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MOTIVATION



Study the noise

A proper theoretical modelling of the effect of 
the environment on a quantum systems allows 
to:

• Have a physical understanding of the sources 
of noise

• Suggest strategies to mitigate errors

Georgopoulos, K., Emary, C., & Zuliani, P. (2021). Modeling and simulating the noisy behavior of near-term quantum computers. Physical Review A, 104(6), 062432.
Sun, J., Yuan, X., Tsunoda, T., Vedral, V., Benjamin, S. C., & Endo, S. (2021). Mitigating realistic noise in practical noisy intermediate-scale quantum devices. Physical Review Applied, 15(3), 034026.
Guerreschi, G. G., & Matsuura, A. Y. (2019). QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Scientific reports, 9(1), 1-7.
Xue, C., Chen, Z. Y., Wu, Y. C., & Guo, G. P. (2021). Effects of quantum noise on quantum approximate optimization algorithm. Chinese Physics Letters, 38(3), 030302.
Resch, S., & Karpuzcu, U. R. (2021). Benchmarking quantum computers and the impact of quantum noise. ACM Computing Surveys (CSUR), 54(7), 1-35.

• Perform accurate simulations to predict how the performances scale with the 
number of qubits/gates. 
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NOISY GATES



Open quantum systems

Theory of open quantum systems 

Issues to deal with:

• More complicated dynamics; how to model the environment efficiently

• With the density matrix, the problem scales quadratically with the size of the system.
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Breuer and Petruccione: The Theory of Open Quantum Systems, Oxford University Press (2002) 

Master Equation
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Standard noise models

• Gates and noise are formally decoupled (a sort of Trotterizzation), because time scales 
are small (IBM: gate time ∼ 10-8 s, decoherence times ∼ 10-4 s)

<latexit sha1_base64="Tbp6GXV4znjQxES5qoProug9J54="></latexit>
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• Use the quantum-jump-like approach to replace the density matrix with (stochastic) 
state vector → stochastic dynamics

= noise gate

Noises (like gates) formally act instantly: Lindblad → 
Kraus

✓
?

Standard noise simulation (e.g. in Qiskit)
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Noisy Gates

• Noises are embedded in the gate → more realistic picture

• State vector (stochastic) description 

Our approach: provide a more accurate description of the noisy 
behaviour of a quantum computer

✓
✓

G. Di Bartolomeo, M. Vischi, F. Cesa, R. Wixinger, M. Grossi, S. Donadi, A. Bassi. A novel
approach to noisy gates for simulating quantum computers, Phys. Rev. Research 5, 043210
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From Lindblad to stochastic differential 
equations (SDE)  

Stochastic evolution for the state vector (stochastic unravelling)
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where | i denotes the initial state. This generates an
ensemble of quantum trajectories which

one simulates this noisy circuit sampling di↵erent re-
alizations of the stochastic processes, hence getting as
output a di↵erent (non normalized) state vector | ki =��� t(⇠
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k )
E
each time, where k 2 {1, ..., Nsamples}

labels the sample; finally, one takes the average over all
the samples, estimating
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| ki h k| , (5)

which converges to the correct solution ⇢t.

III. REVIEW OF THE NOISE MODEL

The noises declared to be more relevant to IBM’s su-
perconducting devices have already been characterized
in literature, so in this section we start by simply pre-
senting them; afterwards, we match them together in or-
der to build the model of noise we will work on. Apart
from state preparation and measurement (SPAM) errors,
which happen at the very beginning or end, during the
execution of an algorithm we take in account two kinds of
noises, namely, depolarization and relaxations. The first,
which can be ascribed to device’s imperfections, tends to
bring the state towards the totally mixed one, 1/

p
N ; in

the case of a single qubit, this can be modeled by the
following Lindblad term,
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The second group of errors is due to the interaction of
the physical qubits with the surrounding environment;
in particular, due the thermalization towards an equi-
librium with the environment, energy exchanges are al-
lowed. In the scenario of interest, this provokes a driving
of the qubit towards the ground state |0i, which is also
known as relaxation (or amplitude damping). Such a
damping is characterized by a relaxation time T1, which
identifies the scales at which the state decays towards
|0i; this e↵ect already provokes an attenuation of the
o↵-diagonal elements of the density matrix in terms of
dephasing, which (if only amplitude damping is act-
ing) has a characteristic time 2T1. However, at the
same time also a contribution of pure dephasing must
be taken in account, resulting in an e↵ective dephasing
rate 1/T2 � 1/2T1. When also T1 � T2 holds (and this is
the case of interest to us), the combined action of these
two e↵ects can be described by the following Lindblad
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|1i h1| is the projector onto |1i; the coe�cients are related

to the characteristic times as �1 = T�1
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T2)/4T1T2. Matching together these two groups of errors,
one gets a term D(⇢) = Dd(⇢) + DR(⇢), which can be
diagonalized in the canonical Lindblad form by standard
procedures; one finally obtains the Lindblad term
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here, we set �1 = 2�d, �2 = 2�d + �1, �3 = �d + �z
and � = �1 + �2 + �3, which will be convenient to us.
For IBM’s superconducting devices, the typical order of
magnitude of the decoherence times is ��1

d , T1,2 ⇠ 10�4s,
so that in our case �k ⇠ 104Hz. By contrast, the typical
order of magnitude of the time it takes for a gate to
be executed is tg ⇠ 10�8s, which is small compared to
T1,2; in particular, one has ✏ =

p
�tg ⌧ 1. This can

be better exploited by writing the evolution with an a-
dimensional time schedule s = t/tg 2 [0, 1], which leads
to the Lindblad equation
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therein, Hs is an Hamiltonian adequately defined in the
schedule s and the noisy term is the one defined in (8).

IV. GENERAL DERIVATION OF NOISY GATES

In order to derive a general expression for the noisy
gate, let us consider the situation in which the computer
executes a certain gate Ug on a set of n qubits. This is
done by driving the system with an Hamiltonian Hs for
s 2 [0, 1], which will induce some unitary evolution Us,
defined by i~dUs/ds = HsUs, and such that Us=1 = Ug.
However, if noises and imperfections are taken in account,
this coherent evolution is substituted by a non coherent
one, which under the assumptions of Markovianity is de-
scribed by a master equation of the Lindblad form,
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i.e., some generalization (yet to be specified) of (10) to
the n�qubit case; throughout the whole paper, we will
denote by n the number of qubits and by N = 2n the
dimension of the associated Hilbert space. We remember
here that in our case the coe�cient ✏ is small, ✏⌧ 1. In
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Comparison of the approximations

Standard approximation Noisy gates
approximation
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-Single qubit depolarization: 𝛾!
-Single qubit amplitude and phase damping: 𝛾", 𝛾#
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s 2 [0, 1], which will induce some unitary evolution Us,
defined by i~dUs/ds = HsUs, and such that Us=1 = Ug.
However, if noises and imperfections are taken in account,
this coherent evolution is substituted by a non coherent
one, which under the assumptions of Markovianity is de-
scribed by a master equation of the Lindblad form,

d⇢s
ds

= � i

~
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Hs, ⇢s

⇤
+D(n)

✏2 (⇢s), (11)

with the non coherent term acting as
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i.e., some generalization (yet to be specified) of (10) to
the n�qubit case; throughout the whole paper, we will
denote by n the number of qubits and by N = 2n the
dimension of the associated Hilbert space. We remember
here that in our case the coe�cient ✏ is small, ✏⌧ 1. In
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where | i denotes the initial state. This generates an
ensemble of quantum trajectories which

one simulates this noisy circuit sampling di↵erent re-
alizations of the stochastic processes, hence getting as
output a di↵erent (non normalized) state vector | ki =��� t(⇠
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k , ..., ⇠
(Ng)

k )
E
each time, where k 2 {1, ..., Nsamples}

labels the sample; finally, one takes the average over all
the samples, estimating

⇢f =
1

Nsamples
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| ki h k| , (5)

which converges to the correct solution ⇢t.

III. REVIEW OF THE NOISE MODEL

The noises declared to be more relevant to IBM’s su-
perconducting devices have already been characterized
in literature, so in this section we start by simply pre-
senting them; afterwards, we match them together in or-
der to build the model of noise we will work on. Apart
from state preparation and measurement (SPAM) errors,
which happen at the very beginning or end, during the
execution of an algorithm we take in account two kinds of
noises, namely, depolarization and relaxations. The first,
which can be ascribed to device’s imperfections, tends to
bring the state towards the totally mixed one, 1/

p
N ; in

the case of a single qubit, this can be modeled by the
following Lindblad term,

Dd(⇢) = �d

3X

k=1

⇥
�k⇢�k � ⇢

⇤
. (6)

The second group of errors is due to the interaction of
the physical qubits with the surrounding environment;
in particular, due the thermalization towards an equi-
librium with the environment, energy exchanges are al-
lowed. In the scenario of interest, this provokes a driving
of the qubit towards the ground state |0i, which is also
known as relaxation (or amplitude damping). Such a
damping is characterized by a relaxation time T1, which
identifies the scales at which the state decays towards
|0i; this e↵ect already provokes an attenuation of the
o↵-diagonal elements of the density matrix in terms of
dephasing, which (if only amplitude damping is act-
ing) has a characteristic time 2T1. However, at the
same time also a contribution of pure dephasing must
be taken in account, resulting in an e↵ective dephasing
rate 1/T2 � 1/2T1. When also T1 � T2 holds (and this is
the case of interest to us), the combined action of these
two e↵ects can be described by the following Lindblad
term,

DR(⇢) = �1
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�+⇢�� � 1
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+ �z

⇥
Z⇢Z� ⇢

⇤
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where we use the convention �± = (X±iY)/2 and P(1) =
|1i h1| is the projector onto |1i; the coe�cients are related

to the characteristic times as �1 = T�1

1
and �z = (2T1 �

T2)/4T1T2. Matching together these two groups of errors,
one gets a term D(⇢) = Dd(⇢) + DR(⇢), which can be
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 ⇤
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with the non normalized jump operators

L1 =

r
�1
�
��, L2 =

r
�2
�
�+, L3 =

r
�3
�
Z; (9)

here, we set �1 = 2�d, �2 = 2�d + �1, �3 = �d + �z
and � = �1 + �2 + �3, which will be convenient to us.
For IBM’s superconducting devices, the typical order of
magnitude of the decoherence times is ��1

d , T1,2 ⇠ 10�4s,
so that in our case �k ⇠ 104Hz. By contrast, the typical
order of magnitude of the time it takes for a gate to
be executed is tg ⇠ 10�8s, which is small compared to
T1,2; in particular, one has ✏ =

p
�tg ⌧ 1. This can

be better exploited by writing the evolution with an a-
dimensional time schedule s = t/tg 2 [0, 1], which leads
to the Lindblad equation
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therein, Hs is an Hamiltonian adequately defined in the
schedule s and the noisy term is the one defined in (8).
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In order to derive a general expression for the noisy
gate, let us consider the situation in which the computer
executes a certain gate Ug on a set of n qubits. This is
done by driving the system with an Hamiltonian Hs for
s 2 [0, 1], which will induce some unitary evolution Us,
defined by i~dUs/ds = HsUs, and such that Us=1 = Ug.
However, if noises and imperfections are taken in account,
this coherent evolution is substituted by a non coherent
one, which under the assumptions of Markovianity is de-
scribed by a master equation of the Lindblad form,
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i.e., some generalization (yet to be specified) of (10) to
the n�qubit case; throughout the whole paper, we will
denote by n the number of qubits and by N = 2n the
dimension of the associated Hilbert space. We remember
here that in our case the coe�cient ✏ is small, ✏⌧ 1. In
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corresponds to such unitaries when depolarization and
relaxations are taken in account during the evolution;
hence, we consider the single-qubit Lindblad term given
in Eq. (8). Based on Eq. (17), we start by calculat-
ing the deterministic, non unitary term ⇤(✓,�). Since in
the interaction picture the evolution is unitary, one sees
that the term corresponding to k = 3 is always vanish-
ing, and one has ⇤(✓,�) = � 1

2

R
1

0
ds[✏2

1
�+

s �
�
s + ✏2

2
��
s �

+

s ],
where we set ✏k ⌘ ✏�k/�; hence, we first calculate
�±
s �

⌥
s = U†

s�
±�⌥Us, and after integration we get

Z
1

0

ds�±
s �

⌥
s =

1

2

h
1 ± sin(✓/2)

✓/2
R(✓, �̄)

i
, (22)

where R(✓,�) = cos(✓/2)Z + sin(✓/2)Rxy(�) and �̄ =
�+ ⇡/2, so that one has

⇤(✓,�) = �✏2
1
+ ✏2

2

4
1 � ✏2

1
� ✏2

2

4

sin(✓/2)

✓/2
R
�
✓, �̄

�
; (23)

such an expression can be exponentiated, leading to

e⇤(✓,�) = e�
✏21+✏22

4


coshF (✓)� R

�
✓, �̄

�
sinhF (✓)

�
, (24)

where we defined F (✓) = ✏21�✏22
4

sin(✓/2)
✓/2 . Secondly, we turn

to investigating the stochastic term, ⌅(✓,�|⇠); hence, we
first calculate the expressions for the jump operators Lk,s

in the interaction picture. For k = 1, 2 one has

�±
s (✓,�) =

e±i�

2

h
Rxy(�)± iR(2s̄✓, �̄)

i
, (25)

and for k = 3 one finds Zs = R(2s✓, �̄). Now, it is con-
venient to define the following real stochastic variables:

⇠k,± =
1

2i(1⌥1)/2

Z
1

0

dWk,s

⇥
eis✓ ± e�is✓

⇤
, (26)

which have variances

E
⇥
⇠2k,±

⇤
=

1

2

⇥
1± sin(2✓)

2✓

⇤
(27)

and correlations

E
⇥
⇠k,+⇠j,�

⇤
=

1� cos(2✓)

4✓
�kj ; (28)

moreover, we define ⇠k,w =
R
1

0
dWk,s, such that

E
⇥
⇠2k,w

⇤
= 1, E

⇥
⇠k,+⇠k,w

⇤
= sin(✓)/✓ and E

⇥
⇠k,�⇠k,w

⇤
=⇥

1 � cos(✓)
⇤
/✓. Then, summing everything and re-

arranging conveniently, we get

⌅(✓,�|⇠) = if0Z + if1Rxy(�) + if2Rxy(�̄), (29)

where we defined the following set of complex stochastic
coe�cients:

f0 =✏3⇠3,+ � i
ei�✏2⇠2,� � e�i�✏1⇠1,�

2
, (30)

f1 =
ei�✏2⇠2,w + e�i�✏1⇠1,w

2
, (31)

f2 =✏3⇠3,� + i
ei�✏2⇠2,+ � e�i�✏1⇠1,+

2
. (32)

Since these quantities are all combinations of gaussian
random variables with the correlations previously dis-
cussed, they can be e�ciently sampled with known algo-
rithms; then, the stochastic matrix (29) can be assembled
and numerically exponentiated. Multiplication by the
deterministic term (24) and then by the noiseless gate
U(✓,�) finally leads to the noisy gate N(✓,�|⇠) for the
single qubit unitary, which, as claimed only depends on
few correlated gaussian variables.

VI. TWO-QUBIT NOISY GATES

On IBM’s platforms, two qubit gates are implemented
by exploiting a driven cross resonance; labeling with
an upper index the qubit each operator acts on, this
consists in the execution of the unitary U(1,2)(✓,�) =

e�i✓Z(1)⌦R
(2)
xy (�)/2, which can be achieved by driving the

composite system with the Hamiltonian

H(1,2)(✓,�) =
~✓
2
Z(1) ⌦ R(2)

xy (33)

for a duration s 2 [0, 1]; from now on, we will almost
always drop the tensor product symbol. We take in con-
sideration only noises acting on single qubits, so that the
Lindblad term reads

D(1,2)
✏2 (⇢) = �

X

i2{0,1}

3X

k=1

⇥
L(i)
k ⇢L(i)†

k � 1

2

�
L(i)†
k L(i)

k , ⇢
 ⇤

,

(34)
where now ⇢ is the two-qubit statistical operator. As
in the single-qubit case, we start by calculating the de-
terministic term ⇤(✓,�) = ⇤1(✓,�) + ⇤2(✓,�), where

⇤i(✓,�) = �
R
1

0
ds[✏2

1
�+(i)
s ��(i)

s + ✏2
2
��(i)
s �+(i)

s ]/2. For
i = 1, one has the simple expression

⇤1(✓,�) = �✏2
1
+ ✏2

2

2
1 � ✏2

1
� ✏2

2

2
Z(1), (35)

while for i = 2 it can be calculated that

⇤2(✓,�) = �✏2
1
+ ✏2

2

4
1 � F (✓)R(1,2)(✓, �̄), (36)

where we defined R(1,2)(�) = cos(✓/2)Z(2) +
sin(✓/2)Z(1)Rxy(�). Notice that ⇤1(✓,�) and ⇤2(✓,�)
commute, so that e⇤(✓,�) = e⇤1(✓,�)e⇤2(✓,�) can be
factorized; moreover, both can be exactly exponentiated,
so that again e⇤(✓,�) can be directly computed. Secondly,
let us turn to the calculation of the noisy term N(✓,�|⇠);
we start by calculating the jump operators in the

interaction picture. For i = 1, one gets Z(1)

s = Z(1) and

�±(1)

s = e±is✓R2
xy(�)�±(1); for i = 2, Z(2)

s = R(1,2)(s✓, �̄)
and

�±(2)

s = cos(s✓)�±(2) ± ei�̄ sin(s✓)Z(1)Z(2). (37)

Rxy(�) = cos(�)X + sin(�)Y
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where | i denotes the initial state. This generates an
ensemble of quantum trajectories which

one simulates this noisy circuit sampling di↵erent re-
alizations of the stochastic processes, hence getting as
output a di↵erent (non normalized) state vector | ki =��� t(⇠

(1)

k , ..., ⇠
(Ng)

k )
E
each time, where k 2 {1, ..., Nsamples}

labels the sample; finally, one takes the average over all
the samples, estimating

⇢f =
1

Nsamples

NsamplesX

k=1

| ki h k| , (5)

which converges to the correct solution ⇢t.

III. REVIEW OF THE NOISE MODEL

The noises declared to be more relevant to IBM’s su-
perconducting devices have already been characterized
in literature, so in this section we start by simply pre-
senting them; afterwards, we match them together in or-
der to build the model of noise we will work on. Apart
from state preparation and measurement (SPAM) errors,
which happen at the very beginning or end, during the
execution of an algorithm we take in account two kinds of
noises, namely, depolarization and relaxations. The first,
which can be ascribed to device’s imperfections, tends to
bring the state towards the totally mixed one, 1/

p
N ; in

the case of a single qubit, this can be modeled by the
following Lindblad term,

Dd(⇢) = �d

3X

k=1

⇥
�k⇢�k � ⇢

⇤
. (6)

The second group of errors is due to the interaction of
the physical qubits with the surrounding environment;
in particular, due the thermalization towards an equi-
librium with the environment, energy exchanges are al-
lowed. In the scenario of interest, this provokes a driving
of the qubit towards the ground state |0i, which is also
known as relaxation (or amplitude damping). Such a
damping is characterized by a relaxation time T1, which
identifies the scales at which the state decays towards
|0i; this e↵ect already provokes an attenuation of the
o↵-diagonal elements of the density matrix in terms of
dephasing, which (if only amplitude damping is act-
ing) has a characteristic time 2T1. However, at the
same time also a contribution of pure dephasing must
be taken in account, resulting in an e↵ective dephasing
rate 1/T2 � 1/2T1. When also T1 � T2 holds (and this is
the case of interest to us), the combined action of these
two e↵ects can be described by the following Lindblad
term,

DR(⇢) = �1
⇥
�+⇢�� � 1

2

�
P(1), ⇢

 ⇤
+ �z

⇥
Z⇢Z� ⇢

⇤
, (7)

where we use the convention �± = (X±iY)/2 and P(1) =
|1i h1| is the projector onto |1i; the coe�cients are related

to the characteristic times as �1 = T�1

1
and �z = (2T1 �

T2)/4T1T2. Matching together these two groups of errors,
one gets a term D(⇢) = Dd(⇢) + DR(⇢), which can be
diagonalized in the canonical Lindblad form by standard
procedures; one finally obtains the Lindblad term

D(1)

� (⇢) = �
3X

k=1

⇥
Lk⇢L

†
k � 1

2

�
L†
kLk, ⇢

 ⇤
, (8)

with the non normalized jump operators

L1 =

r
�1
�
��, L2 =

r
�2
�
�+, L3 =

r
�3
�
Z; (9)

here, we set �1 = 2�d, �2 = 2�d + �1, �3 = �d + �z
and � = �1 + �2 + �3, which will be convenient to us.
For IBM’s superconducting devices, the typical order of
magnitude of the decoherence times is ��1

d , T1,2 ⇠ 10�4s,
so that in our case �k ⇠ 104Hz. By contrast, the typical
order of magnitude of the time it takes for a gate to
be executed is tg ⇠ 10�8s, which is small compared to
T1,2; in particular, one has ✏ =

p
�tg ⌧ 1. This can

be better exploited by writing the evolution with an a-
dimensional time schedule s = t/tg 2 [0, 1], which leads
to the Lindblad equation

d⇢s
ds

= � i

~
⇥
Hs, ⇢s

⇤
+D(1)

✏2 (⇢s); (10)

therein, Hs is an Hamiltonian adequately defined in the
schedule s and the noisy term is the one defined in (8).

IV. GENERAL DERIVATION OF NOISY GATES

In order to derive a general expression for the noisy
gate, let us consider the situation in which the computer
executes a certain gate Ug on a set of n qubits. This is
done by driving the system with an Hamiltonian Hs for
s 2 [0, 1], which will induce some unitary evolution Us,
defined by i~dUs/ds = HsUs, and such that Us=1 = Ug.
However, if noises and imperfections are taken in account,
this coherent evolution is substituted by a non coherent
one, which under the assumptions of Markovianity is de-
scribed by a master equation of the Lindblad form,
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with the non coherent term acting as
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i.e., some generalization (yet to be specified) of (10) to
the n�qubit case; throughout the whole paper, we will
denote by n the number of qubits and by N = 2n the
dimension of the associated Hilbert space. We remember
here that in our case the coe�cient ✏ is small, ✏⌧ 1. In
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where | i denotes the initial state. This generates an
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the samples, estimating
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| ki h k| , (5)

which converges to the correct solution ⇢t.

III. REVIEW OF THE NOISE MODEL

The noises declared to be more relevant to IBM’s su-
perconducting devices have already been characterized
in literature, so in this section we start by simply pre-
senting them; afterwards, we match them together in or-
der to build the model of noise we will work on. Apart
from state preparation and measurement (SPAM) errors,
which happen at the very beginning or end, during the
execution of an algorithm we take in account two kinds of
noises, namely, depolarization and relaxations. The first,
which can be ascribed to device’s imperfections, tends to
bring the state towards the totally mixed one, 1/

p
N ; in

the case of a single qubit, this can be modeled by the
following Lindblad term,

Dd(⇢) = �d
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The second group of errors is due to the interaction of
the physical qubits with the surrounding environment;
in particular, due the thermalization towards an equi-
librium with the environment, energy exchanges are al-
lowed. In the scenario of interest, this provokes a driving
of the qubit towards the ground state |0i, which is also
known as relaxation (or amplitude damping). Such a
damping is characterized by a relaxation time T1, which
identifies the scales at which the state decays towards
|0i; this e↵ect already provokes an attenuation of the
o↵-diagonal elements of the density matrix in terms of
dephasing, which (if only amplitude damping is act-
ing) has a characteristic time 2T1. However, at the
same time also a contribution of pure dephasing must
be taken in account, resulting in an e↵ective dephasing
rate 1/T2 � 1/2T1. When also T1 � T2 holds (and this is
the case of interest to us), the combined action of these
two e↵ects can be described by the following Lindblad
term,
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T1,2; in particular, one has ✏ =
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