

Overview

→ ARM infrastructure integration

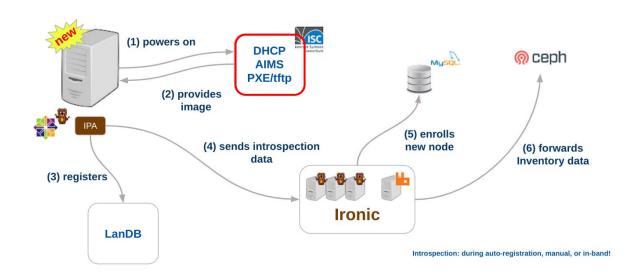
→ ARM resource inventory

- → ARM resource provisioning
- **→** Power Considerations

Integration: Bootstrapping ARM Images

→ Linux image created before access to first ARM hardware

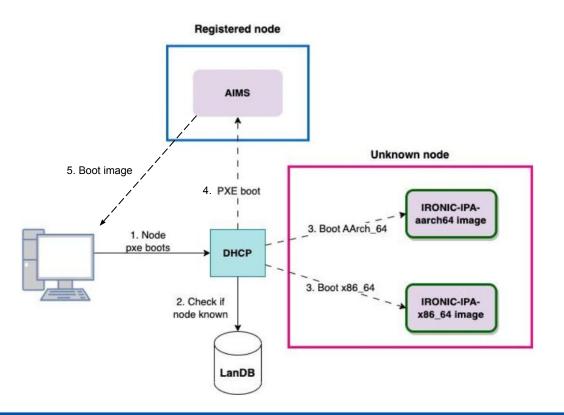
- ➤ koji built AArch64 packages on a AARCH64 VM running on "Franken"-x86_64
- ➤ koji imagebuild (QEMU emulator, kickstart file, snapshot) ⇒ ARM image
- Later (and easier setup): ARM VM as builder in Oracle cloud
- Now: x86 and AARCH64 images built the same way on local builder VMs



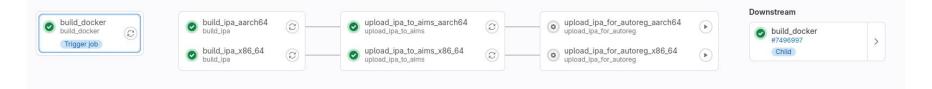
Integration: Bootstrapping Physical ARM (1)

Spawning physical machines

- OpenStack Ironic is CERN's framework for bare metal fleet management
- Multi-arch node discovery



Integration: Bootstrapping Physical ARM (2)


- → DHCP/PXE/TFTP (AIMS) need to "decide" on architecture
- → Need {x86_64,aarch64} PXE images
- Need {x86_64,aarch64} docker images for CI image building pipeline

Integration: Bootstrapping Physical ARM (3)

→ Code changes hitting the gitlab repository trigger image (re-)generation

- → Pipeline builds multi-arch docker images
 - Containers are then spawned to build the IPA (PXE/deploy) images

→ This requires an AARCH64 GitLab runner ...

Bootstrapping ARM VMs

- Spawning virtual machines ... easy!
 - On ARM based hypervisors
 - Required EL8 and fixing a <u>libvirt bug</u>
 - Image capabilities filtering to direct request to correct host
 - Detailed talks at <u>HEPiX</u> & <u>CHEP</u>

Inventory

48x Ampere Altra systems

- > 80-core 3GHz Altra CPU
- > 256GB of DDR4 RAM
- 1x 3.84TB NVMe
- > 10GbE NIC
- On 3 different platforms:
 - GIGABYTE (5) "Mt Snow" R272-P30
 - SUPERMICRO (19) "Mt Hamilton" ARS-110M-NR
 - HPE (24) ProLiant RL300 Gen11

Provisioning: Cloud (physical & virtual)

- → Virtual machines instantiated with ARM VM flavors and images
 - openstack server create --flavor a1.xlarge --image "ALMA9 aarch64"
- → Physical nodes instantiated with ARM BM flavors and images
 - Instantiated just like virtual machines with a specific flavor
 - ➤ openstack server create --flavor p1.ca1076207.S513-C-IP503 ...
- → GitLab runners, LxPlus nodes, ...

Provisioning: Batch

- → Used public cloud ARM VMs, now all physical nodes on-premises
- In batch the main issue is to ensure that jobs only run on the intended arch
- For "locally" submitted batch jobs, usual HTCondor semantics apply
 - > Jobs automatically have a requirement for the Arch of the submitting machine
 - ➤ Only jobs submitted by users submitting from lxplus-arm, or explicitly requesting aarch64 in their submit files will run on ARM machines
- Grid lacks this default, so the HTCondor-CE router ensures the ARCH
 - > Submitter jdl should use +WantARM=True or remote queue=ARM

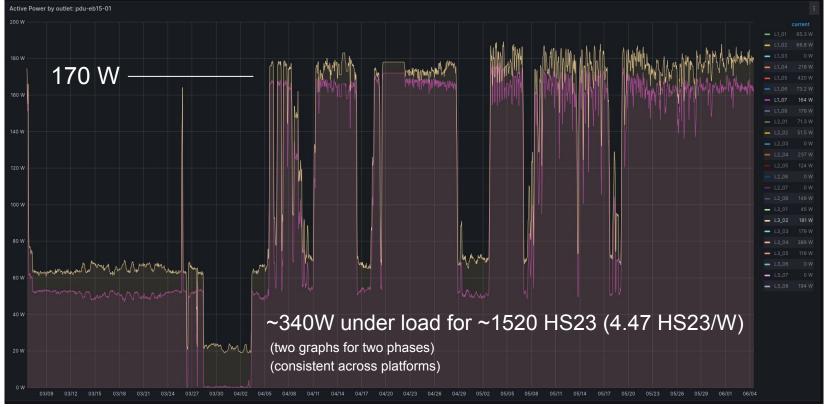
Provisioning: HTCondor-CE routing for ARM

→ Make x86 the default and ...

```
JOB_ROUTER_TRANSFORM_x86 @=end
    NAME x86
    REQUIREMENTS (MY.WantARM =!= True && MY.queue =!= "ARM")
    COPY Requirements PreArchRequirements
    SET Requirements (Arch =?= "X86_64" && PreArchRequirements)
@end
```

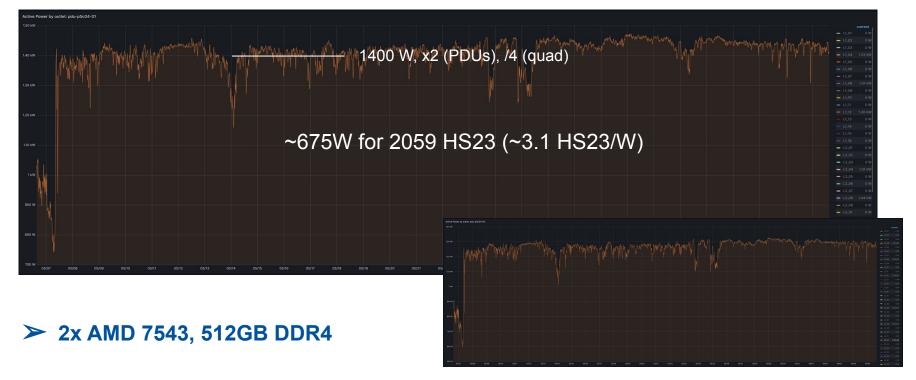
... route ARM jobs to AARCH64 resources

```
JOB_ROUTER_TRANSFORM_Arm @=end
     NAME Arm
     REQUIREMENTS (MY.WantARM =?= True) || (MY.queue =?= "ARM")
     SET WantARM True
     COPY Requirements PreArchRequirements
     SET Requirements (Arch =?= "aarch64" && PreArchRequirements)
@end
```

Power Considerations Disclaimer

Single ARM Server Power Consumption



Single AMD Server Power Consumption

Power Considerations

This is not a scientific study!

	Power [W]*	HS23	HS23/Power	Price**	HS23/Power/Price
ARM	340	1520	4.47	1	4.47
AMD	675	2059	3.1	1.15	2.7
Δ (ARM → AMD)	+200%	+73%	-36%	+15%	-50%

^{*} At PDU (prod, not benchmark)

^{**}ARM price for initial purchase

