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CoE RAISE

> CoE RAISE [1]: Center of Excellence for Research on Al-
and Simulation-based Engineering at Exascale

> Develop novel, scalable Artificial Intelligence technologies

> CERN (Dr. M. Girone) leads WP4: Data-Driven Use-
Cases towards Exascale [2]

> Including Task 4.1 (E. Wulff): Event reconstruction and
classification at the CERN HL-LHC, which we'll see more
details on later

> UOI (Prof. M. Riedel) leads WP2: Al- and HPC-Cross
Methods at Exascale [3]

> Provides expert support on HPC and Al methods to use cases
in WP4
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RAISE example use-case: A
Event reconstruction and

classification at the
CERN HL-LHC




Event reconstruction ASE

Center of Excellence

> Event reconstruction attempts to solve the inverse problem of particle-detector interactions,
l.e., going from detector signals back to the particles that gave rise to them

> Particle-flow (PF) reconstruction takes tracks and clusters of energy deposits as input and
gives particle types and momenta as output
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Al-based particle flow reconstruction workflow RAISE

Physics simulation

Data selection

Dataset creation

Tracks and calorimetry
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New CoE RAISE open data

» https://www.coe-raise.eu/od-pfr

> An extensive open dataset of |ph sics events with full
GEANT4 [1] simulation, suitable for PF reconstruction,
available in the EDM4HEP [2] format

> ~2.5 TB before pre-processing

> The dataset contains

> Reconstructed tracks, calorimeter hits and clusters
> We use these as inputs

> All generator particles
> We use these as targets

> Reconstructed particles by the Pandora algorithm [3,4,5]
> We use these as a baseline for comparison

> A mixture of tt, qq, ZH and WW events
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RAISE

Center of Excellence
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https://www.coe-raise.eu/od-pfr
https://inspirehep.net/literature/593382
https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_03026/epjconf_chep2021_03026.html%20,%20%20https:/github.com/key4hep/EDM4hep
https://iopscience.iop.org/article/10.1088/1742-6596/396/2/022034
https://www.sciencedirect.com/science/article/pii/S0168900212011734?via%3Dihub
https://link.springer.com/article/10.1140/epjc/s10052-015-3659-3

Improvements from large-scale distributed hyperparameter RAISE
optimization (HPO)

Distributed HPO Hyperparameter tuning results
Ray Tune train.py: tune.run
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Improvements over the baseline: Jet resolution RASE

Center of Excellence

» Using data never seen in
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[1] Joosep Pata, Eric Wulff, Farouk Mokhtar, David Southwick, Mengke Zhang, Maria Girone, Javier Duarte. Improved particle-flow event reconstruction
26.03.2024 — CERN openlab Technical Workshop — Eric Wulff with scalable neural networks for current and future particle detectors, (in press) Commun Phys, (2024) https://arxiv.org/abs/2309.06782 8
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Tested in a real detector RAISE

Center of Excellence

CMS Simuiation Preliminary __ Run 3 (14 TeV)
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Particle Flow reconstruction

n.had
HFHAD

> This approach was also
tested in a real detector
(CMS) in 2022

» We plan to update the
model for CMS in 2024 %

{ CMS Simulation Preliminary
tt + PU, /s = 14 TeV
Machine-Learn

Total number of particles / bin
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JP, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, Maria Girone.
Machine Learning for Particle Flow Reconstruction at CMS. ACAT 2021.
https://doi.org/10.48550/arXiv.2203.00330, http://cds.cern.ch/record/2792320
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Quantum-SVR for

model performance >
prediction in HPO 48




The hyperparameter optimization process
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Model performance prediction

Using performance prediction can accelerate

the evaluation step in HPO.
- Use a meta-model which provides a cheap
approximated evaluation of the target model

The performance predictor
o Must be fast to train
- The training samples come from previously fully
trained trials

We use a Quantum Annealer to train a Q-SVR as
out model performance predictor
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Loss

RAISE

Center of Excellence

Performance Prediction

Partial learning curves
(regressor features)

Loss at certain epoch
(regressor target)

20 40 60 80 100
Epoch

Saved 75 epochs of the target
model!




RAISE

Center of Excellence

Quantum SVR

= Q-SVR: re-formulation of SVR model that can be trained in a Quantum Annealer.
( )

> |n theory: Q-SVR training IS O(N) and SVR is O(NB), N=#training samples. ( )

=~ |n practice:

- Currently no time advantage from Q-SVR.
- Limited training size: ~20 samples.

SVR _ trained
not trained \ Classical - QUBO QUBO Classical Q-SVR
computer problem solutions computer
training
samples Quantum Annealer
We used the at the Julich Supercomputer Centre
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Swift-Hyperband

RAISE

Center of Excellence

- Fast-Hyperband: not suitable for integration with Q-SVRs.

- Swift-Hyperband: new approach to combine performance prediction with

Hyperband.
Fast-Hyperband

Multiple decision points

inside each round Trains many
SVRs

Estimates o for every SVR '

Not suitable for
Sequential Q-SVRs
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Swift-Hyperband

Only 1 decision point inside

each round .
Trains few SVRs
No need to estimate o |
Suitable for Q-
Easily parallelizable SVRs



HPO algorithm comparison RASE

Center of Excellence

LSTM for PTB - 2 HPs
~ Green bars show performance o P ® Compute resaurces

Of the best fou nd trlal On the Target model performance
validation set

- 1500

(o))
~
I
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= Red markings show consumed + T g
compute resources - 8

Mean perplexity (lower is better)
()]
sy

= Lower is better in both cases

- 1440

63 1
Hyperband Fast-Hyperband Swift-Hyperband Swift-Hyperband
SVR Q-SVR
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Summary RASE

> CoE RAISE develops novel, scalable Al methods towards Exascale
> Use-cases from a wide range of sciences and industry

> New open dataset available on the CokE RAISE website

> Large-scale distributed HPO significantly increased model performance in the
example use-case of Machine-Learned Particle Flow (MLPF)

> Swift-Hyperband integrates performance prediction with Hyperband and runs in a
hybrid Quantum-Classical manner

26.03.2024 — CERN openlab Technical Workshop — Eric Wulff 17
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Data-driven use-cases

> o
S . S
S
8§ Ny
< A A A S ey Al at Center of Excellence
= - : e Exascale
data-driven use-cases

> Representative use-cases from research and industry/SMEs, which have a
strong focus on data-driven technologies, i.e., analyzing data-rich
descriptions of physical phenomena

> Event reconstruction and classification at the CERN HL-LHC (CERN, RTU)

> develop novel apﬁroaches for HL-LHC collision event reconstruction replacing
traditional algorithms with Al-driven techniques towards HPC-to-Exascale

> Seismic imaging with remote sensing for energy applications (FZJ, UOI, CYI)

> optimize seismic imaging and remote sensing, enabling Al approaches, combining
satellite and airborne data with seismic imaging

> Defect-free metal additive manufacturing (UOI, FM)

> develop prediction models that detect porosity inside metal parts such that the
information is exploited to improve the product quality in additive manufacturing

» Sound engineering (FZJ, UOI)

» develop a deep-learning-based algorithm that associates individual anatomy to a
head-related transfer function (HRTF), for use in spatial audio systems

26.03.2024 — CERN openlab Technical Workshop — Eric Wulff 20



Event reconstruction at the LHC

» Particle detectors at the LHC are
extremely complex, with many
subdetectors

> Particles interact with the detectors
and leave tracks and energy
deposits

> Information from subdetectors are
combined to produce a particle-
level interpretation of the event

> Event reconstruction is the process
of inferring higher-level physics
objects from detector signals

26.03.2024 — CERN openlab Technical Workshop — Eric Wulff

RAISE

Center of Excellence

Transverse slice through the CMS detector

- Muon
Electron

Key:
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New open dataset for supervised learning RAISE

Center of Excellence

~10k elements/event

b FU” deteCtor SimUIatiOﬂ Tracks and calorimeter hits
using GEANT4 o b
a0e®

» Electron-positron collision R
3 R\
in CLIC detector geometry /' 1 Mt
re ar; o

) . o CO/) /C/&}? .
> Data set contains . F\iaw .(.Jleit.ebcftor hits WA Partl/ples
o ot N

— Track

® Raw ECAL hit

@® Raw HCAL hit

@ Raw Muon chamber hit

~100-300 elements/event

> Calorimeter and tracker ok Caorirer L o
hits I f'zu'f’f'.;*:f;'\ : Ea‘” Eﬁ‘f;h't clustering 7 — Neutral hadron
. G ,-‘.'.:_; . .“’-{ i) Y aw I.I AN — Electron
> Tracks and calorimeter | “}.(g“) : zmi:\;:gamberm Tracks and calorimeter clusters T IR — Muon
clusters i R 7N
> Generator-level particles m;ﬂ
(ground truth for 0\&;‘;@050’0&\0°
1 1 \ S
supervised learning) N
> Baseline reconstructed ® ECAL or HCAL cluster
particles (from a non-ML
PF algo) ~300-500 elements/event

Joosep Pata, Eric Wulff, Farouk Mokhtar, David Southwick, Mengke Zhang, Maria Girone, Javier Duarte. Improved particle-flow event reconstruction with

26.03.2024 — CERN openlab Technical WorkShOp — Eric Wulff scalable neural networks for current and future particle detectors, (in press) Commun Phys, (2024) https://arxiv.org/abs/2309.06782
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New open dataset for supervised learning

> Full detector simulation
using GEANT4

> Electron-positron collision
in CLIC detector geometry

» Dataset contains

» Calorimeter and tracker
hits

> Tracks and calorimeter
clusters

> Generator-level particles
(ground truth for
supervised learning)

> Baseline reconstructed

particles (from a non-ML
PF algo)
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~10k elements/event
Tracks and calorimeter hits
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Joosep Pata, Eric Wulff, Farouk Mokhtar, David Southwick, Mengke Zhang, Maria Girone, Javier Duarte. Improved particle-flow event reconstruction with
scalable neural networks for current and future particle detectors, (in press) Commun Phys, (2024) https://arxiv.org/abs/2309.06782
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Open datasets

Tracks and calorimeter hits

artic®

Y

Raw detector hits

| T L
CLIC in EDM4HEP, ~2.6TB Calorimeter
o full stats, full details clustering
¢ 5 physics samples, ~1M events each
e 7 gun samples, ~100k events each

Tracks and calorimeter clusters

* https://doi.org/10.5281/zenodo.8260741

* https://doi.org/10.5281/zenodo.8414225

* https://doi.org/10.5281/zenod0.8409592
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Improvement in training from HPO

RAISE

Center of Excellence

> HPO significantly improved model performance for both the GNN-based and the transformer-based MLPF models

> GNN outperforms transformer
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[1] Joosep Pata, Eric Wulff, Farouk Mokhtar, David Southwick, Mengke Zhang, Maria Girone, Javier Duarte. Improved particle-flow event reconstruction

with scalable neural networks for current and future particle detectors, (in press) Commun Phys, (2024) https:

arxiv.org/abs/2309.06782 5
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Jet and MET in ttbar + PU10 test data RASE

Center of Excellence

» For all test samples MLPF outperforms PF in Jet and MET reconstruction in terms of response width (quantified by
median and interquartile range (IQR))

> MLPF also outperforms PF in terms of fraction of reconstructed jets (nr"’“’j‘"“/ngmund_mth jots)

> Very similar results are seen in ZH and WW events

Jets resolution MET resolution
\ \

e
—_—

-
N
T
- 1
T
|
-
N
T
nY
M
|

number of matched jets

= c F
S 12t S 10}
S 12 S 12t
led ——— e I — MLPF ] g — e I —o— MLPF
— CLIC ee - i, PU10 o MF 1 & CLIC ee - tt, PU10 o 1P E
i ) PF (M=1.03,IQR=0.09, f, =0.77) gw: 3 10000]- ) PF (M=1.03,IQR=0.35) gm:
8- ] MLPF (M=0.99, IQR = 0.06, f, = 0.80) | =M S f ] MLPF (M=1.00,IQR=0.27) > f””
I 1 Q I Fo} E o [
3 0 0.9F E .g L o o.9f .
I g S s000|- . B
6L i 0.8F 1 € i 0.8 .
| b | | | | | | | = | | | | | [
3 o LI LA L B B I 6000}~ . o o T T T \ T
I G 012} —— PF 1 J 0.6 — PF
4 . o [ —+ MLPF | o —+ MLPF |
I 2 0.10|- . 0 2 |
st ] 4000|- . S o4l ]
| 2 i i H a0
N @ 0.08- - e |
ok R i 1 g I
7 ; ] 2000} y 0.2 ]
0.06|- . f I
ci P A R . ol L b L L 11 0 = L N e PR S NS (NS (N S S S R
0.6 0.8 1.0 1.2 1.4 20 40 60 80 100 120 140 0.0 0.5 1.0 1.5 2.0 20 40 60 80 100 120 140
jet pr reco/gen gen-jet pr [GeV] MET reco/gen gen MET [GeV]

26.03.2024 — CERN openlab Technical Workshop — Eric Wulff 26




Machine-Learned Particle-Flow (MLPF) RAISE

Center of Excellence

The MLPF model

> The Particle Flow (PF) Algorithm [1] Sl o i S A e
> Tries to identify and reconstruct all stable individual o ," .
particles from collision events by combining -..:_, Graph _fﬁ_, — . "
information from different subdetectors (tracks, = FOX L) o %. o .

calorimeter clusters)

> Machine-Learned Particle-Flow (MLPF) [2] Target set ¥ = (y;) Output set ¥ = () |
> GPU accelerated, GNN-based algorithm for PF Elementwise loss L(y, ) _

classification & regression

—

> Code available on GitHub D0y byl w) =y
> See ACAT2021 talk by J. Pata (and proceedings) for Dt lgler;l-gfg,?EEECAL,fHCAEE,f,nm,a:omle;cﬁ---1 .
7 . . T .= pr E.n, ., ql, none, charged hadron, neutral hadron, y,e™, u~, ...
more MLPF model details and ACAT 2021 talk by E. 777 ®e i
Wulff (and proceedings) for more details on the Trainable neural networks: , , 9
. ® - track, I - calorimeter cluster, @ - encoded element

hypertunlﬂg Of MI_PF - target (predicted) particle, - no target (predicted) particle

> ACATZOZZ Doster Based on Eur. Phys. J. C 81, 381 (2021)

https://arxiv.org/abs/2101.08578

[2] Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow reconstruction using

[1] CMS Collaboration https://cds.cern.ch/record/1194487?In=en ) )
graph neural networks. Eur. Phys. J. C 81, 381 (2021). https://doi.org/10.1140/epjc/s10052-021-09158-w
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Graph Neural Network (GNN) with Locality Sensitive Hashing (LSH) RASE

Center of Excellence

One layer of learnable graph building with locality sensitive hashing and message passing

Input Transform
p onon ansformed
feature vectors B B ] feature vectors
B “um .IIX
2| | 2|
- - nonon -
B Learnable & Sorting o Learned " PP Message B @ Reverse &
locality-sensitive by bin all-to-all structure 1 passing in 1 sorting to
) . : g “ . . X o
g hashinginto bins 3 index in each bin n.=.. each bin .=.. g original order 3
o | =]
10] [10]
HEN HEN 1]

X € RVF | ] X' € RNXD
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Kernel-based self-attention Transformer RASE

Center of Excellence

One layer of kernel-based self attention with the FAVOR mechanism.

Input Queries, keys, Transformed
feature veCtors Values “-"'@'(NMQ)"""'""'""":::Q.'.(.MMQ2::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::...feature veCtors

] [] u N | ’ O O
] | | [ | ]
] | | L | L]
g <48 - P

Learnable [] Random L | — N
= weights =\ = projections = X X = =
o I - E 0 n
. Fxp B [l X_/ . N =
f oo § BB cemnf P

X e RNXF Q, K, Ve [RNXD Q/ c RNXM K’T c [RMXN Ve RNXD
KTv e RMP X' =Q(K"V) e R™P
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A Hybrid Quantum-Classical workflow for HPO

Y

Y

Distributed Hybrid Quantum-Classical Model
Performance Prediction for Hyperparameter
Optimization (HPO) of Deep Learning (DL) Models

Quantum Annealer (QA) aids classical GPU-accelerated

HPC cluster in performing HPO

GPU cluster trains DL models

QA trains Quantum-SVR (QSVR) used to aid the HPO

process

Promising results

This work was shown at QTML at CERN 19th-
24t November 2023 and continues the effort
based on the following previous works:

> ACAT 2022, E. Wulff, J.P Garcia Amboage, David

Hybrid Quantum-Classical Workflow

wave-ocean-sdk MP

CPU

Sepou NdD JoX3IoM

Main CPU node

Quantum Annealer,

Trains
QSVR

Classical HPC center

Quantum-SVR training workflow

Southwick, Maria Girone, Eduard Cuba
> CHEP 2023, E. Wulff, J.P Garcia Amboage, David

Southwick, Maria Girone, Eduard Cuba
> ISC 2023, M. Aach, E. Wulff, E. Pasetto, A. Delilbasic, R.

Sarma, E. Inanc, M. Girone, M. Riedel, A. Lintermann
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https://indico.cern.ch/event/1106990/contributions/4998112/
https://indico.jlab.org/event/459/contributions/11847/
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One extra decision point inside each round

At the beginning of the round some trials
are fully trained to define a threshold.

The other trials are partially trained
If their predicted loss is lower than the

threshold the trials are stopped before
completing the round.

Trainings are done in parallel

Epoch
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From SVR to Q-SVR formulation .o cia

RAISE

Center of Excellence

Classical SVR primal formulation

Classical SVR dual formulation

N-1 @ predictions:

N—1 ~1N-1 N-1
1 . . .
minimize: ~||wl|? + C Z (& + &) minimize: Z Z(an A ) (Q — G )k (2, ) —€ Z(an%—an)—l—Z(an—a)yn N1
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@ Add restriction as penalty term
N | E(Zi:ul(ﬂn - 'ﬁ'n))z |

“Ignore” the 2" restriction

Bk <

QUBO formulation
minimize: fo(a) =
Encode SVR variables using binary variables

K-1
k—k ~
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Resulting problem with binary variables and without restrictions

O

N-1K-1 1

Hlilliclflizei E E 2 QK (sN-+n)+i @ K (sN+n)+i, K (EN-+m-+5) DK (EN+m) -+
n,m t,7=0 s,t=0

~ " 1
QK[SN+7L)+£,K(£N+m+j) =(_1)(1_55t)Bt+J_2kU(Ek(mng 37m) + (f)“‘

+ 5mn,5ijBi_ku§3t(6 + (—1)(1_3)(1—5],9.”)

) Qij+Qji sii<j

Qu BO. matrix for the Qi =40, sii=j

canonical formulation: 0 sii>j
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https://www.techrxiv.org/articles/preprint/Quantum_SVR_for_Chlorophyll_Concentration_Estimation_in_Water_with_Remote_Sensing/19619676

Performance prediction of MLPF RASE

Center of Excellence

> Very promising results for Q-SVR and SVR.
Best Q-SVR true vs predicted test values

MLPF performance predictor R™2 vs known fraction of leaming curve LTI 5 = AL, L e W E T @1 U S s
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Algorithm Comparison
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~ Simulated results using learning curve datasets
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LSTM for PTB - 2 HPs
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Algorithm Comparison

~ Simulated results using learning curve datasets
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