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In ordinary quantum mechanics, we usually consider the observer to
be outside the system that is being observed.

This is problematical
in the presence of gravity, most obviously in the case of a closed
universe: No one can look at a closed universe from outside.
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In ordinary quantum field theory, we can pick an arbitrary region U
in spacetime and define am algebra of observables in region U :

There are problems with this in the presence of gravity: With
spacetime fluctuating, it is hard to explain what we mean by the
region U? but anyway why do we want to define an algebra unless
it is the algebra of observables available to someone who lives in
the spacetime?
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So I want to construct an algebra that describes the measurements
made by an observer.

I will assume that the observer knows the
laws of nature but has no knowledge of the state of the universe
except whatever is gleaned from observation. (The second part fits
our situation in the universe, but the first does not, since in the
last few centuries we have been using our observations to learn the
laws of nature as well as learning the state of the universe, i.e. part
of what is usually called cosmology. I make the first assumption
because it would be much harder to model an observer who is
trying to learn the laws of nature.)
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The algebra will depend on the laws of nature, but it is required to
be universal and background independent, meaning that is is
defined once and for all without any knowledge of the specific
spacetime in which the observer is living.
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My starting point for today will be to reinterpret the CLPW paper
on the static patch in de Sitter space.

In that paper, the goal was
to define an algebra for the static patch. Because of the
symmetries of the static patch, it was necessary to assume that
there was an observer in the static patch: then one could define an
algebra by “gravitationally dressing” an operator to the observer’s
worldline. This logic does not apply for more general spacetimes:
in a generic spacetime with less symmetry, one could
“gravitationally dress” an operator to a feature of the spacetime,
or of the state. Today we will consider the same construction with
a different motivation: background independence.
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We expect that in a full theory of quantum gravity, an observer
cannot be introduced from outside but must be described by the
theory.

What it means then to assume the presence of an observer
is that we define an algebra that makes sense in a subspace of
states in which an observer is present. We don’t try to define an
algebra that makes sense in all states.
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First let us describe the situation in the absence of gravity.

The
observer propagates in a spacetime M on a geodesic γ:

The worldline is parametrized by proper time τ . As in classic work
of Unruh (1976), the observer measures along γ, for example, a
scalar field φ, or the electromagnetic field Fµν , or the Riemann
tensor Rµναβ , as well as their covariant derivatives in normal
directions.
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Focus on a particular observable, say φ(x(τ)) for a scalar field φ; I
will abbreviate this as φ(τ).

When we take gravity to be dynamical,
we have to consider that the same worldline can be embedded in a
given spacetime in different ways, differing by τ → τ + constant:

So φ(τ) isn’t by itself a meaningful observable: we need to
introduce the observer’s degrees of freedom and define τ relative
to the observer’s clock.
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In a minimal model, we equip the observer with a Hamiltonian
Hobs = mc2 + q, and a canonical variable p = −i d

dq .

However, it
turns out that it is better to assume that the observer energy is
bounded below, say q ≥ 0 (so m is the observer’s rest mass). We
then only allow operators that preserve this condition, so for
example e ip, which does not preserve q ≥ 0, should be replaced
with Πe ipΠ, where Π = Θ(q) is the projection operator onto q ≥ 0.
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We now want to allow only operators that commute with

Ĥ = Hbulk + Hobs,

where Hbulk is (any) gravitational constraint operator that
generates a shift of τ along the worldline.

An operator that
commutes with Ĥ is invariant under a spacetime diffeomorphism
that moves the observer worldline forward in time, together with a
time translation of the observer’s system.
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How do we find operators that commute with
Ĥ = H + Hobs = Hbulk + Hobs?

Since

[Hbulk, φ(τ)] = −iφ̇(τ),

we need
[q, φ(τ)] = iφ̇(τ),

which we can achieve by just setting

τ = p

or more generally
τ = p + s

for a constant s.
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So a typical allowed operator is φ(p + s), or more precisely

φ̂s = Πφ(p + s)Π = Θ(q)φ(p + s)Θ(q).

In addition to these operators (with φ possibly replaced by any
local field along the worldline such as the electromagnetic field or
the Riemann tensor) there is one more obvious operator that
commutes with Ĥ, namely q itself. So we define an algebra Aobs

that is generated by the φ̂s as well as q.
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The setup hopefully sounds “background independent,” since we
described it without picking a background.

However, background
independence really depends on interpreting the formulas properly.
We will not get background independence if we interpret φ̂s and q
as Hilbert space operators. To get a Hilbert space on which φ̂s and
q act, we have to pick a spacetime M in which the observer is
propagating. Then we won’t have background independence.

To get background independence, we have to think of Aobs as an
operator product algebra, rather than an algebra of Hilbert space
operators. The algebras for different M’s are inequivalent
representations of the same underlying operator product algebra.
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In the absence of gravity, we would characterize the objects φ(τ)
by their universal short distance singularities:

φ(τ)φ(τ ′) ∼ C (τ − τ ′ − iε)−2∆ + · · · .

This characterization does not require any knowledge about the
quantum state. After coupling to gravity and including the
observer and the constraint, the short distance expansion in powers
of τ − τ ′ becomes an expansion in 1/q. We characterize Aobs

purely by the universal short distance or 1/q expansion of operator
products. With that understanding, Aobs is
background-independent.
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There is a very special case that turns out to be important.

This is
the case that M is an empty de Sitter space, with some positive
value of the effective cosmological constant.

The green region is called a static patch, because it is invariant
under a particular de Sitter generator H that advances the proper
time of the observer.
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In the absence of gravity, there is a distinguished de Sitter invariant
state ΨdS such that correlation functions in this state are thermal
at the de Sitter temperature TdS = 1/βdS (Gibbons and Hawking;
Figari, Nappi, and Hoegh-Krohn).

For example, this means that
two point functions 〈ΨdS|φ(τ)φ′(τ ′)|ΨdS〉 have two key properties:

(1) Time translation symmetry:

〈ΨdS|φ(τ + s)φ′(τ ′ + s)|ΨdS〉 = 〈ΨdS|φ(τ)φ′(τ ′)|ΨdS〉.

(2) The KMS condition, which says roughly:

〈ΨdS|φ(τ)φ′(0)|ΨdS〉 = 〈ΨdS|φ′(0)φ(τ − iβ)|ΨdS〉.

(A precise statement involves holomorphy of the correlation
function in a strip in the complex plane.)
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Including gravity and the observer, we define a special state in
which the observer energy has a thermal distribution at the de
Sitter temperature

Ψmax = ΨdSe
−βdSq/2

√
βdS,

and we replace operators φ(τ) by “gravitationally dressed”
operators φ̂s = Πφ(p + s)Π.

Then a straightforward computation
shows that

(1′) We still have time-translation symmetry

〈Ψmax|φ̂s φ̂′s′ |Ψmax〉 = 〈Ψmax|φ̂′s+c φ̂
′
s′+c |Ψmax〉, c ∈ R.

(2′) The KMS condition simplifies:

〈Ψmax|φ̂s φ̂′s′ |Ψmax〉 = 〈Ψmax|φ̂′s′ φ̂s |Ψmax〉.
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Condition (2′) tells us that if, for any a ∈ Aobs, we define

Tr a = 〈Ψmax|a|Ψmax〉,

then the function Tr does have the algebraic property of a trace:

Tr ab = Trba, a,b ∈ Aobs.

This function has the property that Tr a†a > 0 for all a 6= 0,
meaning in particular that it is “nondegenerate.” Note that if
Ψmax is normalized then

Tr 1 = 1.
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Let HdS be the Hilbert space that we get by quantizing fields in de
Sitter space (in perturbation theory).

It is important to understand
what HdS describes and what it doesn’t describe. There are states
in HdS with any number of graviton excitations, but not a number
of them of order 1/~. An ~-independent number of graviton
excitations produces a back reaction on the geometry that is of
order ~ – or order G . So HdS doesn’t describe states with an O(1)
change in the geometry, only an O(G ) change.
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Let Ψ be any state in HdS and consider the function a→ 〈Ψ|a|Ψ〉,
a ∈ Aobs.

Roughly speaking, because Aobs has the nondegenerate
trace Tr, we can hope that there is a “density matrix” ρ ∈ Aobs

such that
〈Ψ|a|Ψ〉 = Tr aρ, a ∈ Aobs.

Rather as in ordinary quantum mechanics, we expect ρ to be a
positive element ρ ∈ Aobs with Tr ρ = 1. For example, let us find
the density matrix of the state Ψmax.
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The definition of the trace makes it clear that the density matrix of
the state Ψmax is σmax = 1, since to satisfy

〈Ψmax|a|Ψmax〉 = Tr aσmax ≡ 〈Ψmax|aσmax|Ψmax〉,

we set
σmax = 1.

This means that Ψmax is “maximally mixed,” similar to a
maximally mixed state in ordinary quantum mechanics whose
density matrix is a multiple of the identity.
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Now if a ∈ Aobs is any operator, consider the state Ψa = aΨmax.

It has a density matrix ρΨa = aa†, since for any b ∈ Aobs,

〈Ψa|b|Ψa〉 = 〈Ψmax|a†ba|Ψmax〉 = Tr a†ba = Trbaa†.

But states Ψa are dense in HdS – roughly by the Reeh-Schlieder
theorem, which is the fundamental result about entanglement in
quantum field theory. So a dense set of states have density
matrices.
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If we want all states to have density matrices, we need to take a
useful further step.

The Hilbert space HdS is the closure of a dense
set of states aΨdS, so if we want every state in HdS to have a
density matrix, we have to similarly take a closure of Aobs. This
closure, which is no longer background independent, can be defined
as the von Neumann algebra generated by bounded operators in
Aobs. I will call the closure Aobs,dS. Every state in HdS has a
density matrix in (or technically, in general affiliated to) Aobs,dS. It
is in this step that von Neumann algebras enter the picture.
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Once we know that every state has a density matrix, we can define
entropies as well.

The von Neumann entropy of a density matrix ρ
is as usual

S(ρ) = −Tr ρ log ρ.

In ordinary quantum mechanics, a maximally mixed state has a
density matrix that is a multiple of the identity, and it has the
maximum possible von Neumann entropy. The analog here is
Ψmax, with density matrix σmax = 1. It is clear that

S(σmax) = −Tr 1 log 1 = 0,

and by imitating an argument that in ordinary quantum mechanics
proves that a maximally mixed state has maximum possible
entropy, one can prove that every other density matrix ρ 6= 1 has
strictly smaller entropy:

S(ρ) < 0.
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One way to make this proof is as follows.

Let ρ 6= 1 be any density
matrix other than the identity. Then for 0 ≤ t ≤ 1,
ρt = (1− t) + tρ is also a density matrix. Let
f (t) = S(ρt) = −Tr ρt log ρt , so S(ρ) = f (1). Then

f ′(0) = 0, f ′′(t) < 0 for 0 ≤ t ≤ 1.

The first statement is almost immediate, and to prove the second,

one uses logM =
∫∞

0 ds
(

1
s −

1
s+M

)
, which leads to

f ′′(t) = −
∫ ∞

0
ds Tr

1

s + ρt
(1−ρ)

1

s + ρt
(1−ρ) = −

∫ ∞
0

ds TrB2 < 0,

where B is the self-adjoint operator

B =
(

1
s+ρt

)1/2
(1− ρ)

(
1

s+ρt

)1/2
. Since f ′(0) = 0, f ′′(t) < 0, we

get f (1) < 0 so
S(ρ) < 0.
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Thus, the system consisting of an observer in a static patch in de
Sitter space has a state of maximum entropy

Ψmax = ΨdSe
−βdSq/2

√
βdS,

consisting of empty de Sitter space with a thermal distribution of
the observer energy.

Why did this happen?
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The original argument that empty de Sitter space has maximum entropy
is due to Bousso (2000), who argued that this must be true, based on
the Second Law of Thermodynamics, because the static patch is empty
in the far future:

In the present context, we’ve defined the static patch by the presence of
the observer, so by definition the observer doesn’t leave the static patch
even in the far future. But we can expect that in the far future the static
patch will be empty except for the presence of the observer, and that the
observer will be in thermal equilibrium with the bulk quantum fields, and
that is what we see in the state Ψmax. So the maximum entropy state
that we found is the one suggested by Bousso’s argument.
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In a more general spacetime, I do not know an equally explicit
definition of what would be meant by a state of the observer
algebra.

However, there is a fairly reasonable conjecture, which is
inspired by A. Wall’s proof of the generalized second law (2011)
and has some support from recent work of Chen and Penington.
The idea is to interpret the Hartle-Hawking no boundary state as a
sort of universal state of maximum entropy (generalizing empty de
Sitter space, which has maximum entropy among states in a
particular de Sitter spacetime). The expectation value in the no
boundary state a→ 〈ΨHH|a|ΨHH〉 is a state of the observer
algebra that I will denote as σ(a). Then if a→ ρ(a) is any state of
the observer algebra, then I suggest that the relative entropy
between ρ and σ for the observer algebra gives - up to sign - a
definition of the entropy of the state seen by the observer:

S(ρ) = −S(ρ|σ).
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A lot of things are missing, for example:

* What about an observer (or a civilization) that did not always
exist?

* In this presentation, I used a field theory language; now can the
discussion be generalized to string/M-theory?

* Though the definitions make sense regardless, I want to remark
that the presentation that I’ve given seems most natural for an
observer who because of black hole or cosmological horizons
cannot see the whole universe.
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