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Subprojects

» Openlab seventh phase: 2021-2023

» Device Monitoring

» Edge Computing
» QOpenlab eighth phase: 2024-2026
» Device Monitoring (Continued)

 |Industrial co-pilot
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Collaborative model

» Siemens provides the latest solutions to tackle challenges at CERN.

« CERN’'s complex control infrastructure is a testbed for evaluating and
refining these solutions.

« Siemens product owners receive feedback, enabling them to modify or
add new features.

» We co-develop prototype applications that integrate with various
Siemens tools

CERN openlab Technical Workshop 2024 20th March 2024 3
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Objective

« Monitor & Diagnose large array of heterogenous industrial control
devices

* [wo main components

» Data Aggregation

» Data Visualization
» Aggregation

» (Collect and consolidate device diagnostics info in real-time
» Visualization

» Visualize the entire system's status in an intuitive manner
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Electrical system

Challenges

Detector control

Cooling and Ventilation
_ J

» Autonomy leading to heterogeneity: The engineering teams responsible
for their control system select the PLC models and software frameworks

 Limited Influence: Our group, BE-ICS, provides centralized service and
product recommendations but cannot make procurement decisions

« Lack of standardization: The teams develop their code independently
and hence BE-ICS cannot enforce uniform standards for diagnostics

CERN openlab Technical Workshop 2024 20th March 2024



Example scenario

Cooling towers at CERN

» During upgrades, cooling & ventilation engineering team decides to
procure several S7-1500 PLCs

» They develop the control code using frameworks developed by BE-ICS

» They do not transfer diagnostics information to PLC data block,
preventing it from being transmitted northbouna

» (Consequently, a monitoring agent based on reverse-engineered library,
has to be used to retrieve diagnostic information

CERN openlab Technical Workshop 2024 26th March 2024 /



Monitoring agents

- Different methods for extracting
diagnostics based on the PLC model LER T

» 5/-300/400 - Agent based on o) ol b =
IBNODAVE S7 300/400 S7 1500
. _ : : LIBNODAVE Web |
Old reverse englneered ||brary NOt (Reverse-engineered (Readeingsgrfr?wlr;’gLC's
supported or maintained by S7 Library) web server)
Siemens \ /
« S/-1500 - Web scrapping © MOON
. Extraction of HTML data from the !
PLC's web server
« SE PLCs
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https://github.com/netdata-be/libnodave

Schneider Electric
M340/580

Slemens
S/ 400

"SI_CONN": 1,

"SI_SF": 0,

“"SI_MODE_RUN": 1,

"SI_BUS_1": 0,

"SI_BUS_2": @,

"SI_BUSF": 0,

"SI_TIME": "“31/10/22 - 15:52:38;459",

"SI _INFO0": "Siemens PLC S7 300; CPU slot: 2.
Module ID: 6ES7 317-2EK14-0AB0O
Hardware ID: 8
Firmware ID: V 3.2.12
PLCCycleTime : 18
PLCLastStartDate : 26/10/22 - 14:17:55;736
Request for manual warm restart”,

"SI_DIAG": "31/10/22 15:52:38;459
PLCDiag 1 : 26/10/22 - 14:17:55;741
Mode transition from STARTUP to RUN
PLCDiag 2 : 26/10/22 - 14:17:55;736
Request for manual warm restart
PLCDiag 3 : 26/10/22 - 14:17:55;637
Mode transition from STOP to STARTUP
PLCDiag 4 : 26/10/22 - 14:17:03;262
STOP caused by PG STOP operation or by SFB20 STOP
PLCDiag 5 : 26/10/22 - 09:31:49;022
Mode transition from STARTUP to RUN
PLCDiag 6 : 26/10/22 - 09:31:49;017
Request for manual warm restart
Cok S e e St Agents retrieving diagnostic information from variety of PLCs
Mode transition from STOP to STARTUP . .
PLCDiag 8 : 26/10/22 - 09:30:51;093 and converting it to standard formats (JSON)
STOP caused by PG STOP operation or by SFB20 STOP
PLCDiag 9 : 26/10/22 - 09:12:23;509
Mode transition from STARTUP to RUN
PLCDiag 10 : 26/10/22 - 09:12:23;504

"SC_CONN": 1,
"SC_MODE_RUN": 1,
"SC_MCB_APP": 0,
"SC_BATT": 0,
"SC_MCB_DAT": 0,
"SC_IE_IO": 1,
“SC_DTIME": @,
"SC_TIME": "PLC Current Time: 09/12/2022 16:00:40",
"SC_INFO": "IP: 172.26.2.60
Commercial version of Processor: 2.20
Firmware version of Processor: 9
Xway address/Station number (Premium only): @
Xway address/Network number (Premium only): 0",
"SC_DIAG": "PLC Last Stop: 18/11/2022 14:33:00 (Code 0x0004: Power outage)
CPU Error: ©
Block Error Type: Oxdefl: Character string transfer error
Programmed MAST Task Cycle: O ms
Current MAST Task Cycle: 6 ms
Programmed FAST Task Cycle: O ms
Current FAST Task Cycle: @ ms",
"SC_REPLY": 1

Request for manual warm restart”,
"SI_REPLY": 1




Data visualization

Hierarchical Finite State Machine

» We developed an application for real-time \(/ P
. . . ( PLC 1 W R Node 2 «
visualization of system health [ G
» Based on finite state machine concepts — L e
» Tree representation to capture the hierarchical pios (s
relationship between devices
* [ntuitive navigation, enabling operators to = -
' H|erarch|cal visualization to summarise system
ocate errors quickly A
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DeMon++
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User-interface to configure the device tree



[ Root ]

© () Root Group
- 10
(O Device A1
© () Group B
© () Group B1

@) Device B11

() Device C
(O Device D3

Rules Properties

Device

Apply/Compile

Name: Device B11
Disable: (\Q
|
Agent: AgentB1
IP-Address: 192.168.1.6
Labels: cryo, plc
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oW
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Parameters configured to interact with Siemens

monitoring solutions

Monitoring Dashboard Main View

CPU Usage

Memory Usage

Network Usage

Disk Usage

Main-view that runs the logic that updates visualization in real-time
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Next steps

-xplore officially supported communication drivers and libraries that
allow retrieval of diagnostic information

Build tools around it and integrate it with the visualization tool

Collaboratively work with product owners to add or modify features of
the existing Siemens monitoring solutions

CERN openlab Technical Workshop 2024
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Use case: Optimising HVAC systems

tti
2277
tt

» Advanced control algorithms can optimize HVAC N %ZZZ H
processes to reduce energy consumption = :.E = :Eﬂ: .

* Model Predictive Control for Air Handling Units -
F Ghawash et al. 2022 Air Handling Uni

Control

* Previous setup: Run the algorithm on SCADA
servers and send control signals to PLC

Optimisation
Algorithm

!

. ¥

ql

‘ PLC Edge Device
Edge device to deploy MPC algorithms for HVAC

]
!

» Proposed Upgrade: Develop, Run, and Test the
algorithm on an Edge device
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https://www.researchgate.net/publication/361438897_Model_Predictive_Control_of_Air_Handling_Unit_for_a_Single_Zone_Setup

Postgres DB

Template 1| | lemplate 2 Template N

A |l A A

IE Flow Creator

S
MQ'T'T Broker s

MNMQTT MNMQTT
S/ Connector MQTT Broker

Template Runtime Environment

IE Databus

The architecture of ‘Template Framework’ - A DevOps platform for Edge
CERN openlab Technical Workshop 2024



HMI on Edge

» Developed with another Edge application: |

.

» WebD application to interact with the M

PC algorithm

- flow creator

» Based on flow-based programming tool: Node-red

» The application provides node.js components a

to build a full-stack web application with less effort

Easy

Control engineer

Difficult

No-code

platforms

Flow-based

Programming

Node-RED

CERN openlab Technical Workshop 2024

Full stack web

development

nd angular.js templates

HTML 45 CS55

SRS
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Leveraging local Intelligence to CERN Industrial Control Systems through Edge Technologies

CERN
\
/ A. Patil, F. Varela, F. Ghawash, B. Schofield CERN - BE-ICS, Geneva, Switzerland
T. Kaufmann, A. Sundermann, D. Schall Siemens AT - T DAI DAS, Austria
C. Kern Siemens DE - T CED SES, Germany TUPDP102
SIEMENS
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Enhancing Industrial Control Systems by integrating advanced
control algorithms presents substantial challenges. One of them
is safeguarding independence between core control processes
and algorithms. Another is bridging the developmental tool divide
between control engineers and data scientists. Industrial Edge
Computing is a solution to navigating these challenges by

e

deploying algorithms close to the process and employing Device & Software . Setup Dedicated PLC software  Manual Setup
prevalent programming languages and IT tools. Management system
L ) Connectivity  Ethernet, Serial  S7,0PCUA  Ethernet, USB E‘he”l’JeAf' e
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‘ ‘ Comparison of different technologies to deploy advanced control algorithms close to the process
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e Industrial Edge Ecosystem ~
l Transfer apps to the local network The industrial edge ecosystem enables near realtime data processing close to the data
source. Key components of the ecosystem include:
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Device Application Configuration devices.
management Catalog Serice
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Device Onboarding & l App Installation & l network integration.
Management Canfiguration
) 0 ) Online marketplace: Facilitates the purchase and transfer of edge applications to local
Edge device 1 Edge device 2 edge management systems.
Containenzation
Connectors Analytics Diagnostics \__ W,
Storage Dashboard Uiyux | oevices cammercid zergonsets [ e oosears

Components of Industrial Edge Ecosystem

Edge Device

User Interface

- Model Predictive Control on Edge

For an air handling unit at CERN, the MPC algorithm deployed on a Siemens industrial edge ecosystem has the
following setup:

PLC-Edge communication occurs via two edge applications, - S7 Connector and |E Databus.
Execution of Python functions on an edge device is managed through a specialized analytics function platform.

User interaction is facilitated by a Web User Interface developed with a tool based on Node-red - |E Flow Creator.
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LEVERAGING LOCAL INTELLIGENCE TO CERN INDUSTRIAL
CONTROL SYSTEMS THROUGH EDGE TECHNOLOGIES
A. Patil, F. Varela, F. Ghawash, B. Schofield, CERN, Geneva, Switzerland,

T. Kaufmann, A. Sundermann, D. Schall, Siemens AT - T DAI DAS, Austria,
C. Kern, Siemens DE - T CED SES, Germany

Abstract

Industrial processes often use advanced control algo-
rithms such as Model Predictive Control (MPC) and Ma-
chine Learning (ML) to improve performance and efficiency.
However, deploying these algorithms can be challenging,
particularly when they require significant computational re-
sources and involve complex communication protocols be-
tween different control system components. To address these
challenges, we showcase an approach leveraging industrial
edge technologies to deploy such algorithms. An edge de-
vice is a compact and powerful computing device placed at
the network’s edge, close to the process control. It executes
the algorithms without extensive communication with other
control system components, thus reducing latency and load
on the central control system. We also employ an analytics
function platform to manage the life cycle of the algorithms,
including modifications and replacements, without disrupt-
ing the industrial process.

Furthermore, we demonstrate a use case where an MPC
algorithm is run on an edge device to control a Heating,
Ventilation, and Air Conditioning (HVAC) system. An edge
device running the algorithm can analyze data from temper-
ature sensors, perform complex calculations, and adjust the
operation of the HVAC system accordingly. In summary, our
approach of utilizing edge technologies enables us to over-
come the limitations of traditional approaches to deploying
advanced control algorithms in industrial settings, providing
more intelligent and efficient control of industrial processes.

INTRODUCTION

The latest advances in Al and ML, along with time-tested
methods like MPC, offer new ways to enhance the function-
ality of industrial control systems [1]. For instance, these
techniques can improve system reliability through anomaly
detection, enable energy-efficient operation of complex in-
dustrial processes, and extend equipment life through predic-
tive maintenance. Nevertheless, enhancing industrial control
systems through such techniques poses several challenges.

One significant challenge is ensuring that the core pro-
cesses of the system and the algorithms operate indepen-
dently and do not interfere with one another. This process
independence ensures that the demands of complex algo-
rithms do not jeopardize the safe operation of the core pro-
cess and overburden its resources. Also, deploying complex
algorithms on the existing control infrastructure may only
be possible if specialized hardware components like GPUs
or Al processors are available. These components were rela-
tively uncommon in industrial control setups until recently.

However, new control hardware, such as multi-processor
PLCs and Al expansion cards, have emerged, making this
deployment possible.

Another challenge is the notable disparities between the
focus areas of control engineers and data scientists when
devising control systems. Control engineers primarily con-
centrate on industrial communication protocols, control de-
vices, PLC programming, and SCADA development. In
contrast, data scientists and software engineers focus on
creating new control strategies using Python or C++ and
utilize software development tools like package managers
and containers. New computing paradigms tailored to indus-
trial control systems have been developed that bridge this
divide and integrate information technology (IT) tools into
operational technology (OT). Examples include integrating
control systems with Cloud computing, High-Performance
Computing (HPC), and Edge computing.

This article mainly focuses on solutions that address these
challenges and provide local intelligence to a control system,
i.e., intelligence close to the process, allowing faster analysis
of streamed data and lightening the load on the different
layers of the control system by reducing network latency
and traffic. We start by comparing various techniques for
leveraging local intelligence. We emphasize Industrial Edge
Computing as an emerging solution that provides benefits
such as separation of concern, simplification of algorithm
development, and easy application lifecycle management. Fi-
nally, we will share insights from implementing an advanced
optimization algorithm on state-of-the-art edge technologies
and validating its use in a real-world setting at CERN.

LEVERAGING INTELLIGENCE TO
INDUSTRIAL CONTROL SYSTEMS

In recent years, the capability to deliver intelligence close
to industrial processes has progressed from conventional
setups such as bare-metal Industrial PCs to more advanced
systems like multi-process controllers and edge technologies.
Some of these setups are outlined below.

* Multi-process controllers: PLC vendors have ac-
knowledged developers’ needs to program control com-
ponents in languages beyond the IEC 61131-3 stan-
dard [2], adopting higher-level languages like C++ and
Python. For instance, the Siemens S7-1518 Multi-
Functional Platform (MFP) has a Linux OS alongside
its standard PLC OS that primarily supports C++. Com-
munication between the OSs is via an Ethernet virtual
switch, eliminating additional hardware and separating

Paper



Conclusion

« Edge ecosystem consists of Drivers, Applications, and Runtime

environments to augment a PLC with complex algorithms
» Supports various industrial communication protocols

« Advanced control algorithms can be deployed using a specific
platform

DevOps

» Web applications using flow-based programming can be developed to

provide a user interface

CERN openlab Technical Workshop 2024
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Background

» Therecentrise of Large Language Models with billions of parameters
|t can be leveraged as a tool for industrial control code development

» Many popular LLMs are proprietary and require a license

» Parallel movement in the LLM space: open source LLMs
» Llama 2, BLOOM, etc.
» Possibility for more flexibility and customization and transparency

CERN openlab Technical Workshop 2024 20th March 2024 27



Objective

 |nitiate the development of a tool to generate industrial control code
« WInCC OA Control Code for the SCADA layer
« PLC Code for the Control layer

» Explore the application of LLMs in generating code documentation

 Build a benchmarking suite to test the quality of various open-source
[LMS

CERN openlab Technical Workshop 2024 20th March 2024 23






