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CoE RAISE

➢ CoE RAISE [1]: Center of Excellence for Research on AI-
and Simulation-based Engineering at Exascale

➢ Develop novel, scalable Artificial Intelligence technologies

➢ CERN (Dr. M. Girone) leads WP4: Data-Driven Use-
Cases towards Exascale [2]

➢ Including Task 4.1 (E. Wulff): Event reconstruction and 
classification at the CERN HL-LHC, which we’ll see more 
details on later

➢ UOI (Prof. M. Riedel) leads WP2: AI- and HPC-Cross 
Methods at Exascale [3]

➢ Provides expert support on HPC and AI methods to use cases 
in WP4
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[1] https://www.coe-raise.eu [2] https://www.coe-raise.eu/wp4 [3] https://www.coe-raise.eu/wp2
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RAISE example use-case:
Event reconstruction and 
classification at the
CERN HL-LHC



Event reconstruction

➢ Event reconstruction attempts to solve the inverse problem of particle-detector interactions, 
i.e., going from detector signals back to the particles that gave rise to them

➢ Particle-flow (PF) reconstruction takes tracks and clusters of energy deposits as input and 
gives particle types and momenta as output
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AI-based particle flow reconstruction workflow
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Tracks and calorimetry Reconstructed particles

Physics simulation Dataset creation ML training Trained model

Model export
Data pre-

processingData selection

Event 
reconstruction
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New CoE RAISE open data
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➢ https://www.coe-raise.eu/od-pfr

➢ An extensive open dataset of physics events with full 
GEANT4 [1] simulation, suitable for PF reconstruction, 
available in the EDM4HEP [2] format

➢ ~2.5 TB before pre-processing

➢ The dataset contains
➢ Reconstructed tracks, calorimeter hits and clusters

➢ We use these as inputs

➢ All generator particles
➢ We use these as targets

➢ Reconstructed particles by the Pandora algorithm [3,4,5]
➢ We use these as a baseline for comparison

➢ A mixture of 𝑡 ҧ𝑡, 𝑞ത𝑞, 𝑍𝐻 and 𝑊𝑊 events

3D visualization of a single event

https://www.coe-raise.eu/od-pfr
https://inspirehep.net/literature/593382
https://www.epj-conferences.org/articles/epjconf/abs/2021/05/epjconf_chep2021_03026/epjconf_chep2021_03026.html%20,%20%20https:/github.com/key4hep/EDM4hep
https://iopscience.iop.org/article/10.1088/1742-6596/396/2/022034
https://www.sciencedirect.com/science/article/pii/S0168900212011734?via%3Dihub
https://link.springer.com/article/10.1140/epjc/s10052-015-3659-3


Improvements from large-scale distributed hyperparameter 
optimization (HPO)

➢ Two levels of parallelization

➢ Using ASHA + Bayesian Optimization for HPO

➢ Final validation loss decreased by ~34% giving 
a significant performance improvement from 
HPO

Distributed HPO
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Hypertuning

Hyperparameter tuning results
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Improvements over the baseline: Jet resolution
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➢ Using data never seen in 
training

➢ Almost 50% improvement 
in jet response width over 
the baseline

➢ Consistent improvement 
over the entire pT spectrum
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with scalable neural networks for current and future particle detectors, (in press) Commun Phys, (2024) https://arxiv.org/abs/2309.06782
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Tested in a real detector
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➢ This approach was also 
tested in a real detector 
(CMS) in 2022

➢ We plan to update the 
model for CMS in 2024

JP, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, Maria Girone.
Machine Learning for Particle Flow Reconstruction at CMS. ACAT 2021. 
https://doi.org/10.48550/arXiv.2203.00330, http://cds.cern.ch/record/2792320
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Quantum-SVR for 
model performance 
prediction in HPO



The hyperparameter optimization process
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Define HPs 
search space

Select HPs to 
optimize and 
their ranges

Human 
responsibility

Select trials 
from the search 

space

Random search
Grid search

Bayesian opt.

Automated

Evaluate the 
trials

⚠️ Expensive!
All trials are 

often not fully 
evaluated

Automated

Select best trial

Automated

step to be accelerated using 
performance prediction
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Model performance prediction
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➢ The performance predictor
○ Must be fast to train
○ The training samples come from previously fully 

trained trials

➢ We use a Quantum Annealer to train a Q-SVR as 
out model performance predictor

Saved 75 epochs of the target 
model!

➢ Using performance prediction can accelerate 
the evaluation step in HPO.

○ Use a meta-model which provides a cheap 
approximated evaluation of the target model
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Quantum SVR

➢ Q-SVR: re-formulation of SVR model that can be trained in a Quantum Annealer. 
(Pasetto et al.)

➢ In theory: Q-SVR training is O(N) and SVR is O(N3), N=#training samples. (Date et al.)

➢ In practice:
○ Currently no time advantage from Q-SVR.
○ Limited training size: ~20 samples.

SVR
not trained 

training 
samples

Classical
computer

QUBO
problem 

QUBO
solutions 

Classical
computer

trained
Q-SVR

Quantum Annealer
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We used the D-Wave AdvantageTM system JUPSI at the Jülich Supercomputer Centre

https://www.techrxiv.org/articles/preprint/Quantum_SVR_for_Chlorophyll_Concentration_Estimation_in_Water_with_Remote_Sensing/19619676
https://arxiv.org/abs/2008.02369
https://www.fz-juelich.de/en/ias/jsc/systems/quantum-computing/juniq-facility/juniq/d-wave-advantagetm-system-jupsi


Swift-Hyperband

➢ Fast-Hyperband: not suitable for integration with Q-SVRs.

➢ Swift-Hyperband: new approach to combine performance prediction with 
Hyperband.
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Fast-Hyperband Swift-Hyperband

Multiple decision points 
inside each round

Estimates σ for every SVR

Trains many
SVRs

Not suitable for 
Q-SVRs

Only 1 decision point inside 
each round

No need to estimate σ 

Trains few SVRs

Suitable for Q-
SVRsSequential Easily parallelizable
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HPO algorithm comparison
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➢ Green bars show performance 

of the best found trial on the 

validation set

➢ Red markings show consumed 

compute resources

➢ Lower is better in both cases

LSTM for PTB - 2 HPs
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Summary



Summary

➢ CoE RAISE develops novel, scalable AI methods towards Exascale
➢ Use-cases from a wide range of sciences and industry

➢ New open dataset available on the CoE RAISE website

➢ Large-scale distributed HPO significantly increased model performance in the 
example use-case of Machine-Learned Particle Flow (MLPF)

➢ Swift-Hyperband integrates performance prediction with Hyperband and runs in a 
hybrid Quantum-Classical manner

1726.03.2024 – CERN openlab Technical Workshop – Eric Wulff



drive. enable. innovate.

The CoE RAISE project have received funding from
the European Union’s Horizon 2020 –
Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow us:

https://medium.com/@raise_info
https://www.researchgate.net/project/CoE-RAISE
https://www.youtube.com/channel/UCAdIZ-v6cWwGdapwYxdN7dg
https://www.facebook.com/CoERAISE2021
https://www.linkedin.com/company/coe-raise
https://twitter.com/CoeRaise


Backup



➢ Representative use-cases from research and industry/SMEs, which have a 
strong focus on data-driven technologies, i.e., analyzing data-rich 
descriptions of physical phenomena

➢ Event reconstruction and classification at the CERN HL-LHC (CERN, RTU)
➢ develop novel approaches for HL-LHC collision event reconstruction replacing 

traditional algorithms with AI-driven techniques towards HPC-to-Exascale

➢ Seismic imaging with remote sensing for energy applications (FZJ, UOI, CYI)
➢ optimize seismic imaging and remote sensing, enabling AI approaches, combining 

satellite and airborne data with seismic imaging

➢ Defect-free metal additive manufacturing (UOI, FM)
➢ develop prediction models that detect porosity inside metal parts such that the 

information is exploited to improve the product quality in additive manufacturing 

➢ Sound engineering (FZJ, UOI)
➢ develop a deep-learning-based algorithm that associates individual anatomy to a 

head-related transfer function (HRTF), for use in spatial audio systems
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Data-driven use-cases



Event reconstruction at the LHC

➢ Particle detectors at the LHC are 
extremely complex, with many 
subdetectors

➢ Particles interact with the detectors 
and leave tracks and energy 
deposits

➢ Information from subdetectors are 
combined to produce a particle-
level interpretation of the event

➢ Event reconstruction is the process 
of inferring higher-level physics 
objects from detector signals

JINST 12 (2017) P10003

Transverse slice through the CMS detector
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New open dataset for supervised learning

26.03.2024 – CERN openlab Technical Workshop – Eric Wulff

➢ Full detector simulation 
using GEANT4

➢ Electron-positron collision 
in CLIC detector geometry

➢ Dataset contains
➢ Calorimeter and tracker 

hits

➢ Tracks and calorimeter 
clusters

➢ Generator-level particles 
(ground truth for 
supervised learning)

➢ Baseline reconstructed 
particles (from a non-ML 
PF algo)
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scalable neural networks for current and future particle detectors, (in press) Commun Phys, (2024) https://arxiv.org/abs/2309.06782
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New open dataset for supervised learning
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➢ Full detector simulation 
using GEANT4

➢ Electron-positron collision 
in CLIC detector geometry

➢ Dataset contains
➢ Calorimeter and tracker 

hits

➢ Tracks and calorimeter 
clusters

➢ Generator-level particles 
(ground truth for 
supervised learning)

➢ Baseline reconstructed 
particles (from a non-ML 
PF algo)

Let’s focus on this part
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Open datasets

26.03.2024 – CERN openlab Technical Workshop – Eric Wulff 24



Improvement in training from HPO
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Validation loss Jet resolution MET resolution

➢ HPO significantly improved model performance for both the GNN-based and the transformer-based MLPF models

➢ GNN outperforms transformer

Hypertuning

Hypertuning
Hypertuning

[1] [1][1]

[1] Joosep Pata, Eric Wulff, Farouk Mokhtar, David Southwick, Mengke Zhang, Maria Girone, Javier Duarte. Improved particle-flow event reconstruction 
with scalable neural networks for current and future particle detectors, (in press) Commun Phys, (2024) https://arxiv.org/abs/2309.06782
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Jet and MET in ttbar + PU10 test data
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Jets resolution MET resolution

➢ For all test samples MLPF outperforms PF in Jet and MET reconstruction in terms of response width (quantified by 
median and interquartile range (IQR))

➢ MLPF also outperforms PF in terms of fraction of reconstructed jets ( ൗ
𝑛𝑟𝑒𝑐𝑜 𝑗𝑒𝑡𝑠

𝑛𝑔𝑟𝑜𝑢𝑛𝑑−𝑡𝑟𝑢𝑡ℎ 𝑗𝑒𝑡𝑠)

➢ Very similar results are seen in ZH and WW events



Machine-Learned Particle-Flow (MLPF)

➢ The Particle Flow (PF) Algorithm [1]
➢ Tries to identify and reconstruct all stable individual 

particles from collision events by combining 
information from different subdetectors (tracks, 
calorimeter clusters)

➢ Machine-Learned Particle-Flow (MLPF) [2]
➢ GPU accelerated, GNN-based algorithm for PF

➢ Code available on GitHub

➢ See ACAT2021 talk by J. Pata (and proceedings) for 
more MLPF model details and ACAT 2021 talk by E. 
Wulff (and proceedings) for more details on the 
hypertuning of MLPF

➢ ACAT2022 poster
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[2] Pata, J., Duarte, J., Vlimant, JR. et al. MLPF: efficient machine-learned particle-flow reconstruction using 
graph neural networks. Eur. Phys. J. C 81, 381 (2021). https://doi.org/10.1140/epjc/s10052-021-09158-w

Based on Eur. Phys. J. C 81, 381 (2021)

https://arxiv.org/abs/2101.08578

The MLPF model

[1] CMS Collaboration https://cds.cern.ch/record/1194487?ln=en

27

https://github.com/jpata/particleflow
https://indico.cern.ch/event/855454/contributions/4597457/
https://doi.org/10.1088/1742-6596/2438/1/012100
https://indico.cern.ch/event/855454/contributions/4598499/
https://doi.org/10.1088/1742-6596/2438/1/012092
https://indico.cern.ch/event/1106990/contributions/4998026/
https://doi.org/10.1140/epjc/s10052-021-09158-w
https://arxiv.org/abs/2101.08578
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Graph Neural Network (GNN) with Locality Sensitive Hashing (LSH)
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Kernel-based self-attention Transformer
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A Hybrid Quantum-Classical workflow for HPO

➢ Distributed Hybrid Quantum-Classical Model 
Performance Prediction for Hyperparameter 
Optimization (HPO) of Deep Learning (DL) Models

➢ Quantum Annealer (QA) aids classical GPU-accelerated 
HPC cluster in performing HPO

➢ GPU cluster trains DL models

➢ QA trains Quantum-SVR (QSVR) used to aid the HPO 
process

➢ Promising results
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Hybrid Quantum-Classical Workflow

SVR
not trained 

training 
samples

Classical
computer

QUBO
problem 

QUBO
solutions 

Classical
computer

trained
Q-SVR

Quantum Annealer

Quantum-SVR training workflow

➢ This work was shown at QTML at CERN 19th-
24th November 2023 and continues the effort 
based on the following previous works:

➢ ACAT 2022, E. Wulff, J.P García Amboage, David 
Southwick, Maria Girone, Eduard Cuba

➢ CHEP 2023, E. Wulff, J.P García Amboage, David 
Southwick, Maria Girone, Eduard Cuba

➢ ISC 2023, M. Aach, E. Wulff, E. Pasetto, A. Delilbasic, R. 
Sarma, E. Inanc, M. Girone, M. Riedel, A. Lintermann

Train DL
models

in parallel

Trains
QSVR

https://indico.cern.ch/event/1106990/contributions/4998112/
https://indico.jlab.org/event/459/contributions/11847/


Swift-Hyperband
Lo

ss

➢ One extra decision point inside each round

➢ At the beginning of the round some trials 

are fully trained to define a threshold.

➢ The other trials are partially trained

➢ If their predicted loss is lower than the 

threshold the trials are stopped before 

completing the round.

Trainings are done in parallel
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From SVR to Q-SVR formulation (Pasetto et al.)

Classical SVR primal formulation

predictions:

Classical SVR dual formulation
predictions:

calculate b:

QUBO formulation

Encode SVR variables using binary variables

Add restriction as penalty term

“Ignore” the 2nd restriction

Resulting problem with binary variables and without restrictions ✅

QUBO matrix for the 
canonical formulation:

1 2

3 4
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Performance prediction of MLPF
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MLPF true loss

Best Q-SVR true vs predicted test values
train size = 20, known fraction of lc = 0.25

➢ Very promising results for Q-SVR and SVR.
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Algorithm Comparison
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➢ Simulated results using learning curve datasets

MLPF for Delphes - 7 HPs LSTM for PTB - 2 HPs
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Algorithm Comparison

➢ Simulated results using learning curve datasets

CNN for CIFAR-10 - 5 HPs CNN for SVHN - 9 HPs
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