

Heek 10

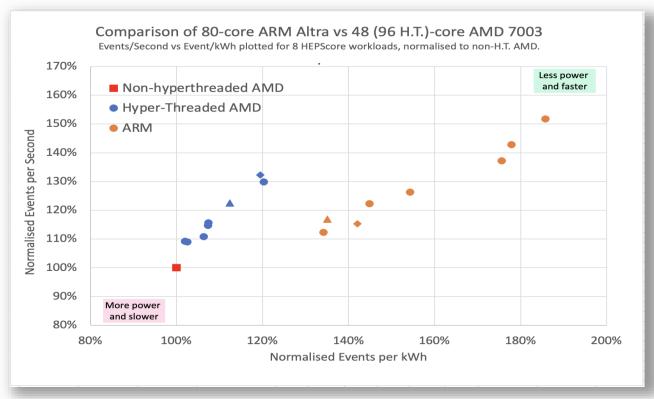
T-++ manti

ARM for WLCG

Running Processes GDB/ CERN 12th June 2024

yeek og

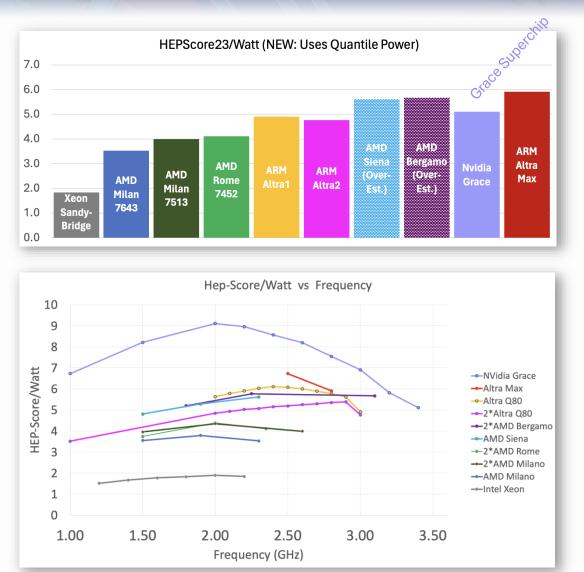
David Britton GridPP Project Leader WLCG Deputy Leader


Introduction

- We've spent 2 years investigating ARM for WLCG.
- Site interest: Three (non-orthogonal) axes:
 - a) Carbon sites now often have NetZero aspirations/constraints
 - b) Energy sites may have energy constraints (peak-time or total supply; or a budget cap)
 - c) Cost sites see benefit from being able to widen the range of procurable hardware (choice, availability, and driving costs with competition).
- Experiment interest: Two axes:
 - i) Carbon sustainability is an increasingly important agenda item within the experiment collaborations.
 - ii) Resources levels the ability to use ARM can enable additional resources (opportunistic, pledged, HPC, cloud, Grid).

Initial Tests (2022)

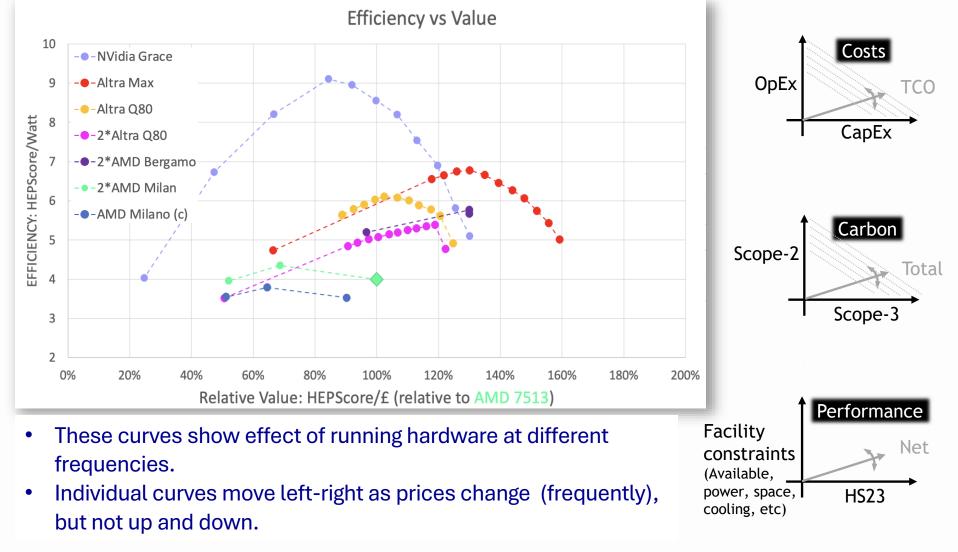
Compared two *same-price* (but different core-count) machines: AMD EPYC 7643 48C/96T @ 2.3GHz TDP 225W, 48-cores (96 HT). ARM Q80-30 80 core 210W TDP processor, 80-cores (no HT).


Ran 8 candidate HEPScore workloads:

- On AMD, HT improves speed (efficiency) by up to 30% (20%) depending on workload.
- On ARM, average speed is a little quicker, but average efficiency is notably better.

David Britton, University of Glasgow

Deeper Studies



- Top plot is a comparison of different boxes running at max frequency (except Siena and Bergamo).
- But this is not the full story! Efficiency (and, of course, HS) depends on clock speed.
- Comparison and optimisation is complex!
- Need to consider:
 - Cost
 - Carbon (Scope 2 + 3)
 - Performance (HS23)
 - Efficiency (HS23/Watt)
- Optimisation will not always be the same but it's clear that both AMD and ARM are viable.

David Britton, University of Glasgow

Optimising Procurement

David Britton, University of Glasgow

Example Procurement

Where do we go from here?

- To complete this work, we need to agree if / when ARM resources can be pledged:
 - <u>Experiments</u> need to have validated a sufficient number of workloads.
 - <u>Experiments</u> need to be willing (happy?) to do the work necessary to submit work to heterogeneous resources at sites.
 - <u>Sites</u> need to understand/accept the operational implications of providing heterogeneous resources.
 - <u>Sites</u> need to be assured that the resources can be pledged AND will be used.
 - <u>WLCG</u> needs to ensure there are no impediments to pledging, monitoring, or accounting* of ARM resources.
 * BTW, can accounting handle variable frequency (HS)?
 - <u>We all</u> need to recognise that accepting pledges mean at least a 4-5 year commitment to accept ARM resources, maintain software (experiment and things like Geant), even if market moves in other directions and ARM is less interesting.
 - What else?
- Purpose of this GDB session is to try to establish where we are, what still needs to be done, and when we can proceed.