Noisy gates for simulating quantum computers

Michele Grossi, PhD

CERN QTI Quantum Computing Coordinator

CERN Openlab Technical Workshop 2024

Quantum Computing Platform

MOTIVATION

Study the noise

A **proper theoretical modelling** of the effect of the environment on a quantum systems allows to:

- Have a physical understanding of the sources of noise
- Suggest strategies to **mitigate errors**

• Perform **accurate simulations** to predict how the performances scale with the number of qubits/gates.

Georgopoulos, K., Emary, C., & Zuliani, P. (2021). Modeling and simulating the noisy behavior of near-term quantum computers. *Physical Review A*, *104*(6), 062432. Sun, J., Yuan, X., Tsunoda, T., Vedral, V., Benjamin, S. C., & Endo, S. (2021). Mitigating realistic noise in practical noisy intermediate-scale quantum devices. *Physical Review Applied*, *15*(3), 034026. Guerreschi, G. G., & Matsuura, A. Y. (2019). QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. *Scientific reports*, *9*(1), 1-7. Xue, C., Chen, Z. Y., Wu, Y. C., & Guo, G. P. (2021). Effects of quantum noise on quantum approximate optimization algorithm. *Chinese Physics Letters*, *38*(3), 030302. Resch, S., & Karpuzcu, U. R. (2021). Benchmarking quantum computers and the impact of quantum noise. *ACM Computing Surveys (CSUR)*, *54*(7), 1-35.

NOISY GATES

Open quantum systems

Breuer and Petruccione: The Theory of Open Quantum Systems, Oxford University Press (2002)

Theory of open quantum systems

Master Equation

$$|\psi\rangle \rightarrow \rho = |\psi\rangle\langle\psi| \qquad \qquad \frac{d}{dt}\rho_t = -\frac{i}{\hbar}[H_t,\rho_t] + \sum_k \gamma_k \left[L_k\rho_t L_k^{\dagger} - \frac{1}{2}\{L_k^{\dagger}L_k,\rho_t\}\right]$$

State vector Density matrix

Internal evolution

Effect of the environment

Issues to deal with:

- More complicated dynamics; how to model the environment efficiently
- With the density matrix, the problem scales quadratically with the size of the system.

Standard noise models

Standard noise simulation (e.g. in Qiskit)

- Gates and noise are formally **decoupled** (a sort of Trotterizzation), because time scales are small (IBM: gate time $\sim 10^{-8}$ s, decoherence times $\sim 10^{-4}$ s)
- Use the quantum-jump-like approach to replace the density matrix with (stochastic) state vector → stochastic dynamics

Noisy Gates

G. Di Bartolomeo, M. Vischi, F. Cesa, R. Wixinger, M. Grossi, S. Donadi, A. Bassi. A novel approach to noisy gates for simulating quantum computers, *Phys. Rev. Research 5, 043210*

Our approach: provide a more accurate description of the noisy behaviour of a quantum computer

- Noises are **embedded** in the gate \rightarrow more realistic picture
- State vector (stochastic) description

In SC: (SPAM) depolarizing +relaxation

From Lindblad to stochastic differential equations (SDE)

$$\begin{split} \frac{d}{dt}\rho_t &= -\frac{i}{\hbar}[H_t,\rho_t] + \underbrace{\sum_k \gamma_k \left[L_k \rho_t L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k,\rho_t \} \right]}_{k} = \mathfrak{D}(\rho) \\ & \mathbf{Gate} \qquad \mathbf{Noise} \\ & \mathbf{Moise} \\ & \mathbf{Moi$$

Stochastic evolution for the state vector (stochastic unravelling)

10

Formal equivalence: $\rho_t = \mathbb{E}[|\psi_t\rangle\langle\psi_t|]$

Comparison of the approximations

Standard approximation

$$\rho_t = U_{t,t_0} \mathrm{T} \left[e^{\gamma \int_{t_0}^t \mathrm{d}s \mathfrak{L}(s)} \right] \rho_{t_0} U_{t,t_0}^{\dagger}$$

 $\mathfrak{L}(t)\simeq\mathfrak{L}$

Noisy gates

$$\rho_t = U_{t,t_0} \mathbf{T} \left[e^{\gamma \int_{t_0}^t \mathrm{d}s \mathfrak{L}(s)} \right] \rho_{t_0} U_{t,t_0}^{\dagger}$$

$$\mathbf{T}\bigg[e^{\gamma\int_{t_0}^t\mathrm{d}s\mathfrak{L}(s)}\bigg]\simeq 1+\gamma\int_{t_0}^t\!\mathrm{d}s\mathfrak{L}(s)$$

IBMQ devices: main single qubit noises

Gates

Native gate set {
$$RZ(\phi)$$
, X, SX, CNOT}

 θ : rotation angle

 ϕ : phase, realizes virtual Z gates

Native gate set {
$$RZ(\phi)$$
, X, SX, CNOT}
 $Cross resonance (CR) gate$
 $H(\theta, \phi) = \frac{\theta\hbar}{2} R_{xy}(\phi)$
 $R_{xy}(\phi) = \cos(\phi)X + \sin(\phi)Y$
 \blacksquare
 $H^{(1,2)}(\theta, \phi) = \frac{\hbar\theta}{2} Z^{(1)} \otimes R^{(2)}_{xy}$
 $R_{xy}(\phi) = \cos(\phi)X + \sin(\phi)Y$

Note: how to implement the pulse

Noises

- -Single qubit depolarization: γ_d
- -Single qubit amplitude and phase damping: γ_1 , γ_z $\lambda_{\nu} \sim 10^4 \mathrm{Hz}$

$$\begin{split} \mathbf{L}_{1} &= \sqrt{\frac{\lambda_{1}}{\lambda}} \sigma^{-}, \quad \mathbf{L}_{2} &= \sqrt{\frac{\lambda_{2}}{\lambda}} \sigma^{+}, \quad \mathbf{L}_{3} &= \sqrt{\frac{\lambda_{3}}{\lambda}} \mathbf{Z}; \\ \lambda_{1} &= 2\gamma_{d}, \quad \lambda_{2} &= 2\gamma_{d} + \gamma_{1}, \quad \lambda_{3} &= \gamma_{d} + \gamma_{z} \\ \lambda &= \lambda_{1} + \lambda_{2} + \lambda_{3} \end{split}$$

$$\begin{split} t_{g} &\sim 10^{-8} s \\ \epsilon &= \sqrt{\lambda t_{g}} \ll 1 \end{split}$$

Simulation of the noisy X gate

QUANTUM

NITIATIVE

TECHNOLOGY

Hellinger Distance

Lindblad and noisy gates

Lindblad and Qiskit simulator

	Search projects	Q	Help	Sponsors	Log in	Register
quantu pip instal	m-gates 1. l quantum-gates	0.4		R	✓ Peleased:	Latest version Mar 29, 2023
Quantum Noisy Gates Simulation with Python						
Navigation		Project description				
E Project description Noisy Quantum Gates University of Trieste Bassi Group CERN CERN Open Source						
Download fil	Selease history CERN QTI Implementation of the Noisy Quantum Gates model, which is soon to be published. It is a novel method to simulate the noisy behaviour of quantum devices by incorporating the noise directly in the gates, which become stochastic					
Project links The Homepage Documentations						
CERN	OUANTUM TECHNOLOGY INITIATIVE	The documentation for Noisy Quantum Gates can b M.	e accessed on the website <u>Re</u> Grossi CERN QTI - Openlal TechWorkshop24	ead the Docs.	R	22

Run your own noisy simulation

We create a quantum circuit with Qiskit.

circ = QuantumCircuit(2,2) circ.h(0) circ.cx(0,1) circ.barrier(range(2)) circ.measure(range(2),range(2)) circ.draw('mpl') sim = MrAndersonSimulator(gates=standard_gates, CircuitClass=EfficientCircuit)

t_circ = transpile(circ, backend, scheduling_method='asap', initial_layout=qubits_layout, seed_transpiler=42

```
)
```

probs = sim.run(
 t_qiskit_circ=t_circ,
 qubits_layout=qubits_layout,
 psi0=np.array(run_config["psi0"]),
 shots=run_config["shots"],
 device_param=device_param_lookup,
 nqubit=2)

counts_ng = {format(i, 'b').zfill(2): probs[i] for i in range(0, 4)}

CERN QTI https://quantum.cern/