Vectorizing Matrix Operations in the
CMath Plugin
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Overview on Vectorization of Matrix Operations

e Why
o Matrix operation used heavily in the track reconstruction (Runge-Kutta, covariance
transport and KF)

e What
o Vectorizing matrix operations in the emath of algebra plugins

e How
o Auto-vectorization rather than the explicit vectorization (-march=native
compilation flag)

e Inthe very experimental stage
o acts-project/algebra-plugins/pull/116
o acts-project/detray/pull/717



https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/algebra-plugins/pull/116
https://github.com/acts-project/detray/pull/717

Vectorization

e The instruction on the multiple data of the register can be operated at the same time
o SIMD

e There can be inefficiency in case the vector size does not fit into the register size or its
integer multiplication

for(i=0;i<4;i++)

Example with four vector sum
cli] = ali] + blil;
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https://www.intel.com/content/www/us/en/developer/articles/technical/vectorization-a-key-tool-to-improve-performance-on-modern-cpus.html

Matrix Definition in the emath plugin

e Matrix is a 2 dimensional (jagged) array
o EX) 4x4 matrix = std::array<std::array<float, 4>,4>
o Sub-array = column
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Vectorizing the Matrix Addition (A +B =C)

Non-vectorized matrix addition for a row (main)
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Vectorized matrix addition for a column
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template <typename size_type, template <typename, size_type> class array_t,
typename scalar_t, size_type ROWS, size_type COLS,
std::enable_if_t<std::is_scalar_v<scalar_t>, bool> = true>
ALGEBRA_HOST_DEVICE inline array_t<array_t<scalar_t, ROWS>, COLS> operator+(
const array_t<array_t<scalar_t, ROWS>, COLS> &A,
const array_t<array_t<scalar_t, ROWS>, COLS> &B) {

array_t<array_t<scalar_t, ROWS>, COLS> C;

for (size_type i = 0; 1 < ROWS; ++i) {
for (size_type j = 0; j < COLS; ++j) {
for (size_type J = 0; J < COLS; ++j) {
for (size_type 1 = 0; i < ROWS; ++i) {
C[JI[1] = A[31[i] + B[J][1];




Vectorizing Matrix Multiplication

e Non-vectorized matrix multiplication for a column e Vectorized matrix multiplication for a column
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Vectorization Performance (Single)

e Detray propagation benchmark in the toy geometry
o  Multi-thread with OpenMP
o Includes the RK integration and covariance transport

Propagation benchmark (CPU unsync, Float)
AMD EPYC 7302 16-Core Processor
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Vectorization Performance (Double)

e Detray propagation benchmark in the toy geometry
o  Multi-thread with OpenMP
o Includes the RK integration and covariance transport

Propagation benchmark (CPU unsync, Double)
AMD EPYC 7302 16-Core Processor
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Prospect on the Matrix Inversion

e Only used for Kalman Filter (also CKF)
o Have not investigated its impact, but it is good to optimize this as well

e Current matrix inversion algorithm is the partial pivot LU decomposition
o Highly rely on row-wise gaussian elimination - Vectorization unfriendly
o Should be replaced with column-wise gaussian elimination



summary

e The vectorization on the matrix operation is tested (Very preliminary)
o Performance seems to increase reasonably

e Matrix inversion should also be studied later
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