# Probing the grid job slot performance with HEPScore

Natalia Szczepanek Ewoud Ketele, Domenico Giordano (CERN/IT-GOV-ENG)

on behalf of the HEPiX Benchmarking Working Group

GDB, 10<sup>th</sup> January 2024

# Main Objective

- Study grid job slot performance in correlation with server resources (load, memory usage, power consumption, etc.)
- Measure performance in units of HEPScore
- Leverage the enhanced HEP Benchmark Suite

2

### With the support and in collaboration with



- Ivan Glushkov,
- Alessandro Di Girolamo,
- Alexander Lory,
- Jaroslava Schovancova,
- Ilija Vukotic,
- Cesare Delle Fratte,
- Andrej Filipcic



• Federico Stagni

## HEPScore23 Configuration

- 7 workloads from 5 experiments
- All workloads have the most recent version of the experiment's software:
  - Support x86\_64 and aarch64

| Experiment | WL           | x86_64/aarch64 |
|------------|--------------|----------------|
| ALICE      | digi-reco    |                |
| ATLAS      | gen_sherpa   |                |
|            | reco_mt      |                |
| Belle2     | gen-sim-reco |                |
| CMS        | gen-sim      |                |
|            | reco         |                |
| LHCb       | sim          |                |

Doc "How to run HS23": https://w3.hepix.org/benchmarking/how to run HS23.html

Benchmarking Working Group: https://w3.hepix.org/benchmarking.html

Github: https://gitlab.cern.ch/hep-benchmarks/hep-score

4

# Job Slot



- Each site server has a variety of CPU models and number of cores (256, 128, 64...)
- We are running the benchmark injecting the HEP Suite script as a normal experiment job running inside the PILOT Apptainer
- We probe multi-core job slots (8 and 4 cores) and single core job slots
- HEPScore is being calculated at the end as a geometric mean of all WLs if all workloads succeed



5

# Job Submission

• The Benchmarking Script is injected in the site job slot via the standard job submission system



# In practice

Successfully implemented and deployed the pipeline for ATLAS and LHCb

• ATLAS:

- Automated submission via HammerCloud
- Uses: PanDA, Rucio, ActiveMQ, Elasticsearch, Grafana, Kibana...
- LHCb:
  - Manual submission to DIRAC



#### ATLAS data from: 07/04/23 - 08/01/24

- Automated job submission every 3 hours on each panda resource
  - 139 Panda Resources
  - 227 CPU Models
  - 28246 unique hosts
- Over 190k jobs finished
- Each job: 8 core slot
- Median of job's walltime: 81minutes
  - HEPScore23 configuration with 1 repetition
  - 0.06% of total walltime\_x\_core

#### LHCb data from: 01/08/23 - 01/11/23

- Manual job submission
  - 48 Sites
  - 110 CPU Models
  - 1650 unique hosts
- 2.1k jobs finished
- Each job: 1 or 4 core slot (most 1core)
- Median of job's walltime: 43minutes
  - Ihcb-sim-run3-ma-bmk with 3 repetitions

#### Benchmarking with Suite Plugins

- Configurable collection of various system metrics (e.g. load, memory usage, power consumption)
  - Run alongside benchmarks
  - Flexible modification and addition of collected metrics
- Collection configurable at the level of exec command, regex, unit, interval, mins, aggregation

#### Suite configuration

```
plugins:
CommandExecutor:
  metrics:
    cpu-frequency:
      command: cpupower frequency-info -f
      regex: 'current CPU frequency: (?P<value>\d+).*'
      unit: kHz
      interval mins: 1
    power-consumption:
      command: >
        sudo ipmitool sensor get 'PS1 Power In' ; sudo ipmitool sensor get
        'PS2 Power In'
      regex: 'Sensor Reading\s+:\s*(?P<value>\d+).*'
      unit: W
      interval mins: 1
    load:
      command: uptime
      regex: 'load average: (?P<value>\d+.\d+),'
      unit: ''
      interval mins: 1
    used-memory:
      command: free -m
      regex: 'Mem: *(\d+) *(?P<value>\d+).*'
      unit: MiB
      interval mins: 1
    wsed-swap-memory:
      command: free -m
      regex: 'Swap: *\d+ *(?P<value>\d+).*'
      unit: MiB
      interval mins: 1
```

# Data Analysis

## Performance vs Load Data Model



# From the model to real data

Correlation between performance of the machine and load per physical core



#### LHCb



0.75 1.00 Load/Physical Core

0.00

0.25

0.50

#### Anomalous performance



#### Discriminate normal trend and anomalies



## Measurements before changes



- MPPMU performance in terms of score per core is low and comparable to other sites that have double load in the servers
- After site admin investigation, it was found out that servers had a wrong masking of the disabled cores while SMT was ON
  - Then, fix has been applied

## Measurements after changes



- Applied changes: SMT off fixed the problem with cores masking misconfiguration
- MPPMU performance increased by 66%, load decreased

The analysis and issue resolution had a real impact on the site performance

### More examples





#### We have contacted number of site admins to understand how different configuration aspects impact on computing performance

Natalia Szczepanek (CERN) Ewoud Ketele (CERN)

Probing the grid job slot performance with HEPScore

## Deliberated choices

- Not all of the observed deviations from the model are issues, some of them are deliberated sites choices, for example:
  - VEGA is HPC queue: SLURM always allocate full physical cores (i.e. both sibling threads) to a job, to avoid interference with other job slots. As an effect the job performance is flat, not scaling with the server load.



# Last but not least ARM results

# ARM results

- 2 sites already exposing ARM servers for ATLAS:
  - CPU model: Ampere Altra at 160 cores
- The performance vs load does not apply here.
- ARM server does not include Hyper-Threading technology. The frequency stay stable during the run.
- Therefore we do not see correlation between load and performance as before.



# Work in progress

Metrics, including power consumption, memory usage, and other user-defined parameters, can provide us with valuable additional information. They offer insights into the potential impact of various configuration aspects on performance, aiding in the enhancement of related areas.



# Summary

#### Infrastructure

- HEP Suite is a powerful, ready to use by different experiments thanks to its flexibility
- Enhanced HEP Suite was designed to measure metrics such as machine load, memory usage, power consumption and many more user-defined metrics

#### Analysis

- Model of HEPScore vs Load allow us to fix misconfiguration issues and to understand how different configuration aspects affect the performance
- ARM does not have HT, therefore there is no correlation between load and performance, but other dependencies can be found



# Q&A