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Notation

Y1, . . . ,Yn ∼ p(y ; θ) where θ = (µ, β)

µ = parameter of interest µ ∈ R
β = nuisance parameter(s) β ∈ Rk

Goal: find confidence set C such that:

(1) coverage: Pθ(µ ∈ C ) ≥ 1− α for all θ

(2) efficiency: expected length of C is as small as possible
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Three Regimes

Regime 1: n is large, k is small, usual regularity conditions hold.

Regime 2: n is small or regularity conditions fail. Can’t rely on
large sample theory.

Regime 3: Number of nuisance parameters k is large, possibly
infinite.
Example: background b, signal s. Signal is any symmetric density.
k = ∞.
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Regime 1: n is large, k is small, usual regularity conditions
hold

In this case, there should be essentially no difference between
profile likelihood and integrated likelihood.

In principle, both should equal

C = µ̂± zα/2s/
√
n

(Wald interval)

s2 =

{
Iµµ − IµβI

−1
ββ I

T
µβ

}−1

where I is the Fisher information.

Profile likelihood has the advantage of not requiring a prior.
Adding a prior could add bias. Not clear what the advantage of
integrated likelihood is.



Regime 1: n is large, k is small, usual regularity conditions
hold

In this case, there should be essentially no difference between
profile likelihood and integrated likelihood.

In principle, both should equal

C = µ̂± zα/2s/
√
n

(Wald interval)

s2 =

{
Iµµ − IµβI

−1
ββ I

T
µβ

}−1

where I is the Fisher information.

Profile likelihood has the advantage of not requiring a prior.
Adding a prior could add bias. Not clear what the advantage of
integrated likelihood is.



Regime 1: n is large, k is small, usual regularity conditions
hold

In this case, there should be essentially no difference between
profile likelihood and integrated likelihood.

In principle, both should equal

C = µ̂± zα/2s/
√
n

(Wald interval)

s2 =

{
Iµµ − IµβI

−1
ββ I

T
µβ

}−1

where I is the Fisher information.

Profile likelihood has the advantage of not requiring a prior.
Adding a prior could add bias. Not clear what the advantage of
integrated likelihood is.



Regime 1: n is large, k is small, usual regularity conditions
hold

In this case, there should be essentially no difference between
profile likelihood and integrated likelihood.

In principle, both should equal

C = µ̂± zα/2s/
√
n

(Wald interval)

s2 =

{
Iµµ − IµβI

−1
ββ I

T
µβ

}−1

where I is the Fisher information.

Profile likelihood has the advantage of not requiring a prior.
Adding a prior could add bias. Not clear what the advantage of
integrated likelihood is.



Regime 2: n is small or regularity conditions fail

This is the case where the methods differ.

Theory does not suggest one is better than the other.

Simulation studies need to be conducted on a case by cases basis
to see which gives shorter intervals

But how do we know either gives correct coverage?

One should use simulation based inference (SBI) (Cranmer et al,
Lee et al, Kuusela et al).
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Simulation Based Inference (SBI)

θ1, . . . , θN ∼ f (θ)

For each θj draw (simulate) a data set Dj ∼ p(y ; θj) (or several
datasets)

Statistic T (θ,D). Can be profile likelihood, integrated likelihood,
or something else.

Zj = I (T (θj ,Dj) ≥ T (θj ,Dobserved))

Regress Z1, . . . ,ZN on θ1, . . . , θN to get p-value function

p(θ) = E[Z |θ]

Invert: C = {θ : p(θ) ≥ α}.

This is an exact confidence interval.
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Simulation Based Inference (SBI)

Advantage of using Tprofile is no prior.

Advantage of using Tintegrated is there is a prior! Include prior
information but retain frequentist validity.

Which is better? Both have correct coverage.

Compare length of intervals by simulation studies.
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Regime 3: n is large, k is large

Example:
(1− µ) b(y ;β)︸ ︷︷ ︸

background

+µ s(y − θ)︸ ︷︷ ︸
signal

where s is any symmetric density.

Parameter of interest: µ

Nuisance: β, θ and s.
This is an infinite dimensional nuisance parameter.

Neither profiling nor integrating is appropriate.
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Regime 3: n is large, k is large

In statistics, we use semiparametric methods for this case.

For example: define µ̂ to solve the estimating equation

1

n

∑
i

g(Yi , µ̂) = 0

where g is the efficient score function.

This estimator is optimal (shortest confidence interval)

I have not seen this approach used in physics but one should
consider it if there are many (possible infinitely many) nuisance
parameters.
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Robustness

Likelihood methods are not robust.

If the model is misspecified or there are outliers, likelihood
methods may not be best

Minumum Hellinger estimation:
θ̂ to minimize ∫

(
√
pθ −

√
p̂)2

where

Same efficiency (interval length) as likelihood if the model is
correct.

Performs well if there are outliers.
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Conclusion

For large samples, there should be little difference between profiling
and integrating.

For small n or irregular models, simulation based inference might
be the best bet (Cranmer et al)

This allows one to include a prior (if desired) and still get valid
coverage.

For high dimensional nuisance parameters, consider semiparametric
methods.
For robustness, alternatives to likelihood might be useful.
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