzer 3.6 and 4.5 µm LMC light curves

Near-infrared JWST Compared to Ground

- A factor of 400 in distance
- Comparable scatter in the period-luminosity relations!

NOTE: We do not yet have a JWST-only Cepheid distance scale!!

Challenges as the distances increase...

And you need optical HST data for the extinction corrections...

and the precision and accuracy decrease...

SH₀ES V and I Data / Cepheid Light Curves

White light (F350LP)

V-band (F555 W) I-band (F814W)

V) SH_oES: W = H - R (V-I) ; $R \equiv A_H / (A_{V-}A_{I})$

SH₀ES HST V and I Data JWST CCHP J Data / Cepheid Light Curves

Challenges / Accurate Cepheid Colors

Challenges

NGC 5643 – HST/JWST 13 Mpc

Challenges

M101– HST/JWST 6.9 Mpc

Period Cuts Matter

Period Cuts Matter

1.8

2.0

1.8 2.0

1.8 2.0

1.8

2

2.2

2.0 2.2

Metallicity

The Cepheid Period-Luminosity-Color-Metallicity Relation (Leavitt Law)

$$M_{\lambda_1} = lpha \ logP + eta(m_{\lambda_1} - m_{\lambda_2})_o + O[O/H] + \delta$$

Luminosity Period Color term 'Metallicity' Zero point

Effects of Metallicity on Cepheid Evolution

Metallicity

Z = 0.02

Z = 0.01

Z = 0.001

De Somma et al. 2021

Metallicity coefficient γ (mag / dex)

Gaia EDR3 measurements: New spectroscopy Breuval + Riess et al. 2021 -0.048 < γ < -0.251

Gaia EDR3 parallax measurements: Effect in near-infrared as large as in optical, contrary to previous studies.

Udalski et al. 2001
$$\gamma = 0$$

The Optical Gravitational Lensing Experiment. Cepheids in the Galaxy IC1613: No Dependence of the Period–Luminosity Relation on Metallicity*

Artificial Star Corrections

Galaxy	J_avg	V_avg	l_avg
M101	-0.003	-0.024	-0.033
N1365	-0.008	-0.051	-0.064
N2442	-0.008	-0.096	-0.133
N3972	-0.012	-0.068	-0.089
N4038	-0.007	-0.021	-0.044
N4424	-0.009	-0.010	-0.109
N4536	-0.007	-0.026	-0.033
N4639	-0.009	-0.028	-0.048
N5643	-0.005	-0.037	-0.072
N7250	-0.007	-0.091	-0.111
N4258	-0.005	-0.041	-0.051
Average	-0.007	-0.045	-0.071

Comparison of the Blinded TRGB and JAGB Distances

WLF et al. 2024

Comparison of Previously Published (Ground-Based + JWST) TRGB and JAGB Distances

WLF et al. 2024

SH₀ES / Pantheon+ Supernovae

CCHP JWST distances

• Composite sample of SNe from 18 surveys (Riess et al. 2022; Scolnic et al. 2023)

A) Nearby anchor NGC 4258 (same chemical composition as our JWST target galaxies (mean).

B) CCHP JWST calibration for galaxies in middle rung

- All three methods (Cepheids, TRGB, JAGB)
- NGC 4258 distance largest systematic: 1.5%

Carnegie Supernova Project (CSP) Dealing With Systematics

M. Phillips, W. Freedman, co-PIs

Well-sampled photometry and spectra

Most extensive, self-consistent data set for dealing with systematics

Input to MCMC analysis

Carnegie Supernova Project (CSP)

WLF et al. 2024

H₀ Results : CSP / (JAGB + TRGB)

EMCEE + pymc analyses

$$B_{corr} = P^{0} - P^{1}(s_{BV} - 1) - P^{2}(s_{BV} - 1)^{2} - \beta(B - V) - \alpha_{M}(\log_{10} M_{*}/M_{\odot} - M_{0}),$$

$$\mu(z, H_0, q_0) = 5 \log_{10}\left\{\frac{(1+z_{hel})cz}{(1+z)H_0}\left(1 + \frac{1-q_0}{2}z\right)\right\} + 25$$

- 9 dimensions, 20,000 steps, 1000 step burn-in
- TRGB, JAGB combined
- $H_0 = 69.4 \pm 1.7 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- corrected for peculiar velocities based on Carrick et al. (2015) flow model

WLF et al. 2024

Results

CCHP: 3 independent methods

Results

JAGB + TRGB (JWST data alone)

Concluding Remarks

- JWST has ushered in a new era of accuracy in our measurement of H₀, similar to what HST did three decades ago.
- Independent distances from the TRGB and JAGB/carbon stars agree at the percent level. These distances are based on JWST data alone.
- A combined analysis for these two methods gives $H_0 = 69.4 \pm 1.7$ km s⁻¹ Mpc⁻¹
- These new JWST H₀ results do not require adding new physics to Λ CDM.
- The distances based on Cepheids are not based on JWST alone. They also require optical data to correct for the
 presence of dust. Different approaches / choice of sample lead to values of H₀ ranging from 69-73 km s⁻¹ Mpc⁻¹.
- More JWST data at higher resolution will be required to measure H₀ at a 1% level from Cepheids alone. The HST data are currently the limiting factor.

Results

WLF et al., in prep.

JAGB Distances

Lee et al., in prep

