Vectorizing Matrix Operations in the
CMath Plugin

Beomki Yeo

S CALI >
(/52 0 A
S o
i — — hE 1
P/ rerreeer
e —
oS

o
% DI\ 5
1868

BERKELEY LAB

Overview on Vectorization of Matrix Operations

e Why
o Matrix operation used heavily in the track reconstruction (Runge-Kutta, covariance
transport and KF)

e What
o Vectorizing matrix operations in the emath of algebra plugins

e How
o Auto-vectorization rather than the explicit vectorization (-march=native
compilation flag)

e Inthe very experimental stage
o acts-project/algebra-plugins/pull/116
o acts-project/detray/pull/717

https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/algebra-plugins/pull/116
https://github.com/acts-project/detray/pull/717

Vectorization

e The instruction on the multiple data of the register can be operated at the same time
o SIMD

e There can be inefficiency in case the vector size does not fit into the register size or its
integer multiplication

for(i=0;i<4;i++)

Example with four vector sum
cli] = ali] + blil;

Non-vectorized Vectorized
+ +
=3

Image credit

https://www.intel.com/content/www/us/en/developer/articles/technical/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html

Matrix Definition in the emath plugin

e Matrix is a 2 dimensional (jagged) array
o EX) 4x4 matrix = std::array<std::array<float, 4>,4>
o Sub-array = column

First sub-array

T

~—

4 x 4 matrix

Vectorizing the Matrix Addition (A +B =C)

Non-vectorized matrix addition for a row (main)

b]

A B C

Vectorized matrix addition for a column

b —

template <typename size_type, template <typename, size_type> class array_t,
typename scalar_t, size_type ROWS, size_type COLS,
std::enable_if_t<std::is_scalar_v<scalar_t>, bool> = true>
ALGEBRA_HOST_DEVICE inline array_t<array_t<scalar_t, ROWS>, COLS> operator+(
const array_t<array_t<scalar_t, ROWS>, COLS> &A,
const array_t<array_t<scalar_t, ROWS>, COLS> &B) {

array_t<array_t<scalar_t, ROWS>, COLS> C;

for (size_type i = 0; 1 < ROWS; ++i) {
for (size_type j = 0; j < COLS; ++j) {
for (size_type J = 0; J < COLS; ++j) {
for (size_type 1 = 0; i < ROWS; ++i) {
C[JI[1] = A[31[i] + B[J][1];

Vectorizing Matrix Multiplication

e Non-vectorized matrix multiplication for a column e Vectorized matrix multiplication for a column
A B c

N
& =

A B

N

=
|
=

Vectorization Performance (Single)

e Detray propagation benchmark in the toy geometry
o Multi-thread with OpenMP
o Includes the RK integration and covariance transport

Propagation benchmark (CPU unsync, Float)
AMD EPYC 7302 16-Core Processor

1200 — @ w/o vectorization (main)

(@ w/ vectorization] Only compilation flag
= 1100 w/ vectorization + v . :
T algebra-plugin#116 (This | W/ Vectorizing matrix
= 1000 PR) operations
=
£e
S 900 —

o
=
800 I — - T
o O & e & o
Q P O S O O
N <> 9 & S

nTracks

Vectorization Performance (Double)

e Detray propagation benchmark in the toy geometry
o Multi-thread with OpenMP
o Includes the RK integration and covariance transport

Propagation benchmark (CPU unsync, Double)
AMD EPYC 7302 16-Core Processor

1000 — ® w/o vectorization
(@ w/ vectorization] Only compilation flag
900 — :
— w/ vectorzation + - :
3 /\ algebra-plugin#116 w/ Vec'tonzmg matrix
= 800 " (This PR) operations
_§- @ w/o vectorization +
ga 700 — algebra-plugin#116
=
600 T — — l
) e O e O)
Q N e O
» < 9O & & S

nTracks

Prospect on the Matrix Inversion

e Only used for Kalman Filter (also CKF)
o Have not investigated its impact, but it is good to optimize this as well

e Current matrix inversion algorithm is the partial pivot LU decomposition
o Highly rely on row-wise gaussian elimination - Vectorization unfriendly
o Should be replaced with column-wise gaussian elimination

summary

e The vectorization on the matrix operation is tested (Very preliminary)
o Performance seems to increase reasonably

e Matrix inversion should also be studied later

10

