
Jong-Wan Lee (IBS)

LQCD simulations with GPT
Tutorials

Jan. 4, 2024
LQCDW1 @ Sejong University

A workflow of lattice simulations

Gauge theory (e.g QCD) discretized on the lattice of a 4-dim. Euclidean space-time (UV theory)

Generate gauge field configurations

Measurements of physical observables (correlation functions)

Data analysis

Finite lattice spacing

Finite volume
Finite number of configurations (statistics)

Continuum, infinite volume (thermodynamic) & massless or physical-mass

Scale setting

Sequential, computationally expensive

Statistical analysis

Goal:
2 QCD on the lattice

2.1 Continuum and lattice field theories

QCD action in the continuum Euclidean space-time is represented as

SQCD =
∫

d4x
1

4
F a

µνF a
µν +

∑

f

∫

d4xψ̄f (x)(γµDµ + mf)ψf (x), (1)

where Dµ = ∂µ + igAµ(x) is the covariant derivative,

F a
µν = ∂µAa

ν − ∂νA
a
µ + igfabcAbAc (2)

is the field strength, with f abc the structure constants of SU(3) group. The index f labels the
quark flavors. The Dirac matrices γµ satisfy the relation

{γµ, γν} = 2δµν . (3)

The quark field ψf has 3-color ⊗ 4-spinor components. By applying path integral quantization,
an expectation value of a physical observable O is represented as

〈O〉 =
1

Z

∫

DADψDψ̄O(ψ̄,ψ, A) exp(−SQCD[ψ̄,ψ, A]). (4)

In fact, to quantize a gauge theory in the continuum space-time we need to fix the gauge.
In the path integral quantization of a nonabelian gauge theory, the gauge fixing is performed
with a trick of Fadeev-Popov determinant which leads the ghost field. However, since the
lattice regularization does not necessarily require the gauge fixing, we did not included the
gauge fixing tern in the above argument, while in some cases the gauge fixing is convenient in
practical simulations.

The lattice discretization provides a regularization of the theory. Finally the lattice spacing
is taken to a → 0: the continuum limit. In this limit, the correlation length (the inverse of
the mass of the lightest mode) in lattice units diverges, i.e. the continuum limit is the second
order phase transition. In lattice QCD simulations, all the quantities are measured in units of
the lattice spacing a. The a−1 provides lattice cutoff of the momentum and energy: they are
restricted in the region less than π/a. However, the parameter being set in simulation is not
the lattice spacing but the coupling between the neighboring sites (and the bare quark masses).
The lattice spacing is determined by comparing a measured quantity, such as the proton mass,
which is provided as a certain number, with the experimental value, mp = 938 MeV. Thus the
lattice scale depends on the quantity defining the scale.

Because of the asymptotic freedom, the limit of the coupling g → 0 corresponds to the a → 0
limit. On the other hand, in the strong coupling QCD exhibits the confinement phenomena
(area low for the Wilson loops). It is essential to demonstrate that there is no phase transition
during taking the continuum limit. This question is investigated first by Creutz [ref], and
indeed the confinement region of the coupling is smoothly connected to the weak coupling
region without any phase transition. This implies that we can take the extrapolation of the
result obtained at strong coupling region to the continuum limit.

The lattice gauge theory is defined on 4D Euclidean lattices. The gauge field is defined
on links connecting the nearest neighboring sites. The gauge degree of freedom is represented
by an SU(3) matrix Uµ(x), called link variable, which is related to the gauge field Aµ(x) as

4

, meson masses π ρ

First-principal lattice calculations

Goal:
2 QCD on the lattice

2.1 Continuum and lattice field theories

QCD action in the continuum Euclidean space-time is represented as

SQCD =
∫

d4x
1

4
F a

µνF a
µν +

∑

f

∫

d4xψ̄f (x)(γµDµ + mf)ψf (x), (1)

where Dµ = ∂µ + igAµ(x) is the covariant derivative,

F a
µν = ∂µAa

ν − ∂νA
a
µ + igfabcAbAc (2)

is the field strength, with f abc the structure constants of SU(3) group. The index f labels the
quark flavors. The Dirac matrices γµ satisfy the relation

{γµ, γν} = 2δµν . (3)

The quark field ψf has 3-color ⊗ 4-spinor components. By applying path integral quantization,
an expectation value of a physical observable O is represented as

〈O〉 =
1

Z

∫

DADψDψ̄O(ψ̄,ψ, A) exp(−SQCD[ψ̄,ψ, A]). (4)

In fact, to quantize a gauge theory in the continuum space-time we need to fix the gauge.
In the path integral quantization of a nonabelian gauge theory, the gauge fixing is performed
with a trick of Fadeev-Popov determinant which leads the ghost field. However, since the
lattice regularization does not necessarily require the gauge fixing, we did not included the
gauge fixing tern in the above argument, while in some cases the gauge fixing is convenient in
practical simulations.

The lattice discretization provides a regularization of the theory. Finally the lattice spacing
is taken to a → 0: the continuum limit. In this limit, the correlation length (the inverse of
the mass of the lightest mode) in lattice units diverges, i.e. the continuum limit is the second
order phase transition. In lattice QCD simulations, all the quantities are measured in units of
the lattice spacing a. The a−1 provides lattice cutoff of the momentum and energy: they are
restricted in the region less than π/a. However, the parameter being set in simulation is not
the lattice spacing but the coupling between the neighboring sites (and the bare quark masses).
The lattice spacing is determined by comparing a measured quantity, such as the proton mass,
which is provided as a certain number, with the experimental value, mp = 938 MeV. Thus the
lattice scale depends on the quantity defining the scale.

Because of the asymptotic freedom, the limit of the coupling g → 0 corresponds to the a → 0
limit. On the other hand, in the strong coupling QCD exhibits the confinement phenomena
(area low for the Wilson loops). It is essential to demonstrate that there is no phase transition
during taking the continuum limit. This question is investigated first by Creutz [ref], and
indeed the confinement region of the coupling is smoothly connected to the weak coupling
region without any phase transition. This implies that we can take the extrapolation of the
result obtained at strong coupling region to the continuum limit.

The lattice gauge theory is defined on 4D Euclidean lattices. The gauge field is defined
on links connecting the nearest neighboring sites. The gauge degree of freedom is represented
by an SU(3) matrix Uµ(x), called link variable, which is related to the gauge field Aµ(x) as

4

, meson masses π ρ

First-principal lattice calculations

Grid Python Toolkit (GPT)

https://github.com/lehner/gpt

I A toolkit for lattice QCD
and related theories as
well as QIS (a parallel
digital quantum
computing simulator) and
Machine Learning

I Python frontend, C++
backend

I Built on Grid data
parallelism (MPI,
OpenMP, SIMD, and
SIMT)

Initial commit Feb. 2020, 65k lines of C++/Python, >1700 commits so far, 13 contributors
1 / 15

Grid Documentation

Peter Boyle, Guido Cossu, Antonin Portelli, Azusa Yamaguchi

Jun 23, 2023

Grid Python Toolkit (GPT)

GRID

✓ A C++ data parallel interface for cartesian grid problems, especially lattice QCD

✓ Give performance portability between many Exascale architectures

✓ Developed & maintained by P. Boyle, G. Cossu, A. Potelli & A. Yamaguchi @
Edinburgh, UK

SIMD ⨂ OpenMP ⨂ MPIPerformance portable across many CPU’s

SIMT ⨂ offload ⨂ MPIPerformance portable to GPU’s

github link https://github.com/paboyle/Grid

https://github.com/paboyle/Grid

FRONTIER: AMD CPU, AMD GPU - HIP Perlmutter: AMD CPU, Nvidia GPU - CUDA

Aurora: Intel CPU, Intel GPU - SYCL Tesseract: Intel Skylake - OpenMP, SIMD

Grid Python Toolkit (GPT)

✓ A toolkit for lattice QCD and related theories

✓ Python frontend and C++ backend - modularity & composability

 Build up from modular high-performance components, several layers of composability

✓ Built on GRID - performance portability

✓ Developed by Christoph Lehner (Regenburg) et al

Python script / Jupyter notebook

gpt (Python)
• Defines data types and objects (group structures etc.)

• Expression engine (linear algebra)

• Algorithms (Solver, Eigensystem, . . .)

• File formats

• Stencils / global data transfers

• QCD, QIS, ML subsystems

cgpt (Python library written in C++)
• Global data transfer system (gpt creates pattern, cgpt optimizes

data movement plan)

• Virtual lattices (tensors built from multiple Grid tensors)

• Optimized blocking, linear algebra, and Dirac operators

• Vectorized ranlux-like pRNG (parallel seed through
3xSHA256)

Grid Eigen FFTW
4 / 15

Talk by C. Lehner @ Lattice Practice (2023)

Grid Python Toolkit (GPT)

https://github.com/lehner/gpt

github link

Lectures by C. Lehner

https://homepages.uni-regensburg.de/~lec17310/teaching/wise2324/lqft.html

Thought that GPT would be good for LQCD beginners thanks to its accessibility &
modularity while keeping its high performance on various architectures.

https://github.com/lehner/gpt
https://homepages.uni-regensburg.de/~lec17310/teaching/wise2324/lqft.html

Let’s get started

1. Simulate QCD on the lattice !!!
(Generating gauge field configurations)

∫ d[U] det D(U)exp[−SG]

Lattice and Fields

• Discrete lattice in 4-dimensional Euclidean space-time

• Field variables of various types, scalar-, vector- and matrix-valued, can be introduced at
each site . Particularly important ones are vector- and matrix-valued variables
for gluons, pseudo-fermions, and operators with spin and color indices.

[x, y, z, t]

T × L × L × L

Uμ(x, y, z, t)a
b : U[μ][x, y, z, t][a, b]

ϕ(x, y, z, t) : ϕ[x, y, z, t]

Lattice Gauge Action

• Wilson gauge action

• The plaquette is given by

• Expected discretization errors are in the order of .

• Can be improved by taking appropriate combinations of other Wilson loops

a

import gpt as g;

import gpt as g;

with

import gpt as g;

and

Lattice Fermion Action

• Naive lattice fermion action suffers from fermion-doubling problem.

import matplotlib.pyplot as plt
import numpy as np

p = np.arange(-np.pi, np.pi, 0.1)
phat_boson = 2.0*np.sin(p/2.0)
phat_fermion = np.sin(p)

plt.plot(p,phat_boson)
plt.show()

plt.plot(p,phat_fermion)
plt.show()

import matplotlib.pyplot as plt
import numpy as np

p = np.arange(-np.pi, np.pi, 0.1)
phat_boson = 2.0*np.sin(p/2.0)
phat_fermion = np.sin(p)

plt.plot(p,phat_boson)
plt.show()

plt.plot(p,phat_fermion)
plt.show()

Discrete dispersion relation of non-interacting particles

Scalar Fermion

∑
μ

sin (pμ)
2

= 0∑
μ

sin (pμ

2)
2

= 0

Lattice Fermion Action

• Naive lattice fermion action suffers from fermion-doubling problem.

• Fermion doublers can be removed at the cost of giving up some properties of the continuum
theory (Nielson-Ninomiya theorem), which can systematically be restored later.

• Wilson(-clover) fermions both isotropic and anisotropic - explicit breaking of chiral. sym.
by the Wilson term, computational cost - moderate

∑
μ

sin (pμ)
2

ψ(x) + 4 − ∑
μ

cos (pμ)
2

= 0
Discretized

Dispersion relation

Sf = a4 ∑
n

ψ̄nψn − κ (ψ̄n(1 − γμ)Un, ̂μψn+ ̂μ + ψ̄n(1 + γμ)U†
n− ̂μ, ̂μψn− ̂μ) κ =

1
8 + 2m

with (hopping parameter)

Lattice Fermion Action

• Naive lattice fermion action suffers from fermion-doubling problem.

• Fermion doublers can be removed at the cost of giving up some properties of the continuum
theory (Nielson-Ninomiya theorem), which can systematically be restored later.

• Wilson(-clover) fermions both isotropic and anisotropic - explicit breaking of chiral. sym.
by the Wilson term, computational cost - moderate

• Domain-wall fermions ((z-)Mobius) - chiral fermions, computational cost - expensive

Markov chain Monte Carlo

• Markov chain Monte Carlo algorithms are used to update link variables (gauge fields).

• In the case of pure gauge action, heatbath algorithms are typically used, while other
algorithms including local-metropolis, Langevin, hybrid Monte Carlo (HMC) are also
available.

• Heatbath algorithms - explicit parameterization of Haar measure for in which
 matrices can be constructed with correct probability distribution. For we

can use the heatbath algorithms for the subgroups to update matrices.

SU(2)
SU(2) SU(Nc)

SU(2) SU(Nc)

import gpt as g;

import gpt as g;

Markov chain Monte Carlo

• In the cases of a gauge theory coupled to dynamical fermions, we introduce pseudo-
fermions (bosonic fields having the same quantum numbers).ϕ

GPT : 2335.016326 s : Initializing gpt.random(test,vectorized_ranlux24_24_64) took 4.60148e-05 s
GPT : 2336.024092 s : HMC 0 has P = 0.7984117298395389, dS = 10379.119118396331, acceptance = 1.0
GPT : 2357.513546 s : HMC 25 has P = 0.510195708618931, dS = 532.1766394544538, acceptance = 0.6923076923076923
GPT : 2384.033852 s : HMC 50 has P = 0.5002854277947527, dS = 624.5210875141056, acceptance = 0.7254901960784313
GPT : 2414.452550 s : HMC 75 has P = 0.49634571797119015, dS = 505.94901705106895, acceptance = 0.7763157894736842
GPT : 2447.146318 s : HMC 100 has P = 0.4998291900738143, dS = -188.5970112660725, acceptance = 0.7524752475247525
GPT : 2481.451864 s : HMC 125 has P = 0.5002291687006946, dS = 210.18674995772017, acceptance = 0.7619047619047619
GPT : 2509.303130 s : HMC 150 has P = 0.49520164333211647, dS = 10.240288826535107, acceptance = 0.7748344370860927
GPT : 2531.547358 s : HMC 175 has P = 0.5012029695511525, dS = 300.1770389723679, acceptance = 0.7727272727272727

L = [8, 8, 8, 8]
grid = g.grid(L, g.double)

rng = g.random("test", "vectorized_ranlux24_24_64")
U = g.qcd.gauge.random(grid, rng)
Nd = len(U)

conjugate momenta
mom = g.group.cartesian(U)

a0 = g.qcd.scalar.action.mass_term()
a1 = g.qcd.gauge.action.wilson(5.5)

def hamiltonian():
 a1v = a1(U)
 return a0(mom) + a1v, a1v

sympl = g.algorithms.integrator.symplectic

ip = sympl.update_p(mom, lambda: a1.gradient(U, U))
iq = sympl.update_q(U, lambda: a0.gradient(mom, mom))

mdint = sympl.OMF4(5, ip, iq)

metro = g.algorithms.markov.metropolis(rng)

def hmc(tau, mom):
 rng.normal_element(mom)
 accrej = metro(U)
 h0, s0 = hamiltonian()
 mdint(tau)
 h1, s1 = hamiltonian()
 return [accrej(h1, h0), s1 - s0, h1 - h0]

plaquette_hmc = []
accept = 0
total = 0
for it in range(200):
 plaq = g.qcd.gauge.plaquette(U)
 plaquette_hmc.append(plaq)
 a, dS, dH = hmc(1.5 if it < 10 else 2.5, mom)
 accept += a
 total += 1
 if it % 25 == 0:
 g.message(f"HMC {it} has P = {plaq}, dS = {dS}, acceptance = {accept/total}")

fig, ax = plt.subplots()

plt.ylim([0.4,0.7])
ax.plot(range(len(plaquette_hmc)), plaquette_hmc, marker='+', ls='', c='blue', label="HMC tau=2.5")

plt.legend()
plt.show()

import gpt as g

L = [8, 8, 8, 16]
grid = g.grid(L, g.double)

rng = g.random("test", "vectorized_ranlux24_24_64")
U = [g.project(x,"defect") for x in g.qcd.gauge.random(grid, rng)]
Nd = len(U)

conjugate momenta
U_mom = g.group.cartesian(U)

rng.normal_element(U_mom)

reproduce https://arxiv.org/pdf/hep-lat/0411006.pdf
a0 = g.qcd.scalar.action.mass_term()
a1 = g.qcd.gauge.action.improved_with_rectangle(0.8,-1.4069)
D_m = g.qcd.fermion.mobius(U, M5=1.8, mass=0.04, Ls=12, b=1., c=0.,
 boundary_phases=[1,1,1,-1])
D_pv = g.qcd.fermion.mobius(U, M5=1.8, mass=1.0, Ls=12, b=1., c=0.,
 boundary_phases=[1,1,1,-1])

inv = g.algorithms.inverter
pc = g.qcd.fermion.preconditioner
g.default.set_verbose("cg_convergence", False)
g.default.set_verbose("cg", False)
cg = inv.cg({"eps": 1e-8, "maxiter": 1000})

a2 = g.qcd.pseudofermion.action.two_flavor_ratio_evenodd_schur([D_m, D_pv], cg)

P = g.vspincolor(D_m.F_grid_eo)
fields = U + [P]

sympl = g.algorithms.integrator.symplectic

show_force = False

def total_force():
 global show_force
 gauge_force = a1.gradient(U,U)
 fermion_force = a2.gradient(fields,U)

positive definite

Markov chain Monte Carlo

• In the cases of a gauge theory coupled to dynamical fermions, we introduce pseudo-
fermions (bosonic fields having the same quantum numbers).

• We then update the gauge links using Molecular-Dynamics (MD) evolution for

 after introducing conjugate momentum

.

ϕ

Uμ

H(π, U) =
1
2 ∑

x,μ

π(x, μ)2 + SG(U) + Spf(U)

π(x, μ) = iπa(x, μ)Ta

import gpt as g

L = [8, 8, 8, 16]
grid = g.grid(L, g.double)

rng = g.random("test", "vectorized_ranlux24_24_64")
U = [g.project(x,"defect") for x in g.qcd.gauge.random(grid, rng)]
Nd = len(U)

conjugate momenta
U_mom = g.group.cartesian(U)

rng.normal_element(U_mom)

reproduce https://arxiv.org/pdf/hep-lat/0411006.pdf
a0 = g.qcd.scalar.action.mass_term()
a1 = g.qcd.gauge.action.improved_with_rectangle(0.8,-1.4069)
D_m = g.qcd.fermion.mobius(U, M5=1.8, mass=0.04, Ls=12, b=1., c=0.,
 boundary_phases=[1,1,1,-1])
D_pv = g.qcd.fermion.mobius(U, M5=1.8, mass=1.0, Ls=12, b=1., c=0.,
 boundary_phases=[1,1,1,-1])

inv = g.algorithms.inverter
pc = g.qcd.fermion.preconditioner
g.default.set_verbose("cg_convergence", False)
g.default.set_verbose("cg", False)
cg = inv.cg({"eps": 1e-8, "maxiter": 1000})

a2 = g.qcd.pseudofermion.action.two_flavor_ratio_evenodd_schur([D_m, D_pv], cg)

P = g.vspincolor(D_m.F_grid_eo)
fields = U + [P]

sympl = g.algorithms.integrator.symplectic

show_force = False

def total_force():
 global show_force
 gauge_force = a1.gradient(U,U)
 fermion_force = a2.gradient(fields,U)

import gpt as g

L = [8, 8, 8, 16]
grid = g.grid(L, g.double)

rng = g.random("test", "vectorized_ranlux24_24_64")
U = [g.project(x,"defect") for x in g.qcd.gauge.random(grid, rng)]
Nd = len(U)

conjugate momenta
U_mom = g.group.cartesian(U)

rng.normal_element(U_mom)

reproduce https://arxiv.org/pdf/hep-lat/0411006.pdf
a0 = g.qcd.scalar.action.mass_term()
a1 = g.qcd.gauge.action.improved_with_rectangle(0.8,-1.4069)
D_m = g.qcd.fermion.mobius(U, M5=1.8, mass=0.04, Ls=12, b=1., c=0.,
 boundary_phases=[1,1,1,-1])
D_pv = g.qcd.fermion.mobius(U, M5=1.8, mass=1.0, Ls=12, b=1., c=0.,
 boundary_phases=[1,1,1,-1])

inv = g.algorithms.inverter
pc = g.qcd.fermion.preconditioner
g.default.set_verbose("cg_convergence", False)
g.default.set_verbose("cg", False)
cg = inv.cg({"eps": 1e-8, "maxiter": 1000})

a2 = g.qcd.pseudofermion.action.two_flavor_ratio_evenodd_schur([D_m, D_pv], cg)

P = g.vspincolor(D_m.F_grid_eo)
fields = U + [P]

sympl = g.algorithms.integrator.symplectic

show_force = False

def total_force():
 global show_force
 gauge_force = a1.gradient(U,U)
 fermion_force = a2.gradient(fields,U)

For mass-degenerate two-flavors,

2. Measure physical quantities !!!
(Averaging over configurations)

⟨𝒪⟩ =
1
N

N

∑
i

𝒪(Ui)

Measurements - Plaquettes and Polyakov loops

• Plaquette: the simplest gauge invariant object, the action density

• Polyakov loop: a trace of path-ordered products of link variables along the paths that
wind around the lattice in a compactified direction, e.g. temporal, periodic b.c.

import gpt as g;

Φ(T, ⃗x) = Tr ΠT−1
t=0 U0(t, ⃗x) . . .

Measurements - interpolating operators of mesons

Label (M) Interpolating operator (OM) Meson J
P

Sp(4)

PS Qi�5Q
j

⇡ 0� 5

S QiQj
a0 0+ 5

V Qi�µQ
j

⇢ 1� 10

T Qi�0�µQ
j

⇢ 1� 10(+5)

AV Qi�5�µQ
j

a1 1+ 5

AT Qi�5�0�µQ
j

b1 1+ 10(+5)

Table 5: Interpolating operators OM sourcing the lightest mesons in the six channels
considered in the main text. To avoid mixing with the flavour singlets, we restrict to i 6= j

the flavour indices of the Dirac fermions, while colour and spinor indices are summed and
omitted. For completeness, we also show the J

P quantum numbers and the corresponding
particle in the QCD classification of mesons. Notice that two of the operators source the
same particles (⇢ meson) because of the breaking of chiral symmetry. In the last column we
report the irreducible representation of the unbroken global Sp(4) spanned by the meson
(see also [43]). In brackets are irreducible representations of Sp(4) that are sourced by
operators with the same Lorentz structure, but that we do not discuss in this context.

breaking SU(2)L ⇥ SU(2)R ! SU(2)V , together with two diquarks3. In Appendix A.2 we
explicitly show the equivalence of meson and diquark correlators by using the lattice action
in Eq. (2.4).

At large Euclidean time t the correlation functions in Eq. (4.2) are dominated by the
lowest excitation at zero spatial momentum so that the mass mM appears in the asymptotic
expression:

COM (t)
t!1
���! h0|OM |Mih0|OM |Mi

⇤
1

2mM

h
e
�mM t + e

�mM (T�t)
i

, (4.3)

where T is the temporal extent of the lattice. The decay constants fM are determined from
the matrix elements, which are parameterised as

h0|Q1�5�µQ2|PSi = fPSpµ ,

h0|Q1�µQ2|Vi = fVmV✏µ ,

h0|Q1�5�µQ2|AVi = fAVmAV✏µ . (4.4)

The polarisation vector ✏µ is transverse to the momentum pµ and normalised by ✏
⇤
µ✏

µ = 1.
The meson states |Mi are conventionally defined by the self-adjoint isospin fields, as in
M = M

A
T
A, where T

A are the generators of the group. We adopt conventions such that
in QCD the analogous experimental value of the pion (pseudoscalar) decay constant is
f⇡ ' 93 MeV. In Eq. (4.4), the pseudoscalar decay constant fPS is defined via the local

3 The full expressions of spin-0 and spin-1 meson operators in the bases of both four-component Dirac
and two-component Weyl spinors will be presented in a separate publication [83]. See also the analysis in
Ref. [105]

– 17 –

Measurements - meson 2-point correlation functions

• Quark propagator

• Meson propagator

GPT : 203973.351320 s : Reading 8c32_5.7/su3.200

GPT : 203973.353464 s : Switching view to [1,1,1,1]/Read

GPT : 203973.369661 s : Read 0.00219727 GB at 0.13545 GB/s (0.165431 GB/s for distribution, 0.748903 GB/s for reading + checksum, 5.95349 GB/s

for checksum, 1 views per node)

GPT : 203973.373617 s : Read 0.00219727 GB at 0.772312 GB/s (2.66976 GB/s for distribution, 1.08936 GB/s for reading + checksum, 5.82922 GB/s f

or checksum, 1 views per node)

GPT : 203973.376494 s : Read 0.00219727 GB at 1.12103 GB/s (3.78792 GB/s for distribution, 1.59806 GB/s for reading + checksum, 6.46283 GB/s fo

r checksum, 1 views per node)

GPT : 203973.379951 s : Read 0.00219727 GB at 0.797025 GB/s (1.93939 GB/s for distribution, 1.35729 GB/s for reading + checksum, 6.8065 GB/s fo

r checksum, 1 views per node)

GPT : 203973.380776 s : Completed reading 8c32_5.7/su3.200 in 0.029685 s

U = g.load("8c32_5.7/su3.200")
grid = U[0].grid

Uapt = g.copy(U)
anti-periodic fermion in time can be achieved modifying last link in time
Uapt[3][:,:,:,grid.gdimensions[3]-1] *= -1

def DiracWilson(U, src, m):
 dst = g((4.0 + m) * src)
 for mu in range(4):
 fmu = g(U[mu] * g.cshift(src, mu, 1))
 bmu = g(g.cshift(g.adj(U[mu]) * src, mu, -1))
 dst += 0.5*(g.gamma[mu] * fmu - fmu)
 dst -= 0.5*(g.gamma[mu] * bmu + bmu)
 return dst

rng = g.random("13")
a, b = rng.cnormal([g.vspincolor(grid),g.vspincolor(grid)])

test gamma5 hermiticity
print(g.inner_product(b, g.gamma[5] * DiracWilson(Uapt, a, -0.5)))
print(g.inner_product(a, g.gamma[5] * DiracWilson(Uapt, b, -0.5)).conjugate())

norm real
print(g.inner_product(a, g.gamma[5] * DiracWilson(Uapt, a, -0.5)))

Consider an interpolating operator of π±

Then, the zero-momentum 2-point correlation function becomes

Performe Wick contraction

GPT : 203973.351320 s : Reading 8c32_5.7/su3.200

GPT : 203973.353464 s : Switching view to [1,1,1,1]/Read

GPT : 203973.369661 s : Read 0.00219727 GB at 0.13545 GB/s (0.165431 GB/s for distribution, 0.748903 GB/s for reading + checksum, 5.95349 GB/s

for checksum, 1 views per node)

GPT : 203973.373617 s : Read 0.00219727 GB at 0.772312 GB/s (2.66976 GB/s for distribution, 1.08936 GB/s for reading + checksum, 5.82922 GB/s f

or checksum, 1 views per node)

GPT : 203973.376494 s : Read 0.00219727 GB at 1.12103 GB/s (3.78792 GB/s for distribution, 1.59806 GB/s for reading + checksum, 6.46283 GB/s fo

r checksum, 1 views per node)

GPT : 203973.379951 s : Read 0.00219727 GB at 0.797025 GB/s (1.93939 GB/s for distribution, 1.35729 GB/s for reading + checksum, 6.8065 GB/s fo

r checksum, 1 views per node)

GPT : 203973.380776 s : Completed reading 8c32_5.7/su3.200 in 0.029685 s

U = g.load("8c32_5.7/su3.200")
grid = U[0].grid

Uapt = g.copy(U)
anti-periodic fermion in time can be achieved modifying last link in time
Uapt[3][:,:,:,grid.gdimensions[3]-1] *= -1

def DiracWilson(U, src, m):
 dst = g((4.0 + m) * src)
 for mu in range(4):
 fmu = g(U[mu] * g.cshift(src, mu, 1))
 bmu = g(g.cshift(g.adj(U[mu]) * src, mu, -1))
 dst += 0.5*(g.gamma[mu] * fmu - fmu)
 dst -= 0.5*(g.gamma[mu] * bmu + bmu)
 return dst

rng = g.random("13")
a, b = rng.cnormal([g.vspincolor(grid),g.vspincolor(grid)])

test gamma5 hermiticity
print(g.inner_product(b, g.gamma[5] * DiracWilson(Uapt, a, -0.5)))
print(g.inner_product(a, g.gamma[5] * DiracWilson(Uapt, b, -0.5)).conjugate())

norm real
print(g.inner_product(a, g.gamma[5] * DiracWilson(Uapt, a, -0.5)))

Analysis - extraction of the ground state energy (mass)

• At large Euclidean time, the correlation function behaves as

• One can extract the mass by fitting the data to the single exponential function over the
range of late time, showing a plateau in the effective mass defined by

• Other physical observables can be measured in a similar way.

Label (M) Interpolating operator (OM) Meson J
P

Sp(4)

PS Qi�5Q
j

⇡ 0� 5

S QiQj
a0 0+ 5

V Qi�µQ
j

⇢ 1� 10

T Qi�0�µQ
j

⇢ 1� 10(+5)

AV Qi�5�µQ
j

a1 1+ 5

AT Qi�5�0�µQ
j

b1 1+ 10(+5)

Table 5: Interpolating operators OM sourcing the lightest mesons in the six channels
considered in the main text. To avoid mixing with the flavour singlets, we restrict to i 6= j

the flavour indices of the Dirac fermions, while colour and spinor indices are summed and
omitted. For completeness, we also show the J

P quantum numbers and the corresponding
particle in the QCD classification of mesons. Notice that two of the operators source the
same particles (⇢ meson) because of the breaking of chiral symmetry. In the last column we
report the irreducible representation of the unbroken global Sp(4) spanned by the meson
(see also [43]). In brackets are irreducible representations of Sp(4) that are sourced by
operators with the same Lorentz structure, but that we do not discuss in this context.

breaking SU(2)L ⇥ SU(2)R ! SU(2)V , together with two diquarks3. In Appendix A.2 we
explicitly show the equivalence of meson and diquark correlators by using the lattice action
in Eq. (2.4).

At large Euclidean time t the correlation functions in Eq. (4.2) are dominated by the
lowest excitation at zero spatial momentum so that the mass mM appears in the asymptotic
expression:

COM (t)
t!1
���! h0|OM |Mih0|OM |Mi

⇤
1

2mM

h
e
�mM t + e

�mM (T�t)
i

, (4.3)

where T is the temporal extent of the lattice. The decay constants fM are determined from
the matrix elements, which are parameterised as

h0|Q1�5�µQ2|PSi = fPSpµ ,

h0|Q1�µQ2|Vi = fVmV✏µ ,

h0|Q1�5�µQ2|AVi = fAVmAV✏µ . (4.4)

The polarisation vector ✏µ is transverse to the momentum pµ and normalised by ✏
⇤
µ✏

µ = 1.
The meson states |Mi are conventionally defined by the self-adjoint isospin fields, as in
M = M

A
T
A, where T

A are the generators of the group. We adopt conventions such that
in QCD the analogous experimental value of the pion (pseudoscalar) decay constant is
f⇡ ' 93 MeV. In Eq. (4.4), the pseudoscalar decay constant fPS is defined via the local

3 The full expressions of spin-0 and spin-1 meson operators in the bases of both four-component Dirac
and two-component Weyl spinors will be presented in a separate publication [83]. See also the analysis in
Ref. [105]

– 17 –

meff(t) = arccos (C(t) + C(t + 2)
2C(t + 1))

3. Analyze lattice results with EFT
(continuum & physical-mass extrapolation)

Have fun!

