
Julia in HEP

Graeme A Stewart, Benedikt Hegner, Pere Mató - CERN EP-SFT

Thanks also to Tamas Gal

GDB, 10 January 2024

Julia - what’s that then?

● The Julia language was launched in 2012 (v1.0 in 2018)
○ New, but not immature!

● Modern imperative language, multi-paradigm with reflection and object
orientation

● Robust built-in tooling (learning from earlier languages)
○ Outstanding integrated package manager and build system
○ Module system with excellent code reuse
○ Modern tooling, with built in debuggers and profilers
○ Interactive - REPL and full notebook support (it’s the “Ju” in Jupyter)

● Julia has been built from the ground up to be very fast
○ JIT compilation via LLVM to native machine code
○ Performance is comparable to C and C++ (as a baseline, see microbenchmarks)

2

https://julialang.org/benchmarks/

Solving the Expression Problem

● For code reuse we want to…
○ Define new types to which existing

operations apply
■ Easy in OO, hard in functional

○ Define new operations that apply to
existing types
■ Hard in OO, easy in functional

● Julia uses the paradigm of
multiple-dispatch
○ Generic programming allows

different parts of code to mix, JIT
keeps everything fast

○ Add new methods to existing
generic functions for new types ✅

○ Add new methods to generic
functions for existing types ✅

3

These packages know nothing about each other!

JuliaCon 2019 | The Unreasonable Effectiveness of Multiple Dispatch | Stefan Karpinski
https://www.youtube.com/live/kc9HwsxE1OY

https://www.youtube.com/live/kc9HwsxE1OY

But is Julia interesting for HEP?
● There exist many languages in the world

○ Each has different strengths and weaknesses

● We think the answer is yes!
○ Julia is specifically designed for numerical programming for science and engineering*

■ So we are the target audience and the support for our use case is strong
○ Julia is much easier to program in than C++

■ Experience shows that students with Python experience can be productive in Julia very
quickly

○ Code written in Julia is fast, often close to peak performance
■ The first prototype can evolve naturally into the production code

○ This overcomes the two language problem that we have today
■ We use Python because it’s human productive, we use C++ because it’s fast
■ We suffer from friction at the interface, plus a general diminishing of skills and interest in

C++
○ Wrappers allow integration with existing code in C++ and Python - vital for our existing codes
○ Interfaces needed to ease the use of Julia in HEP are maturing

4
*Julia used a lot in ASML, Boeing, Pfizer among others

JuliaHEP
● New HSF working group created after CHEP 2023 to channel

community efforts to evaluate and introduce Julia language in
HEP
○ A paper on the Potential of the Julia Programming Language for

High Energy Physics Computing was in the pipeline at this time
and is now published [Comput Softw Big Sci 7, 10 (2023)]

● First JuliaHEP workshop organised at ECAP in Erlangen,
Germany
○ 4 full days (6 to 9 of November)
○ 20 people in person + ~30 people remote
○ An agenda organized with tutorials, keynote

presentations, long and short presentations
○ Contributions from key Julia developers (including

one of the language founders, Stefan Karpinski)
○ Plenty of time for discussions

5Erlangen Centre for Astroparticle Physics (ECAP)

https://hepsoftwarefoundation.org/workinggroups/juliahep.html
https://doi.org/10.1007/s41781-023-00104-x
https://indico.cern.ch/e/juliahep2023
https://hepsoftwarefoundation.org/workinggroups/juliahep.html

Agenda

6

Busy workshop covering many topics - I now give

some highlights of what were key things covered

JuliaHEP WS: Tutorials

● Introduction to Julia - Sam Skipsey and Graeme Stewart
○ Intended for beginners to get started (language basics, multidimensional arrays, functions,

multiple dispatch, plotting, dataframes, etc.)
○ New training material developed for the occasion

■ Presented as Jupyter Book (collection of notebooks)
■ Available also in the HSF Software Training Center

● Julia for High-Performance Computing (HPC) - Carsten Bauer
○ After a 3 short introductory talks on Julia on HPC (Carsten Bauer, Mose Giordano, Ludovic

Räss) we had a hands-on tutorial using the Noctua 2 cluster
(143.872 cores)

○ https://github.com/carstenbauer/juliahep-hpctutorial
○ Provided login credentials to all interested participants

● BAT.j: Bayesian Analysis Toolkit - Oliver Schulz
○ Hands on tutorial

7

https://juliahep.github.io/JuliaHEP-2023/intro.html
https://hepsoftwarefoundation.org/training/center.html
https://pc2.uni-paderborn.de/hpc-services/available-systems/noctua2
https://github.com/carstenbauer/juliahep-hpctutorial

HPC

● Julia can be a great option for HPC!
○ Serial and parallel performance on-par with Fortran/C/C++
○ portability and high-productivity (same julia packages on

Laptop and HPC clusters)
○ New opportunities (e.g. interactive HPC)

● Challenges
○ Julia depot (downloaded packages and artifacts) can get

under (a lot) of pressure!
○ Memory footprint, O(1 GB) per process

● Examples HPC projects
○ CliMA @ Caltech - Climate Modeling Alliance
○ CESMIX @ MIT - Exascale simulation of materials in extreme environments
○ Trixi @ RWTH Aachen / HLRS - Computational fluid dynamics
○ GPU4GEO @ ETH / CSCS - Computational earth science

8

Tooling
● BinaryBuilder.jl

○ To produce and pack binaries as Julia packages (_jll packages) for large combinations of
architecture/operating system/compiler and resolving all dependencies

● UnROOT.jl
○ Julia package to read ROOT TTrees and RNTuples
○ Implements Tables.jl interface with the LazyTree to read the requested column when needed.

It is fast and multi-threading friendly

● WrapIt
○ Automatically generate code to wrap C++ packages (CxxWrap.jl)

● Unit and Integration testing
○ Native support for unit tests and easy deployment of integration tests

● Scientific project reproducibility
○ Practical guidelines to achieve reproducibility
○ Each project comes with two essential files for Project.toml (direct dependencies and version

requirements) and Manifest.toml (the exact version of all dependencies)
9

https://indico.cern.ch/event/1292759/contributions/5613062/
https://indico.cern.ch/event/1292759/contributions/5618591/
https://indico.cern.ch/event/1292759/contributions/5618593/
https://indico.cern.ch/event/1292759/contributions/5613056/
https://indico.cern.ch/event/1292759/contributions/5614668/

Data Analysis
● Analysis Grand Challenge

○ Columnar data extraction, filtering, new columns,
systematic variations into histograms. Statistical
model construction and visualisation.

○ Equivalent results as Coffea and PyHEP tools.
Loop with < 100 lines. Good scaling on 25 nodes.

● Julia DataFrames Analysis
○ Demonstrated that analysis can also be done with

DataFrames.jl (equivalent to Pandas in Python)

● Corpuscles.jl & PDGdb.jl
○ Modules to provide easy access to Particle Data (PDG)

● BAT.jl and EFTFitter.jl
○ Powerful tools for Bayesian analysis and to constrain

free model parameters by combining multiple
measurements 10

Results from Julia
AGC code vs. Coffea,
Atell Krasnopolski &
Jerry Ling

EFT fit workflow,
Cornelius Grunwald

https://indico.cern.ch/event/1292759/contributions/5613055/
https://indico.cern.ch/event/1292759/contributions/5618594/
https://indico.cern.ch/event/1292759/contributions/5613050/
https://indico.cern.ch/event/1292759/contributions/5635203/
https://indico.cern.ch/event/1292759/contributions/5613049/
https://indico.cern.ch/event/1292759/contributions/5613054/

MC Generator, Simulation and Reconstruction

● QED.jl - Strong-field particle physics ecosystem
○ Fields, processes, phase space, event generation, etc.
○ Optimizations for large number of Feymann diagrams
○ Neural importance sampling (better than classical

VEGAS)

● Jet Finding
○ Test-case for algorithm development and testing

ergonomics
○ Julia reaches C++ speed

● Geant4.jl
○ Wrapping C++ Geant4 with a new simpler and more

ergonomic API
○ MT support and very good performance

● Neurthino.jl
○ Neutrino oscillation probability calculator 11

Jet finding in Julia vs.
FastJet, Graeme
Stewart

Geant4 generated
event using Geant4,jl
wrappers, Pere Mato

https://indico.cern.ch/event/1292759/contributions/5624514/
https://indico.cern.ch/event/1292759/contributions/5613052/
https://indico.cern.ch/event/1292759/contributions/5613048/
https://indico.cern.ch/event/1292759/contributions/5613051/

Visualization
● Two major packages for data

visualization: Plots.jl and Makie.jl
○ Plots.jl is probably easy to use out of the

box, while Makie.jl is more powerful but
requires some learning

● Makie Example: Event display for
Neutrino Detectors (KM3NeT)

12
Display from RainbowAlga.jl, Tamas Gal, ECAP

https://indico.cern.ch/event/1292759/contributions/5618595/
https://indico.cern.ch/event/1292759/contributions/5618595/

Automatic Differentiation and Scientific ML

● Chris Rackauckas (Julia Lab Co-PI) gave a masterclass on Differentiable
Simulation (using the whiteboard and advanced calculus)

● Impossible to reproduce here :-)
● Main messages we got:

○ Add a NN only on the unknown parts of the ODE system. It gives much better predictivity
○ Julia has many packages for AD using different methods, from symbolic manipulation to

operator overloading, in forward and reverse mode (https://juliadiff.org)

13

https://juliadiff.org

What’s Next?

● We identified a number of important items to work on to improve integration
into the HEP world
○ More wrappers to speak to existing code: HepMC3, Minuit, FastJet, Pythia8, etc.
○ The ability to write RNTuples (see an update from Jerry Ling on this important topic)
○ Develop better support for histograms in FHist.jl (or redo) and support statistical standards like

HS3
○ Generic HEP support for Lorentz Vectors, etc, plus plotting recipes in Plots.jl and Makie.jl

● And we need to work on topics that make Julia deployable at the large scale
○ Precompilation of packages (we don’t want to JIT on 1M nodes!)
○ Can leverage a lot of experience from the HPC community here

14

https://indico.cern.ch/event/1352914/

What’s Next?

● Julia for ML
○ Native packages for deep learning, relying on Julia’s great strengths in autodifferentation and

JIT speeds

● Julia on GPUs
○ CUDA, HIP, oneAPI supported
○ More interestingly the kernel abstractions package allows all of these specifics to be hidden

● Training
○ Keep developing material and presenting it!

HSF JuliaHEP WG now organising monthly meetings - lots to get involved in!

15

Next JuliaHEP workshop will be
30 September - 4 October at CERN

https://hepsoftwarefoundation.org/workinggroups/juliahep.html
https://indico.cern.ch/category/16956/

