Recent progress on inflation and dark energy from string theory

Michele Cicoli

Bologna Univ. and INFN Lemaitre Conference, 21 June 2024

ALMA MATER STUDIORUM Università di Bologna

Based on recent work in collaboration with: Bansal, Brunelli, Cunillera, Hebecker, Kuespert, Padilla, Pedro

See also: 'String cosmology: from the early universe to today' MC, Conlon, Maharana, Parameswaran, Quevedo, Zavala Inflation

Standard slow-roll

Inflating with string moduli

- Slow-roll picture with inflaton ϕ reproduced with type IIB Kaehler moduli
- Volume mode \mathcal{V} couples to all sources of energy due to $e^{K} = \mathcal{V}^{-2}$

 \longrightarrow cannot have a ϕ -independent plateau if $\phi \equiv \mathcal{V}$

 $\rightarrow \phi$ should be a direction $\perp \mathcal{V}: \phi \equiv \tau_{\phi}$

• Since each term in V depends on \mathcal{V} , $V(\phi) \simeq V_0$ only if leading dynamics fixes \mathcal{V} but not τ_{ϕ}

 $\rightarrow \phi \equiv \tau_{\phi}$ is a leading order flat direction with an approximate shift symmetry [Burgess,MC,Quevedo,Williams][Burgess,MC,deAlwis,Quevedo]

- Type IIB Kaehler sector: tree-level no-scale cancellation
 + 1-loop extended no-scale [MC,Conlon,Quevedo]
- Leading no-scale breaking effects: $O(\alpha'^3)$ corrections which lift only \mathcal{V}
- ϕ lifted by subdominant quantum effects

Leading dynamics

• Total potential:

$$V_{\text{tot}}(\mathcal{V}, \tau_{\phi}) = V_{\text{lead}}(\mathcal{V}) - V_{\text{sub}}(\mathcal{V}, \tau_{\phi}) \qquad V_{\text{sub}}(\mathcal{V}, \tau_{\phi}) \ll V_{\text{lead}}(\mathcal{V})$$

Stabilisation:

$$\frac{\partial V_{\text{lead}}}{\partial \mathcal{V}}(\langle \mathcal{V} \rangle) = 0 \quad \text{and} \quad \frac{\partial V_{\text{sub}}}{\partial \tau_{\phi}}(\langle \mathcal{V} \rangle, \langle \tau_{\phi} \rangle) = 0$$

with:

Subleading dynamics

• Setting $\mathcal{V} = \langle \mathcal{V} \rangle$, $V_{\text{tot}}(\langle \mathcal{V} \rangle, \tau_{\Phi})$ becomes:

$$V(\phi) = V_0[1 - g(\phi)]$$

with:

$$V_{0} \equiv V_{\text{sub}}(\langle \mathcal{V} \rangle, \langle \tau_{\phi} \rangle) \quad \text{and} \quad g(\phi) \equiv \frac{V_{\text{sub}}(\langle \mathcal{V} \rangle, \tau_{\phi}(\phi))}{V_{\text{sub}}(\langle \mathcal{V} \rangle, \langle \tau_{\phi} \rangle)}$$

with $\tau_{\phi}(\phi)$ determined by canonical normalisation

• Since τ_{ϕ} is a leading order flat direction

 $V_{sub}(\langle \mathcal{V} \rangle, \tau_{\phi}) \ll V_{sub}(\langle \mathcal{V} \rangle, \langle \tau_{\phi} \rangle)$ for $\tau_{\phi} > \langle \tau_{\phi} \rangle$

 \longrightarrow $g(\phi) \ll 1$ and $V(\phi) \simeq V_0$ for $\phi \gg 1$

String inflation potentials

Function $g(\phi)$ depends on 2 features:

- 1. Origin of effects which generate $V_{sub}(\langle \mathcal{V} \rangle, \tau_{\phi})$:
- Perturbative effects:

$$V_{\text{sub}}(\langle \mathcal{V} \rangle, \tau_{\phi}) \propto \frac{1}{\tau_{\phi}^{p}} \to 0 \quad \text{for} \quad \tau_{\phi} \to \infty \quad \text{if} \quad p > 0$$

• Non-perturbative effects:

$$V_{\text{sub}}(\langle \mathcal{V} \rangle, \tau_{\phi}) \propto e^{-k\tau_{\phi}} \longrightarrow 0 \quad \text{for} \quad \tau_{\phi} \rightarrow \infty \quad \text{if} \quad k > 0$$

- 2. Topology of τ_{ϕ} which determines $\tau_{\phi}(\phi)$ (canonical normalisation):
- Bulk (fibre) modulus:

$$\tau_{\phi} = e^{\lambda \phi}$$
 with $\lambda \sim \mathcal{O}(1)$

• Local (blow-up) modulus:

$$\tau_{\phi} = \mu \mathcal{V}^{2/3} \phi^{4/3}$$
 with $\mu \sim \mathcal{O}(1)$

String inflation potentials

 $V(\phi) = V_0[1 - g(\phi)]$

Non-perturbative Blow-up Inflation: [Conlon,Quevedo][Bond,Kofman,Prokushkin,Vaudrevange]

 $g(\phi) \propto e^{-k\mu \mathcal{V}^{2/3} \phi^{4/3}} \ll 1 \quad \text{for} \quad \phi > 0$

Non-perturbative Fibre Inflation: [MC,Pedro,Tasinato][Luest,Zhang]

 $g(\phi) \propto e^{-k e^{\lambda \phi}} \ll 1$ for $\phi > 0$

Loop Fibre Inflation: [MC,Burgess,Quevedo][Broy,Ciupke,Pedro,Westphal][MC,Ciupke,deAlwis,Muia]

 $g(\phi) \propto e^{-p\lambda\phi} \ll 1$ for $\phi > 0$

α-attractor realisation see Linde's talk

• Loop Blow-up Inflation: [Bansal,Brunelli,MC,Hebecker,Kuespert]

$$g(\phi) \propto \frac{1}{\mathcal{V}^{2p/3} \, \phi^{4p/3}} \ll 1 \qquad \text{for} \quad \phi \lesssim 1$$
$$p = 1/2 \qquad \longrightarrow \qquad V = V_0 \left(1 - \frac{c}{\mathcal{V}^{1/3} \phi^{2/3}}\right)$$

The model

• Type IIB compactification on CY with volume:

$$\mathcal{V} = \tau_b^{3/2} - \tau_s^{3/2} - \tau_{\phi}^{3/2} \simeq \tau_b^{3/2} \qquad T_i = \tau_i + i\vartheta_i$$

• Kaehler potential (tree-level + α'^3) and superpotential (tree-level + non-pert.):

$$K = -2\ln\left(\mathcal{V} + \frac{\xi}{g_s^{3/2}}\right) \qquad \qquad W = W_0 + e^{-a_s T_s} + e^{-a_{\phi} T_{\phi}}$$

• Scalar potential:

$$V = V_{\text{lead}}(\mathcal{V}, \tau_s) + V_{\text{sub}}(\mathcal{V}, \tau_{\phi})$$

$$V_{\text{lead}}(\mathcal{V},\tau_s) = \frac{C_{up}}{\mathcal{V}^2} + C_s \frac{\sqrt{\tau_s} e^{-2a_s\tau_s}}{\mathcal{V}} - D_s \frac{\tau_s e^{-a_s\tau_s}}{\mathcal{V}^2} + \frac{C_{\alpha'}}{g_s^{3/2}\mathcal{V}^3}$$
$$V_{\text{sub}}(\mathcal{V},\tau_{\phi}) = C_{\phi} \frac{\sqrt{\tau_{\phi}} e^{-2a_{\phi}\tau_{\phi}}}{\mathcal{V}} - D_{\phi} \frac{\tau_{\phi} e^{-a_{\phi}\tau_{\phi}}}{\mathcal{V}^2} \qquad a_{\phi} \gg a_s$$

LVS Minkowski mininum at:

$$\tau_s \sim g_s^{-1} \qquad \qquad \mathcal{V} \sim e^{a_s \tau_s} \sim e^{a_{\phi} \tau_{\phi}}$$

Loop corrections

1-loop K computed only in toroidal orientifolds: [Berg,Haack,Koers]

$$\mathcal{V} = \sqrt{\tau_1 \tau_2 \tau_3} \qquad \qquad \delta K_{(g_s)} = \delta K_{(g_s)}^{KK} + \delta K_{(g_s)}^W$$

i) tree-level exchange of KK closed strings between parallel D7/O7s:

$$\delta K_{(g_s)}^{KK} = g_s \left(\frac{C_1^{KK}(U,\overline{U})}{\tau_1} + \frac{C_2^{KK}(U,\overline{U})}{\tau_2} + \frac{C_3^{KK}(U,\overline{U})}{\tau_3} \right)$$

ii) tree-level exchange of winding closed strings at D7 intersection:

$$\delta K^{W}_{(g_{S})} = \frac{C^{W}_{1}(U,\overline{U})}{\tau_{2}\tau_{3}} + \frac{C^{W}_{2}(U,\overline{U})}{\tau_{1}\tau_{3}} + \frac{C^{W}_{3}(U,\overline{U})}{\tau_{1}\tau_{2}}$$

Conjecture for 1-loop K for CYs: [Berg,Haack,Pajer]

Loop corrections from EFT

1-loop K yields corrections to kinetic terms and V

EFT interpretation [von Gersdorff,Hebecker][MC,Conlon,Quevedo][Gao,Hebecker,Schreyer,Venken]

Heavy mode H coupled to a light mode L

 $\mathcal{L} \supset M^2 H^2 + g \, L \, H^2$

• 2-point function 1-loop renormalisation:

$$\mathcal{L}_{kin} = \left[1 + \frac{1}{16\pi^2} \left(\frac{g}{M}\right)^2\right] \partial_\mu L \partial^\mu L$$

• Coupling *g* when L is a Kaehler modulus:

$$g \simeq \frac{M^2}{M_p}$$

1-loop correction to K:

$$\delta K \simeq \frac{1}{16\pi^2} \left(\frac{M}{M_p} \right)^2$$

Loop corrections from 4D

$$\delta K \simeq c_{\text{loop}} \left(\frac{M}{M_p}\right)^2$$

• If H = massive string state:

$$M \equiv M_s \simeq \frac{M_p}{\sqrt{\mathcal{V}}} \Rightarrow \delta K \simeq \frac{c_{\text{loop}}}{\mathcal{V}}$$
 matches $\delta K_{\alpha'^3}$ [Becker, Becker, Haack, Louis]

• If H = winding mode:

 $M \equiv M_W \simeq \frac{M_p}{\sqrt{\mathcal{V}}} \tau^{1/4} \implies \delta K \simeq c_{\text{loop}} \frac{\sqrt{\tau}}{\mathcal{V}} \qquad \text{matches } \delta K_{(g_s)}^{KK} \text{ [Berg,Haack,Pajer]}$ $\longrightarrow \delta K_{(g_s)}^{KK} = \text{tree-level KK closed strings} = 1\text{-loop winding open strings}$ extended no-scale cancellation in V [MC,Conlon,Quevedo]

• If H = Kaluza-Klein mode:

 $M \equiv M_{KK} \simeq \frac{M_p}{\sqrt{\mathcal{V}} \tau^{1/4}} \implies \delta K \simeq \frac{c_{loop}}{\mathcal{V}\sqrt{\tau}} \qquad \text{matches } \delta K_{(g_s)}^W \text{ [Berg,Haack,Pajer]}$ $\longrightarrow \delta K_{(g_s)}^W = \text{tree-level winding closed strings} = 1\text{-loop KK open strings}$ if $\tau = \tau_{\phi} \quad \delta K \simeq \frac{c_{loop}}{\mathcal{V}\sqrt{\tau_{\phi}}} \implies \delta V \simeq \frac{c_{loop}}{\mathcal{V}^3\sqrt{\tau_{\phi}}} \quad \text{leading correction to V} \longrightarrow \text{ crucial for inflation}$

Loop corrections from 4D

• 1-loop K from KK modes in loop should match 1-loop Coleman-Weinberg potential:

$$V_{1-\text{loop}}^{CW} \simeq \frac{1}{16\pi^2} \Lambda^2 \operatorname{Str} M^2$$

[MC,Conlon,Quevedo]

• Supertrace in supergravity:

Str
$$M^2 \simeq m_{3/2}^2 \simeq \frac{M_p^2}{\mathcal{V}^2}$$

• Cut-off Λ given by KK mass of open strings on D7s

i) D7s on
$$\tau_b$$
: $\Lambda \simeq \frac{M_p}{\nu^{2/3}}$
 $\delta V_{(g_s)} \simeq \frac{c_{loop}}{\nu^{10/3}}$
ii) D7s on τ_{ϕ} : $\Lambda \simeq \frac{M_p}{\tau_{\phi}^{1/4}\sqrt{\nu}}$
 $\delta V_{(g_s)} \simeq \frac{c_{loop}}{\nu^3 \sqrt{\tau_{\phi}}}$

same as from 1-loop 2-pt function

• If there is no D7 on τ_{ϕ} , can still have KK modes of τ_{ϕ} (closed strings) in loop

 $\longrightarrow \Lambda \simeq \frac{M_p}{\tau_{\phi}^{1/4}\sqrt{v}}$ \longrightarrow τ_{ϕ} -dependent loop corrections to V are unavoidable

Inflaton potential

Potential with loops:

[Bansal,Brunelli,MC,Hebecker,Kuespert]

- Non-perturbative blow-up inflation [Conlon,Quevedo] requires $c_{loop} \ll 10^{-6}$
- For $c_{loop} \gtrsim 10^{-6}$ potential in inflationary region is

$$V \simeq V_0 \left(1 - \frac{c_{\text{loop}}}{\mathcal{V}^{1/3} \Phi^{2/3}} \right) \qquad V_0 \equiv \frac{\beta}{\mathcal{V}^3}$$

Inflationary dynamics

• Slow-roll parameters:

$$\epsilon = \frac{1}{2} \left(\frac{V_{\phi}}{V} \right)^2 \simeq \frac{2}{9} \frac{c_{\text{loop}}^2}{\mathcal{V}^{2/3} \phi^{10/3}}$$
$$\eta = \frac{V_{\phi\phi}}{V} \simeq -\frac{10}{9} \frac{c_{\text{loop}}}{\mathcal{V}^{1/3} \phi^{8/3}}$$

Cosmological observables:

$$\begin{split} N_{\rm e} &= \int_{\Phi_{\rm end}}^{\Phi_*} \frac{V}{V_{\Phi}} \, \mathrm{d}\Phi \simeq \frac{9}{16} \frac{\mathcal{V}^{1/3} \Phi_*^{8/3}}{c_{\rm loop}} & \Phi_* = 0.06 \, N_e^{7/22} \\ \hat{A}_s &= \frac{9V_0}{4} \frac{\mathcal{V}^{2/3} \Phi_*^{10/3}}{c_{\rm loop}^2} \simeq 2.5 \times 10^{-7} & \mathcal{V} = 1743 \, N_e^{5/11} \\ n_s &= 1 + 2 \, \eta - 6 \, \epsilon \simeq 1 - \frac{20}{9} \frac{c_{\rm loop}}{\mathcal{V}^{1/3} \Phi_*^{8/3}} & r = 16 \, \epsilon \simeq \frac{32}{9} \frac{c_{\rm loop}^2}{\mathcal{V}^{2/3} \Phi_*^{10/3}} \\ n_s &\simeq 1 - \frac{1.25}{N_e} & r \simeq \frac{0.004}{N_e^{15/11}} & \bullet & r \simeq 0.003(1 - n_s)^{15/11} \end{split}$$

Cosmological predictions

Control over EFT

• Values of UV parameters:

for $51.5 \leq N_e \leq 53$ $\mathcal{V} = 1743 N_e^{5/11} \sim \mathcal{O}(10^4)$ $\phi_* = 0.06 N_e^{7/22} \sim \mathcal{O}(0.2)$

• Canonical normalisation: $\phi \simeq \tau_{\phi}^{3/4}/\sqrt{\mathcal{V}} \simeq (\tau_{\phi}/\tau_b)^{3/4}$

 $\phi \sim \mathcal{O}(0.2)$ implies $\tau_{\phi} \lesssim \tau_b$ \longrightarrow can have inflation within Kaehler cone?

Check in an explicit CY example from [MC,Krippendorf,Mayrhofer,Quevedo,Valandro]:

$$\mathcal{V} = \frac{1}{9} \sqrt{\frac{2}{3}} \left(\tau_b^{3/2} - \sqrt{3} \tau_s^{3/2} - \sqrt{3} \tau_{\phi}^{3/2} \right) \qquad \tau_b = \frac{27}{2} t_b^2 \qquad \tau_s = \frac{9}{2} t_s^2 \qquad \tau_{\phi} = \frac{9}{2} t_{\phi}^2$$

Kaehler cone conditions:

$$t_b + t_s > 0 \qquad t_b + t_{\phi} > 0 \qquad t_s < 0 \qquad t_{\phi} < 0$$

Canonical normalisation:

$$\tau_{\phi} = \left(\frac{\sqrt{3}}{4}\right)^{2/3} \mathcal{V}^{2/3} \phi^{4/3} \simeq \left(\frac{1}{18\sqrt{2}}\right)^{2/3} \tau_b \phi^{4/3}$$

At horizon exit:

$$\frac{|t_{\phi}|}{t_b} = \left(\frac{1}{2\sqrt{6}}\right)^{1/3} \phi^{2/3} \simeq 0.6 \phi^{2/3} \simeq 0.2 \quad \text{for} \quad \phi \simeq 0.2 \quad \text{well inside Kaehler cone}$$

N_e from post-inflation

SM realisation

- SM D7s cannot wrap τ_s due to tension between non-pert effects and chirality [Blumenhagen,Moster,Plauschinn]
- SM D7s cannot wrap τ_{ϕ} since τ_{ϕ} -dependent FI-term would make τ_{ϕ} too heavy

------ need to introduce 2 additional intersecting blow-ups τ_{SM} and τ_{int}

$$\mathcal{V} = \tau_b^{3/2} - \tau_s^{3/2} - \tau_{\phi}^{3/2} - \tau_{SM}^{3/2} - \lambda (\tau_{int} - \tau_{SM})^{3/2}$$

• D-term stabilisation:

$$\xi_{FI} = 0 \quad \Leftrightarrow \quad \tau_{\text{SM}} = \lambda^2 (\tau_{\text{int}} - \tau_{\text{SM}})$$

i) if $\lambda = 0$, $\tau_{SM} \rightarrow 0$ \longrightarrow SM on D3-branes at a CY singularity

ii) if $\lambda \neq 0$, $\xi_{FI} = 0$ fixes τ_{int} in terms of τ_{SM} and τ_{SM} remains as a flat direction fixed by loops

$$V(\tau_{\rm SM}) = \left(\frac{d_{\rm loop}}{\sqrt{\tau_{\rm SM}}} - \frac{g_{\rm loop}}{\sqrt{\tau_{\rm SM}}}\right) \frac{W_0^2}{\mathcal{V}^3} \qquad [MC, Mayrhofer, Valandro]$$

$$\tau_{s} = \left(1 + \sqrt{\frac{g_{\text{loop}}}{d_{\text{loop}}}}\right) \tau_{\text{SM}} \sim \tau_{\text{SM}} \sim \mathcal{O}(10) \simeq g_{\text{SM}}^{-2}$$

SM on D7-branes wrapped around τ_{SM}

Volume decay rates

Masses of canonically normalised moduli: τ_{ϕ} becomes ϕ and V becomes χ ٠ $m_{\phi} \simeq \frac{W_0 \ln \mathcal{V}}{\mathcal{V}} M_p$ and $m_{\chi} \simeq \frac{W_0}{\mathcal{V}^{3/2} \sqrt{\ln \mathcal{V}}} M_p$ Decays of volume χ : ٠ $\Gamma_{\chi \to \vartheta_b \vartheta_b} = \frac{1}{48\pi} \frac{m_{\chi}^3}{M^2}$ i) closed string axions $\theta_{\rm h}$ ii) MSSM Higgses H_u and H_d $\Gamma_{\chi \to H_{\nu}H_{d}} = 2Z^2 \Gamma_{\chi \to \vartheta_h \vartheta_h}$ $\Gamma_{\chi \to hh} = \frac{c_{\rm loop}^2}{32\pi} \left(\frac{m_0}{m_{\rm el}}\right)^4 \frac{m_{\chi}^3}{M^2}$ iii) SM Higgses h $\frac{\Gamma_{\chi \to hh}}{\Gamma_{\mu \to 0}} \simeq c_{\text{loop}}^2 \left(\frac{m_0}{m}\right)^4$ SM on D7s: $m_0 \simeq \frac{M_p}{\mathcal{V}} \gg m_{\chi}$ $\frac{\Gamma_{\chi \to hh}}{\Gamma_{\chi \to 0, 0}} \simeq \left(c_{\text{loop}} \mathcal{V}\right)^2 \gg 1$ χ decays into SM Higgses h SM on D3s: $m_0 \leq m_{\chi}$ $\frac{\Gamma_{\chi \to hh}}{\Gamma_{\chi \to \theta_h \theta_h}} \leq c_{\text{loop}}^2 \ll 1$ χ decays into $\vartheta_{\rm b}$ axions, H_u and H_d

Inflaton decay rates

Inflaton wrapped by hidden D7s:

decay into hidden gauge bosons $\gamma_{\rm h}$ $\Gamma_{\phi \to \gamma_h \gamma_h} \simeq \frac{\mathcal{V}}{64\pi} \frac{m_{\phi}^3}{M_n^2}$

• Inflaton not wrapped by any D7:

i) decay into volume moduli χ and ϑ_{b} axions

$$\Gamma_{\phi \to \chi \chi} \simeq \Gamma_{\phi \to \vartheta_b \vartheta_b} \simeq \frac{(\ln \mathcal{V})^{3/2}}{64\pi \mathcal{V}} \frac{m_{\phi}^3}{M_p^2}$$

SM on D7s: χ then decays istantaneously into h h

SM on D3s: χ then decays later on into H_u and H_d, and $\vartheta_b \vartheta_b$

ii) for SM on D7s, extra decays into SM gauge bosons γ , τ_{SM} moduli and ϑ_{SM} (QCD) axions

$$\Gamma_{\phi \to \tau_{SM} \tau_{SM}} \simeq \Gamma_{\phi \to \vartheta_{SM} \vartheta_{SM}} \simeq \Gamma_{\phi \to \chi\chi} \qquad \qquad \Gamma_{\phi \to \gamma\gamma} \simeq N_g \ \Gamma_{\phi \to \chi\chi} \simeq 12 \ \Gamma_{\phi \to \chi\chi}$$

 τ_{SM} then decays istantaneosuly into $\gamma \gamma$, and $\vartheta_{SM} \vartheta_{SM}$ with [MC,Hebecker,Jaeckel,Wittner]

$$\frac{\Gamma_{\tau_{SM}\to\gamma\gamma}}{\Gamma_{\tau_{SM}\to\vartheta_{SM}}\vartheta_{SM}} = 8 N_g \ge 96 \gg 1$$

SM on D7s and inflaton wrapped by D7s

 $n_s \simeq 0.9765$ $r \simeq 1.7 \times 10^{-5}$ $T_{\rm rh} \simeq 4 \times 10^{10} \,{\rm GeV}$ $\Delta N_{\rm eff} \simeq 0$

SM on D7s and unwrapped inflaton

Predictions:

 $n_s \simeq 0.9761$ $r \simeq 1.7 \times 10^{-5}$ $T_{\rm rh} \simeq 3 \times 10^{12} \,{\rm GeV}$ $\Delta N_{\rm eff} \simeq 0.14$

SM on D3s and inflaton wrapped by D7s

 $n_s \simeq 0.9757$ $r \simeq 1.8 \times 10^{-5}$ $T_{\rm rh} \simeq 1 \times 10^8 \,{\rm GeV}$ $\Delta N_{\rm eff} \simeq \frac{1.43}{Z^2} \simeq 0.36$ Z = 2

SM on D3s and unwrapped inflaton

Conclusions on inflation

- Type IIB Kaehler moduli $\perp V$ are good inflatons ϕ due to approximate shift symmetries
- $V(\phi)$ determined by nature of breaking effects (pert/non-pert.) and topology (bulk/local cycle)

--- can have several scenarios

- New model: Loop Blow-up Inflation [Bansal,Brunelli,MC,Hebecker,Kuespert]
- Inflation driven by a blow-up mode with $V(\phi)$ generated by 1-loop corrections to K
- 1-loop K: conjecture from toroidal computation
 + EFT matching with 1-loop 2-point function and Coleman-Weinberg potential
- Inflaton potential:

$$V(\mathbf{\phi}) = V_0 \left(1 - \frac{c}{\mathcal{V}^{1/3} \mathbf{\phi}^{2/3}} \right)$$

- EFT under control with inflation inside Kaehler cone
- Microscopic parameters: $\mathcal{V} \sim \mathcal{O}(10^4)$ and $\phi_* \sim \mathcal{O}(0.2)$
- Predictions: $0.9757 \leq n_s \leq 0.9765$ and $r \simeq 2 \times 10^{-5}$
- Post-inflation with moduli domination and reheating from moduli decay
- Depending on SM realisation: $51.5 \leq N_e \leq 53$ and $0 \leq \Delta N_{eff} \leq 0.36$

Dark energy

dS from string theory?

- Stable dS does not exist
- Difficulty to get dS with EFT under control
- Extreme point of view: metastable dS may also be incompatible with QG
 - → No dS conjectures see Ooguri's talk
 - DE has to be quintessence
- Conservative point of view: no dS conjecture applies only at boundary of moduli space
 - can have metastable dS in interior of moduli space
- No dS with parametric control but dS with numerical control is OK due to small parameters [MC,de Alwis,Maharana,Muia,Quevedo] $W_0 \ll 1$ in KKLT and $V^{-1} \sim e^{-1/g_s} \ll 1$ in LVS
- Several uplifting mechanisms: anti-D3s, D-terms, T-branes, α' effects, F^{cx str} ≠ 0, non-pert. effects at singularities
- Progress in classifying α ' and g_s corrections using 10D symmetries

[Burgess,MC,Ciupke,Krippendorf,Quevedo]

Global CY models with SM on D3s and dS from T-branes

[MC,Garcia Extebarria,Quevedo,Schacher,Shukla,Valandro]

Metastable dS may exist but its lifetime is upper-bounded see talks by Dvali and Vafa

Quintessence from string theory?

- Take no metastable dS point of view
 - implications for quintessence?
- Models that would be ruled out:

i) Saxion quintessence slow-roll down a shallow potential (due to no dS conjecture) ii) Axion quintessence with $f \gtrsim M_p$ (due to WGC)

- Models that would be OK:
 - i) Saxion/axion hilltop for a Minkowski/AdS vacuum

ii) Saxion runaway

No quintessence at boundary of moduli space

• Focus on type IIB volume mode (similar results for type IIA and heterotic)

[MC,Cunillera,Padilla,Pedro]

$$K = -3 \ln \tau \quad \Rightarrow \quad \mathcal{L}_{kin} = \frac{3}{4\tau^2} \partial_\mu \tau \partial^\mu \tau = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi \quad \tau = e^{\sqrt{2/3}\phi}$$

• Potential for $\partial_{\tau} W = 0$ and $\tau \to \infty$ (α ' expansion under control)

$$V = e^{K}(|D_{U}W|^{2} + |D_{S}W|^{2}) = \frac{V_{0}}{\tau^{3}}$$

• If $|D_U W| = |D_S W| = 0$, quantum corrections give a larger suppression for $\tau \to \infty$

$$V = \frac{V_0}{\tau^{3+p}} = V_0 e^{-\lambda\phi}$$
 $\lambda = \sqrt{6} (1+p)$ $p > 0$

$$\epsilon = \frac{1}{2} \left(\frac{V_{\phi}}{V}\right)^2 = \frac{\lambda^2}{2} = 3 (1+p)^2 > 1$$
 No acceleration

• Similar results for dilaton $s \rightarrow \infty$ (g_s expansion under control)

Multifield quintessence?

Quintessence could still work due to kinetic coupling with axion
 non-geodesic motion in curved field space gives acceleration [

[MC,Dibitetto,Pedro]

Idea:
$$T = \tau + i\theta \implies \mathcal{L}_{kin} \supset \frac{3}{4\tau^2} \partial_\mu \theta \partial^\mu \theta = \frac{3}{4} e^{-2\sqrt{\frac{2}{3}}\phi} \dot{\theta}^2$$

gives effective time-dependent contribution to $V(\phi)$ if $\dot{\theta} \neq 0$

Challenges for quintessence

T 7

- Quintessence, as dS, has to be in bulk of moduli space
- Same control issue as dS + extra challenges:

i) Ultra-light quintessence field

$$m_{\phi} \lesssim H_0 \sim 10^{-60} M_p \qquad from \qquad \eta = \frac{V_{\phi\phi}}{V} \lesssim 1$$

radiatively stable? fifth-forces?

ii) String and SUSY scale above 1 TeV

$$M_s \simeq \frac{M_p}{\sqrt{\mathcal{V}}} \gtrsim 1 \, TeV \qquad \Leftrightarrow \qquad \mathcal{V} \lesssim 10^{30}$$

iii) Heavy volume mode

 $m_{\mathcal{V}} \gtrsim 1 \ meV \simeq 10^{-30} \ M_p$ from fifth-forces (screening/sequestering hard to work) $\Rightarrow m_{\mathcal{V}} \gg m_{\phi}$

• Leading order: \mathcal{V} is lifted while ϕ is flat: $V = V_{\text{lead}}(\mathcal{V}) + V_{\text{sub}}(\mathcal{V}, \phi)$

$$\frac{V_{\text{lead}}}{V_{\text{sub}}} \sim \left(\frac{m_{\phi}}{m_{\mathcal{V}}}\right)^2 \lesssim 10^{-60} \qquad \text{cannot be obtained with perturbative corrections}$$

since $\frac{V_{\text{loop}}}{V_{\alpha'^3}} \sim \frac{1}{\mathcal{V}^{1/3}} \lesssim 10^{-60} \quad \Leftrightarrow \quad \mathcal{V} \gtrsim 10^{180} \quad \Rightarrow \quad M_s \ll 1 \, TeV$

Quintessence model building

- Quintessence as challenging as dS + extra challenges (fifth forces, right scales, stability)
- Metastable dS seems easier to build
- But what if quintessence is preferred by data? (DESI?)
- Best candidate: axion quintessence
- $V_{lead}(\mathcal{V})$ has a SUSY breaking Minkowski vacuum and axion ϕ is flat
- $V_{sub}(\phi, \mathcal{V})$ generated by non-perturbative effects

i) Right hierarchy:
$$V_{sub}(\phi, \mathcal{V}) \ll V_{lead}(\mathcal{V})$$

 $V_{sub} \sim e^{-a\tau} \sim e^{-a\mathcal{V}^{2/3}} \longrightarrow \frac{V_{lead}}{V_{sub}} \sim \frac{e^{a\mathcal{V}^{2/3}}}{\mathcal{V}^3} \gtrsim 10^{60} \text{ for } \mathcal{V} \lesssim 10^{30} \text{ and } M_s \gtrsim 1 \, TeV$

ii) Radiative stability due to perturbative shift symmetry

iii) No fifth-force problem

• But axion potential yields acceleration only for $f \gtrsim M_p$

• For $f < M_p$ can have quintessence from axion hilltop

$$V_{sub}(\phi, \mathcal{V}) = \Lambda(\mathcal{V}) \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$

[MC,Cunillera,Padilla,Pedro]

Axion hilltop

Focus on axions in LVS

[MC,Cunillera,Padilla,Pedro]

$$\mathcal{V} = \tau_b^{3/2} - \tau_s^{3/2}$$
 $K = -2\ln\left(\mathcal{V} + \frac{\xi}{g_s^{3/2}}\right)$ $W = W_0 + e^{-a_s T_s} + e^{-a_b T_b}$

Leading order stabilisation: SUSY breaking Minkowski vacuum at

 $V_{\text{lead}}(\mathcal{V}_{max}) \sim m_{\mathcal{V}}$

• Subleading order:

$$V_{\text{sub}}(\phi, \mathcal{V}) \sim e^{-\sqrt{\frac{3}{2}}\frac{M_p}{f}} M_p^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right] \qquad \qquad f = \sqrt{\frac{3}{2}}\frac{M_p}{a_b \tau_b}$$
$$10^{-120} \quad for \quad f \sim 0.003 \quad M_p \quad \Leftrightarrow \quad \mathcal{V} \simeq \tau_b^{3/2} \sim 10^3$$
$$\text{natural + EFT under control}$$

 $m_{\mathcal{V}} \sim 10^{13}~{\rm GeV}$

Hilltop and initial conditions

• How close should ϕ be to the maximum to get acceleration with $\omega_{\phi} \simeq -1$ and $\Omega_{\phi} \simeq 0.7$?

[MC,Cunillera,Padilla,Pedro]

- Quantum diffusion during inflation causes fluctuations $\Delta \phi \sim H_{inf}$
- Need to require $H_{inf} \leq \Delta_{max}$

i) $f \simeq 0.1 M_p \longrightarrow H_{inf} \lesssim 10^{-4} M_p \sim 10^{14} GeV$ but can get DE scale for $f \simeq 0.1 M_p$? ii) $f \simeq 0.02 M_p \longrightarrow H_{inf} \lesssim 10^{-18} M_p \sim 1 GeV$ tiny and even lower for $f \simeq 0.003 M_p$

- In (i) use poly-instantons to generate axion potential with right DE scale
- In (ii) use axion alignment to get an effective $f \simeq 0.1 M_p$

Quintessence from poly-instantons

• LVS in fibred CYs:

$$\mathcal{V} = \sqrt{\tau_f} \tau_b - \tau_s^{3/2}$$

[MC,Padilla,Pedro]

Potential:

$$V = V_{lead}(\mathcal{V}, \tau_s, \vartheta_s) + V_{inf}(\tau_f) + V_{sub}(\vartheta_b, \vartheta_f)$$

Loop Fibre Inflation: [MC, Burgess, Quevedo]

$$V_{inf} \simeq V_0 (1 - \frac{4}{3}e^{-\phi/\sqrt{3}})$$
 and $H_{inf} \simeq 10^{-5}M_p$

• 2 light bulk axions: ϑ_{b} = spectator (0.2% of DM) and ϑ_{f} = DE via poly-instantons

$$W = W_{LVS} + e^{-a_b T_b + e^{-a_f T_f}}$$
[Blumenhagen,Schmidt-
Sommerfeld;Luest,Zhang]

• Axion potential:

$$V_{sub} \sim e^{-a_b \tau_b} \left[1 - \cos\left(\frac{\phi_b}{f_b}\right) \right] + e^{-a_b \tau_b - a_f \tau_f} \left[1 - \cos\left(\frac{\phi_b}{f_b} + \frac{\phi_f}{f_f}\right) \right]$$

$$\longrightarrow V_{DE} \sim e^{-f_f^{-1} - f_b^{-1}} \left[1 - \cos\left(\frac{\phi_f}{f_f}\right) \right] \quad \text{after fixing } \phi_b = 0$$

$$f_f = \frac{N_f}{2\sqrt{2}\pi\tau_f} M_p \simeq 0.1 M_p \quad \text{and} \quad f_b = \frac{N_b}{2\pi\tau_b} M_p \simeq 0.005 M_p$$

Numerical results:

$$\tau_f \sim O(5)$$
 $\tau_b \sim O(500)$ $N_1 \sim O(5)$ $N_2 \sim O(10)$
 $m_b \simeq 10^{-29} \, eV$ $m_f \simeq 10^{-32} \, eV$

Conclusions on dark energy

- No quintessence at boundary of moduli space where α ' and g_s expansions are under control
- Multifield string models can give late time acceleration but without $\omega_{\phi} \simeq -1$ and $\Omega_{\phi} \simeq 0.7$
- Quintessence as challenging as dS + extra challenges (fifth forces, right scales, stability)
- dS models seem easier to build
- If quintessence is preferred by data (DESI?), axions are the best candidates to drive DE
- But simplest axion potential does not yield acceleration
- Need to rely on axion hilltop:

i) $f \simeq 0.1 M_p$ \longrightarrow $H_{inf} \lesssim 10^{-4} M_p \sim 10^{14} GeV$

ii) $f \simeq 0.02 M_p \longrightarrow H_{inf} \lesssim 10^{-18} M_p \sim 1 \text{ GeV}$

In (i) do not get right DE scale for a single axion

poly-instantons, not tuned but need an explicit CY example

• In (ii) need alignment to get an effective $f \simeq 0.1 M_p$ but contrived and tuned