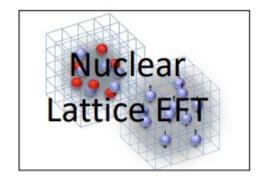
Carbon and Oxygen isotope chains in Nuclear Lattice Effective Field Theory

Young-Ho Song (IRIS, IBS) NLEFT collaboration

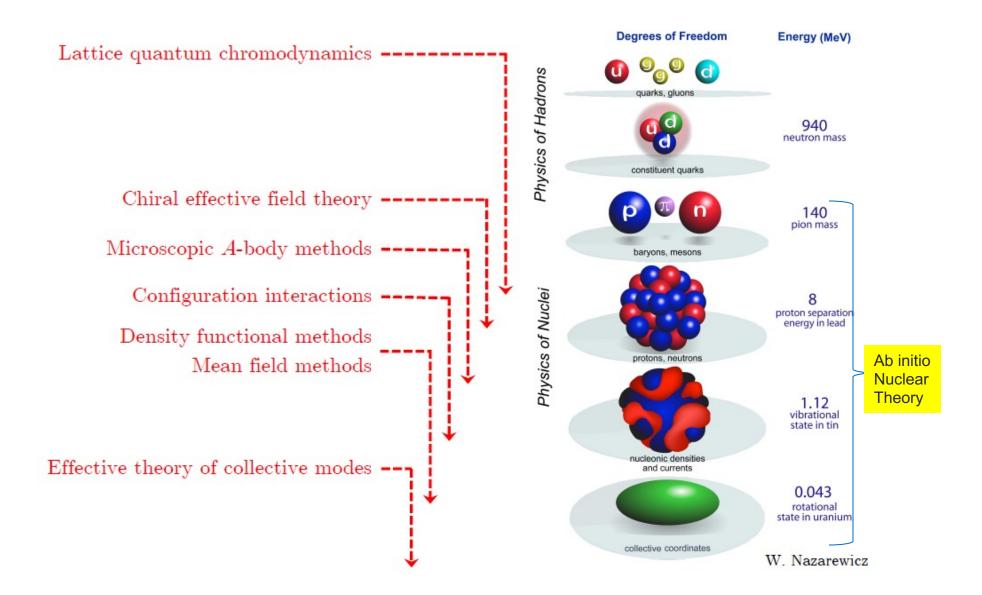
Lattice QCD workshop on hadron and quark matter (LQCDW1) 2024.01.04-06, Sejong University, Seoul https://indico.cern.ch/event/1356314/

Nuclear Lattice Effective Field Theory Collaboration

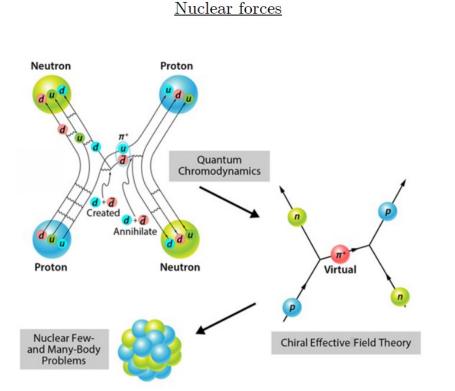
- Serdar Elhatisari(Gaziantep Islam Science and Technology)
- Lukas Bovermann(Ruhr)
- Evgeny Epelbaum (Bochum)
- Dillon Frame (Juelich)
- Fabian Hildenbrand(Darmstadt)
- Hermann Krebs(Ruhr)
- Timo A. Lähde (Juelich)
- Dean Lee (MSU)
- Ning Li(Sun Yat-sen)
- Bing-Nan Lu(Graduate School of China Academy of Engineering Physic)
- Myungkuk Kim(CENS,IBS)
- Youngman Kim (CENS,IBS)
- Young-Ho Song(IRIS,IBS)
- Yuanzhuo Ma(Peking)
- Ulf-G. Meißner (Bonn/Juelich)
- Gautam Rupak(Mississippi State)
- Shihang Shen (Juelich)
- Gianluca Stellin(CEA Paris-Saclay)
- And More…



Effective field theories and energy scales



Ab-initio method



- ab-initio Nuclear Physics
 - (1) nucleon degrees of freedom
 - (2) nucleon-nucleon interaction

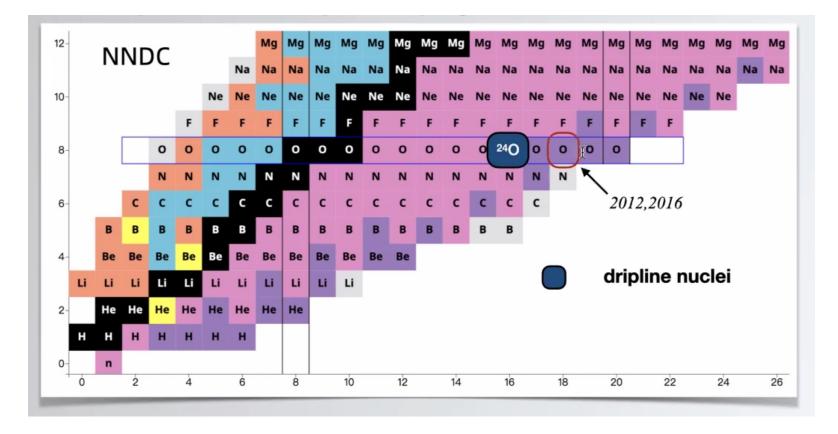
Goal: predict wide range(structure, reaction, nuclear matter) of nuclear phenomena (without parameter fitting, model assumption) from nuclear interaction (for 2body,3-body, many-body, based on QCD)

Direct connection between Nuclear Force ↔ Nuclear Phenomena

Ab initio Quantum many-body

- (ab initio) Nuclear physics is challenging.
 - Non-perturbative many-body problem
 - Exact Nuclear Force is not known.
- Non-perturbative many body problem
 - Ab-initio nuclear many body methods
 - Greens function Monte Carlo(GFMC)
 - No-core shell model(NCSM)
 - Coupled Cluster (CC)
 - IM-SRG, VS-SRG
 - Nuclear Lattice Effective Field Theory(NLEFT)
 - And more
 - With recent progress in ab-initio methods and chiral EFT
 - Binding energies for wide range of nuclei
 - Some reaction calculation for light nuclei.

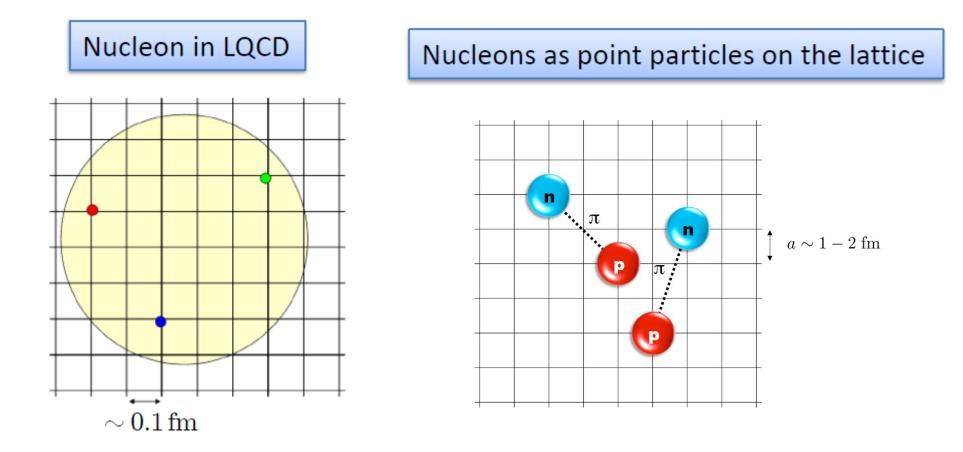
Dripline



Can we explain the dripline of Carbon, Oxygen isotopes in NLEFT? Sensitive to nuclear force ? (Role of 3-body force?)

Nuclear Lattice Effective Field Theory

One of ab initio method for many fermion system



Path integral

Correlator function for A Nucleons $Z_A(t) = \langle \Psi_A | \exp(-tH) | \Psi_A \rangle$ Slater Determinants for A free Nucleons

Ground state energy by time derivative of the correlator

$$E(t) = -\frac{d}{dt} \ln Z_A(t)$$

At large time only ground states survive

$$E_A^0 = \lim_{t \to \infty} E_A(t)$$

$$\begin{split} |\Psi_A\rangle &= \sum_n c_n |n\rangle_A, \\ Z_A(t) &= \langle \Psi_A | e^{-tH} |\Psi_A\rangle = \sum_n c_n e^{-tE_n} \end{split}$$

Transfer matrix

Transfer matrix operator formalism $\hat{M} =: \exp(-H_{\text{LO}} a_t) :$

$$Z(L_t) = \langle \psi_I | \hat{M}(L_t - 1) \, \hat{M}(L_t - 2) \, \dots \, \hat{M}(1) \, \hat{M}(0) \, | \, \psi_I \rangle$$

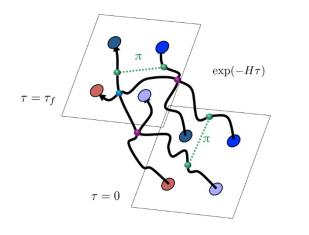
$$\lim_{L_t \to \infty} \frac{Z(L_t + 1)}{Z(L_t)} = e^{-E_0 a_t}$$

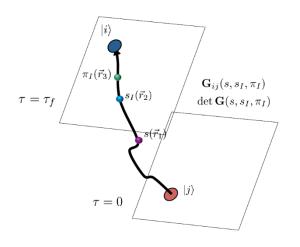
$$\lim_{L_t \to \infty} \frac{\langle \psi_I | \hat{M}^{L_t/2} H_{\text{LO}} \hat{M}^{L_t/2} | \psi_I \rangle}{\langle \psi_I | \hat{M}^{L_t} | \psi_I \rangle} = E_0$$

Auxiliary Field Monte Carlo

$$\exp\left[-\frac{C}{2}(N^{\dagger}N)^{2}\right] \qquad \left| \bigvee (N^{\dagger}N)^{2} \right|$$
$$= \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} ds \exp\left[-\frac{1}{2}s^{2} + \sqrt{-C}s(N^{\dagger}N)\right] \qquad \right\rangle \ sN^{\dagger}N$$

 $\underline{\text{Euclidean time projection}}$



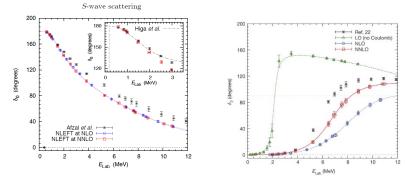


Interacting nucleons
 → Nucleons interacts with auxiliary fields
 (no direct interaction betw een nucleons)

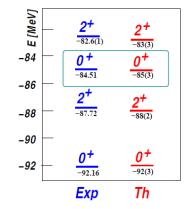
computing fermion
Correlator amplitude
→ Integration
over auxiliary fields
→ M.C. integral
(sampling auxiliary field)

Applications of NLEFT

- Has been successfully applied to
 - Nuclear matter, Cold atom, dilute fermion system
 - Finite nuclei (A<=50)
 - First ab-initio calculation of Hoyle state
 - Cluster structure of ¹²C and ¹⁶O
 - NN scattering, N-D scattering
 - Alpha-alpha scattering
 - radiative capture, fusion
 - Etc.

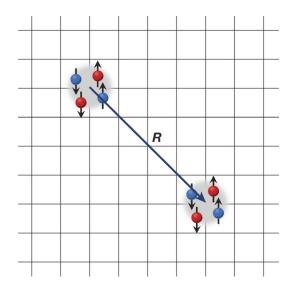


The first ab-initio calculation of Hoyle state



Epelbaum, Krebs, Lähde, Lee, Meißner: Phys. Rev. Lett. 109, 252501 (2012)

Adiabatic projection method



Construction of effective Hamiltonian between two clusters

$$ert ec R
angle = \sum_{ec r} ert ec r + ec R
angle_1 \otimes ert ec r
angle_2$$

$$\begin{aligned} |\vec{R}\rangle_{\tau} &= \exp(-H\tau) |\vec{R}\rangle \\ [H_{\tau}]_{\vec{R},\vec{R}'} &= \tau \langle \vec{R} | H | \vec{R}' \rangle_{\tau} \quad [N_{\tau}]_{\vec{R},\vec{R}'} = \tau \langle \vec{R} | \vec{R}' \rangle_{\tau} \end{aligned}$$

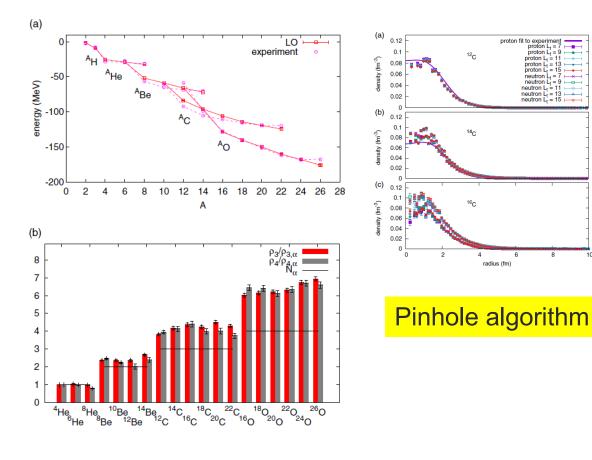
The adiabatic Hamiltonian is defined by the matrix product

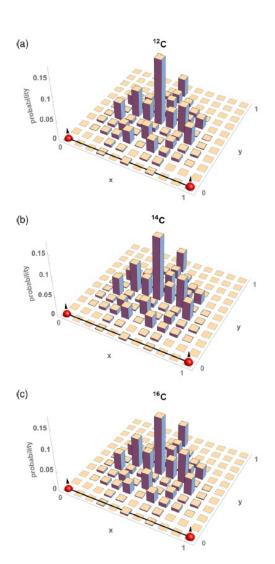
$$[H^a_{\tau}]_{\vec{R},\vec{R}'} = \left[N^{-1/2}_{\tau}H_{\tau}N^{-1/2}_{\tau}\right]_{\vec{R},\vec{R}'}$$

week ending 1 DECEMBER 2017

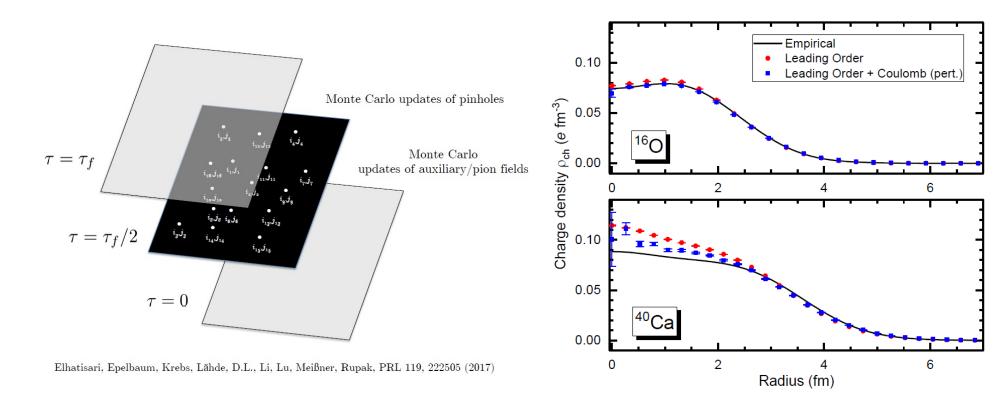
Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering

Serdar Elhatisari,^{1,2} Evgeny Epelbaum,^{3,4} Hermann Krebs,^{3,4} Timo A. Lähde,⁵ Dean Lee,^{6,7,4} Ning Li,⁵ Bing-nan Lu,⁵ Ulf-G. Meißner,^{1,5,8} and Gautam Rupak⁹



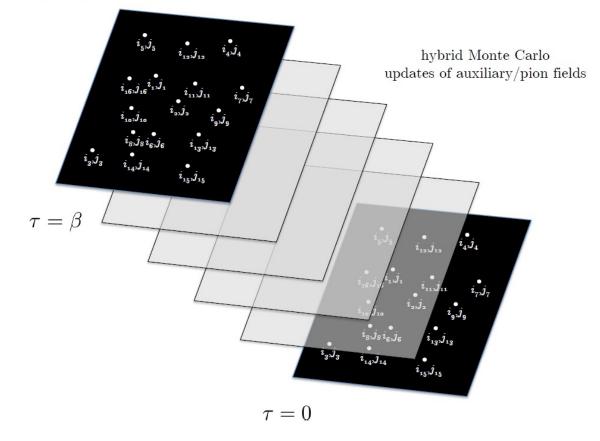


Pinhole Algorithm



Pinhole trace algorithm

Metropolis updates of pinholes

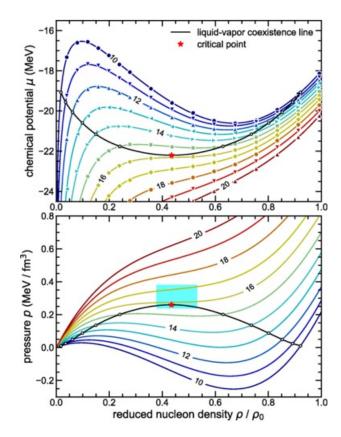


 $\operatorname{Tr}\exp(-\beta H)$

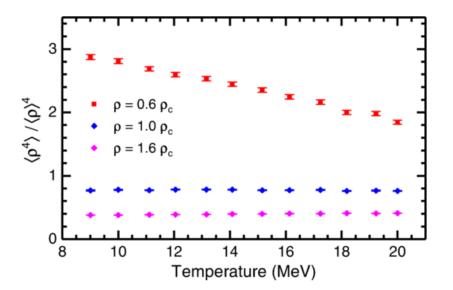
PHYSICAL REVIEW LETTERS 125, 192502 (2020)

Ab Initio Nuclear Thermodynamics

Bing-Nan Lu[®],¹ Ning Li[®],¹ Serdar Elhatisari[®],² Dean Lee[®],¹ Joaquín E. Drut[®],³ Timo A. Lähde[®],⁴ Evgeny Epelbaum[®],⁵ and Ulf-G. Meißner[®],^{6,4,7}



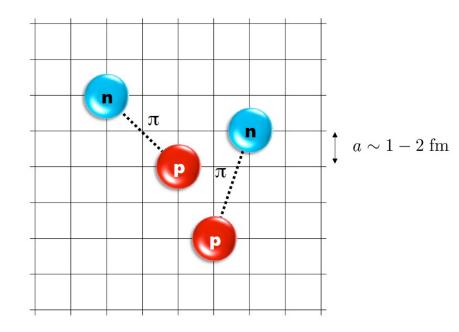
Pinhole trace algorithm



• determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons.

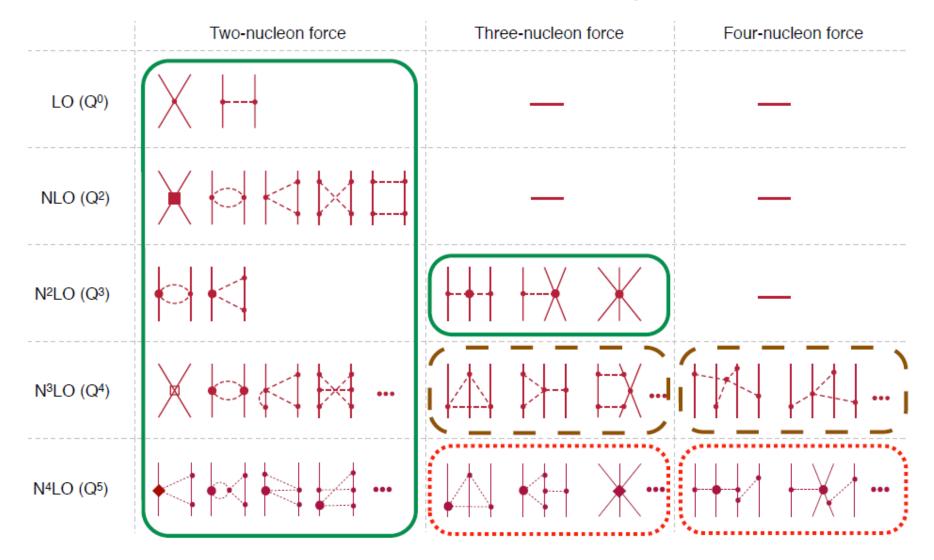
• the first *ab initio* study of the density and temperature dependence of nuclear clustering.

Lattice Hamiltonian



- We need to introduce a lattice scale in space and time:
- momentum space cutoff ~ 150 MeV → lattice size a= 1.316 fm
- Time cutoff ~ 1000 MeV
- We need to determine coefficients of interaction for the lattice size. (regularization scale.)
- Two-body interaction coefficients can be determined from phase shifts of np scattering.
- Three-body interaction can be fixed from binding energy of A>=3.

Chiral Effective Field Theory



Lattice chiral Hamiltonian at Leading order

• At Leading order, kinetic energy + contact interaction + one pion exchange

$$\begin{split} H &= H_{\rm free} + V_{\rm 2N}^{\rm short} + V_{\rm 2N}^{\rm long} \\ H_{\rm free} &= \frac{49}{12m} \sum_{\mathbf{n}} a^{\dagger}(\mathbf{n}) a(\mathbf{n}) - \frac{3}{4m} \sum_{\mathbf{n},i} \sum_{\langle \mathbf{n}' \, \mathbf{n} \rangle_i} a^{\dagger}(\mathbf{n}') a(\mathbf{n}) \quad \bullet \quad \text{Kinetic} \\ &+ \frac{3}{40m} \sum_{\mathbf{n},i} \sum_{\langle \langle \mathbf{n}' \, \mathbf{n} \rangle \rangle_i} a^{\dagger}(\mathbf{n}') a(\mathbf{n}) - \frac{1}{180m} \sum_{\mathbf{n},i} \sum_{\langle \langle \langle \mathbf{n}' \, \mathbf{n} \rangle \rangle_i} a^{\dagger}(\mathbf{n}') a(\mathbf{n}) \\ V_{\rm OPE} &= -\frac{g_A^2}{8F_{\pi}^2} \sum_{\mathbf{n}',\mathbf{n},S',S,I} : \rho_{S',I}(\mathbf{n}') f_{S'S}(\mathbf{n}' - \mathbf{n}) \rho_{S,I}(\mathbf{n}) :, \quad \bullet \quad \text{Long range OPE} \end{split}$$

$$V = \frac{C}{2} \int d^3 \mathbf{r} : [\rho(\mathbf{r})]^2 :, \qquad \bullet \quad \text{Contact}$$

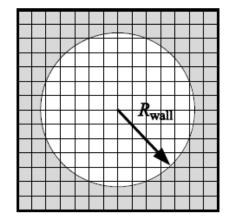
$$V_{I^2} = \frac{C_{I^2}}{2} \sum_{I=1,2,3} \int d^3 \mathbf{r} : [\rho_I(\mathbf{r})]^2 :,$$

Low energy constants in lattice EFT

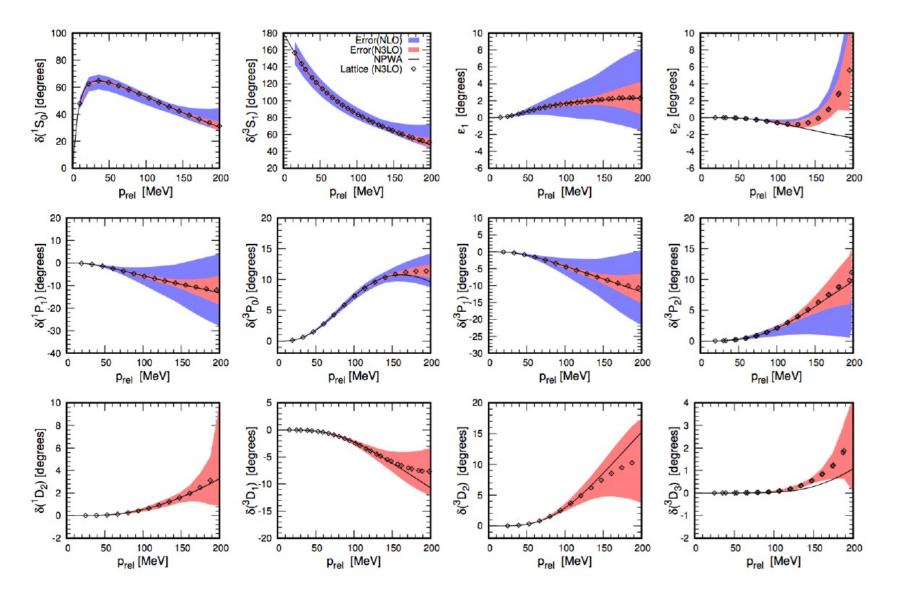
- All LECs(parameters in the Hamiltonian) needs to be fixed
- (They have to be fixed for given lattice regularization)
- N-P scattering phase shifts, Deuteron binding energy
- Scattering phase shifts on the Lattice: Wall method.

Phase shift can be obtained from The energy spectrum of E(or k) in lattice and imposed Wall size.

Spherical wall imposed in the center-of-mass frame



 $a = 1.973 \,\mathrm{fm}$



Determine LECs by fitting phase shifts of N-N scattering

Sign problem in NLEFT

• However, there is a difficulty in auxiliary MC calculation

$$Z(t) = \int \mathcal{D}sZ(s,t), \quad Z(s,t) = e^{-\frac{s^2}{2}} \det X(s,t),$$
$$= \int \mathcal{D}se^{i\theta(s,t)} |Z(s,t)|$$

$$\langle O \rangle = \frac{\langle O e^{i\theta} \rangle_{pq}}{\langle e^{i\theta} \rangle_{pq}}, \quad \langle O \rangle_{pq} \equiv \frac{\int ds |\det X(s)|O}{\int ds |\det X(s)|}.$$

- We needs a large Euclidean time extrapolation
- If the denominator's sign oscillates rapidly
- \rightarrow large uncertainty in the expectation value
- \rightarrow sign problem
- SU(4) symmetric interaction in isospin symmetric system
- \rightarrow No sign problem

Essential elements for nuclear binding

|n'-n|=1

Bing-Nan Lu^a, Ning Li^a, Serdar Elhatisari^{b,c}, Dean Lee^{a,*}, Evgeny Epelbaum^d, Ulf-G. Meißner^{b,e,f}

$$H_{\text{SU}(4)} = H_{\text{free}} + \frac{1}{2!} C_2 \sum_{\boldsymbol{n}} \tilde{\rho}(\boldsymbol{n})^2 + \frac{1}{3!} C_3 \sum_{\boldsymbol{n}} \tilde{\rho}(\boldsymbol{n})^3$$
$$\tilde{\rho}(\boldsymbol{n}) = \sum_{i} \tilde{a}_i^{\dagger}(\boldsymbol{n}) \tilde{a}_i(\boldsymbol{n}) + s_L \sum_{|\boldsymbol{n}'-\boldsymbol{n}|=1} \sum_{i} \tilde{a}_i^{\dagger}(\boldsymbol{n}') \tilde{a}_i(\boldsymbol{n}'),$$
$$\tilde{a}_i(\boldsymbol{n}) = a_i(\boldsymbol{n}) + s_{NL} \sum_{\boldsymbol{n}} a_i(\boldsymbol{n}')$$

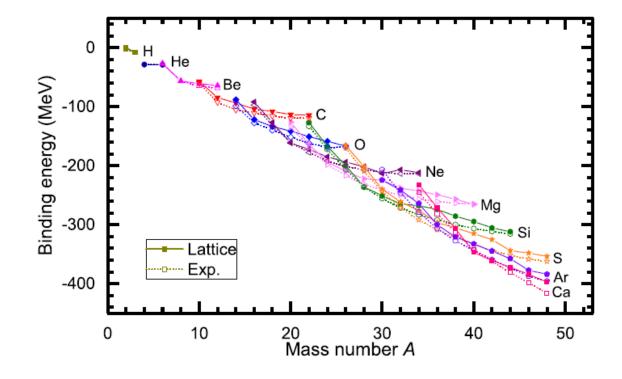
Minimal nuclear interaction

Only Four parameters

- 1. Strength of the two-nucleon S-wave interaction
- 2. Range of the two-nucleon S-wave interaction
- 3. Strength of three-nucleon contact interaction
- 4. Range of the local part of the two-nucleon interaction

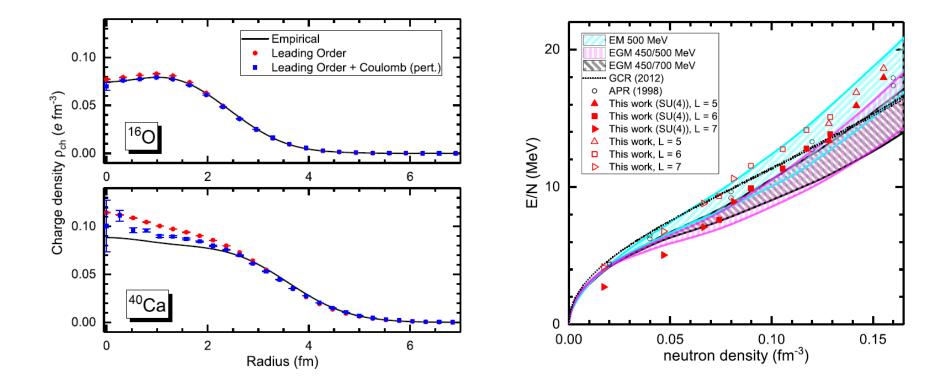
Except for the Coulomb potential, the interaction is invariant under Wigner's SU(4) symmetry.

No sign problem



	B	Exp.	$R_{ m ch}$	Exp.
$^{3}\mathrm{H}$	8.48(2)(0)	8.48	1.90(1)(1)	1.76
³ He	7.75(2)(0)	7.72	1.99(1)(1)	1.97
⁴ He	28.89(1)(1)	28.3	1.72(1)(3)	1.68
^{16}O	121.9(1)(3)	127.6	2.74(1)(1)	2.70
²⁰ Ne	161.6(1)(1)	160.6	2.95(1)(1)	3.01
24 Mg	193.5(02)(17)	198.3	3.13(1)(2)	3.06
²⁸ Si	235.8(04)(17)	236.5	3.26(1)(1)	3.12
⁴⁰ Ca	346.8(6)(5)	342.1	3.42(1)(3)	3.48

Can we improve the agreement by Including higher order corrections?

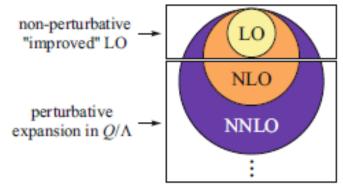


Can we improve the agreement by Including higher order corrections?

Lattice chiral Hamiltonian (N3LO)

Full N3LO Hamiltonian includes

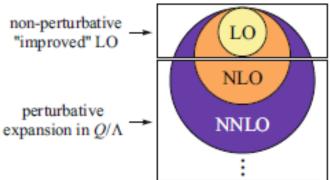
- Free Hamiltonian(Kinetic term)
- Short range (nonlocal smeared) contact interactions up to Q^4 order
- Isospin-breaking short range interactions
- One pion exchange potential
- Two pion exchange potential up to Q^4 order
- Coulomb interaction
- Long range isospin breaking interaction(isospin dependence in OPE)
- Galilean Invariance Restoration (GIR) term (because of non-local interaction.)
- Three nucleon interaction



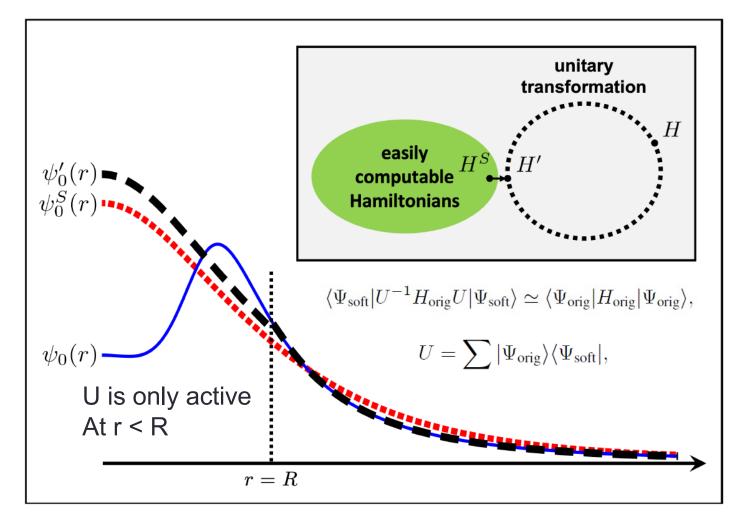
Difficulty with full chiral interaction

• Sign problem

- NLEFT suffers sign problems at large Euclidean time limit
- Large cancellation between positive and negative contributions → large uncertainty.
- SU(4) symmetric interaction does not have sign problem
- One pion exchange and higher order chiral interaction, short range repulsion
- Difficulty with Asymmetric nuclei
- Needs a remedy to extend to neutron rich isotopes.
- A new approach to reduce the sign problem
 → Wave function matching Hamiltonian.



Wave function matching

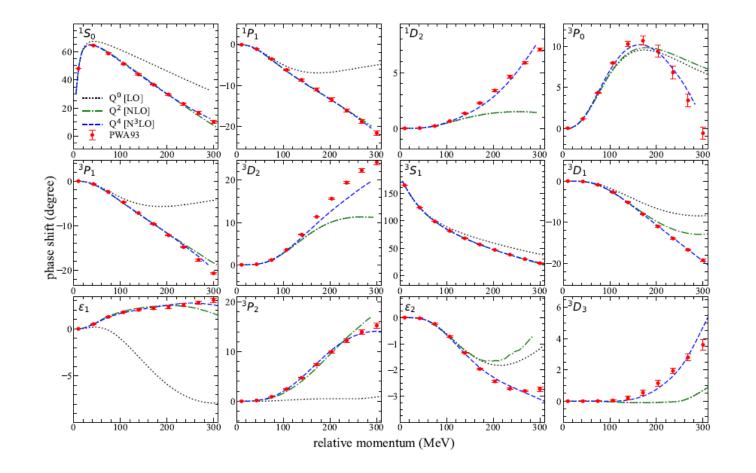


H and H' are fully equivalent to twobody observables

The goal is to make the perturbation expansion from "simple" wave function gives a good convergence

 $H_{\rm wfm} = H_{\rm soft} + (U^{-1}H_{\rm orig}U - H_{\rm soft})$ $= H_{\rm soft} + H_{\rm diff},$

NN phase shifts from WFM



Original Hamiltonian is fitted to phase shifts.

H' is equivalent to original Hamiltonian.

Wave function matching Hamiltonian

• "Simple" Hamiltonian

$$H^{S} = K + \frac{c_{SU(4)}}{2} \sum_{\vec{n}} : \left[\tilde{\rho}^{(1)}(\vec{n}) \right]^{2} : + \frac{c_{I}}{2} \sum_{I,\vec{n}} : \left[\tilde{\rho}^{(1)}_{I}(\vec{n}) \right]^{2} : + V_{OPE}^{\Lambda_{\pi}},$$

$$\tilde{\rho}^{(d)}(\vec{n}) = \sum_{i,j=0,1} \tilde{a}^{\dagger}_{i,j}(\vec{n}) \,\tilde{a}_{i,j}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n}-\vec{n}'|^2=1}^{d} \sum_{i,j=0,1} \tilde{a}^{\dagger}_{i,j}(\vec{n}') \,\tilde{a}_{i,j}(\vec{n}') \,,$$

$$\tilde{\rho}_{I}^{(d)}(\vec{n}) = \sum_{i,j,j'=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}) \ [\tau_{I}]_{j,j'} \ \tilde{a}_{i,j'}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n}-\vec{n}'|^{2}=1}^{d} \sum_{i,j,j'=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}') \ [\tau_{I}]_{j,j'} \ \tilde{a}_{i,j'}(\vec{n}').$$

 $\tilde{a}_{i,j}(\vec{n}) = a_{i,j}(\vec{n}) + s_{\text{NL}} \sum_{|\vec{n}' - \vec{n}| = 1} a_{i,j}(\vec{n}'). \quad \text{(local,non-local smeared operators)}$

Wave function matching Hamiltonian

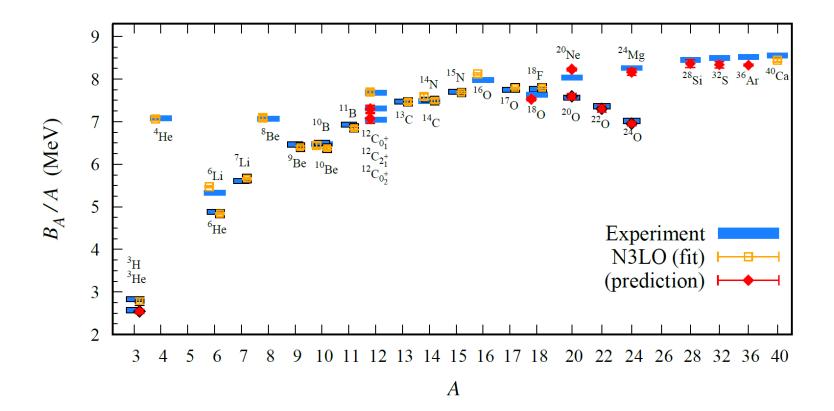
• N3LO Hamiltonian

$$H = K + V_{OPE}^{\Lambda_{\pi}} + V_{C_{\pi}}^{\Lambda_{\pi}} + V_{Coulomb} + V_{3N}^{Q^3} + V_{2N}^{Q^4} + W_{2N}^{Q^4} + V_{2N,WFM}^{Q^4} + W_{2N,WFM}^{Q^4},$$

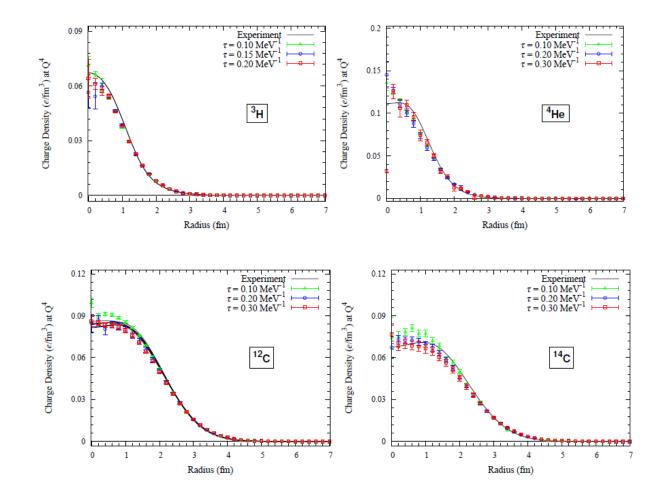
$$V_{3N}^{Q^3} = V_{c_E}^{(l)} + V_{c_E}^{(l)} + V_{c_E}^{(d)} + V_{c_D}^{(d)} + V_{3N}^{(\text{TPE})},$$

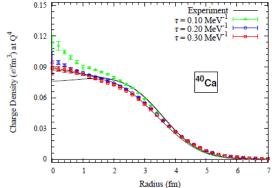
V_2N : short range NN interactions
W_2N: GIR restoration term for V_2N
V_2N,WFM : difference from H_s
W_2N,WFM: GIR restoration correction to V_2N,WFM
V_3N : contains short range 3N interaction parameters(to be fitted) and two pion exchange correction to 3N

BE/A from WFM



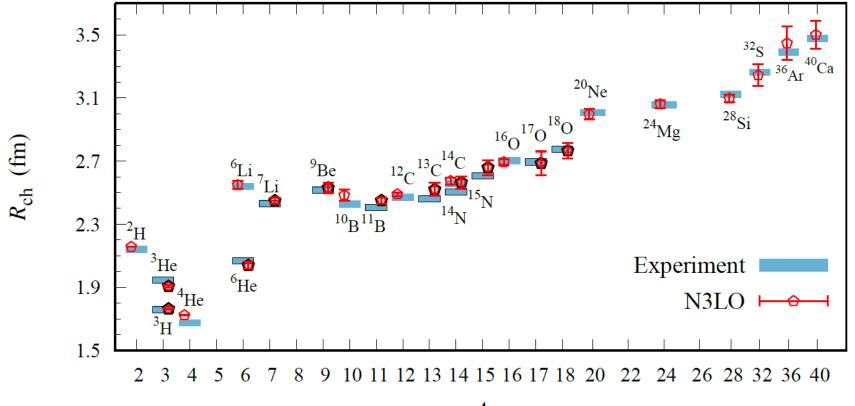
Charge density from WFM





Preliminary

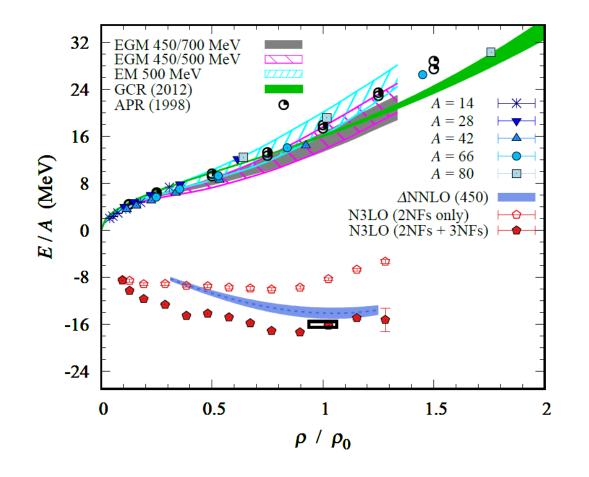
Charge Radius



A

Preliminary

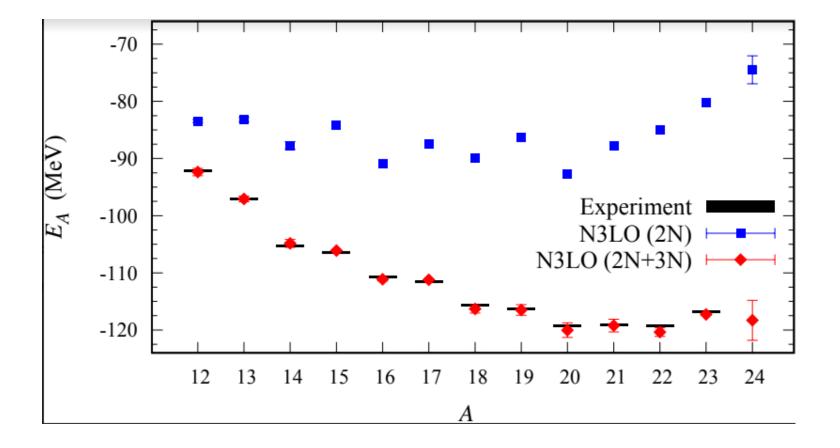
Nuclear/Neutron Matter



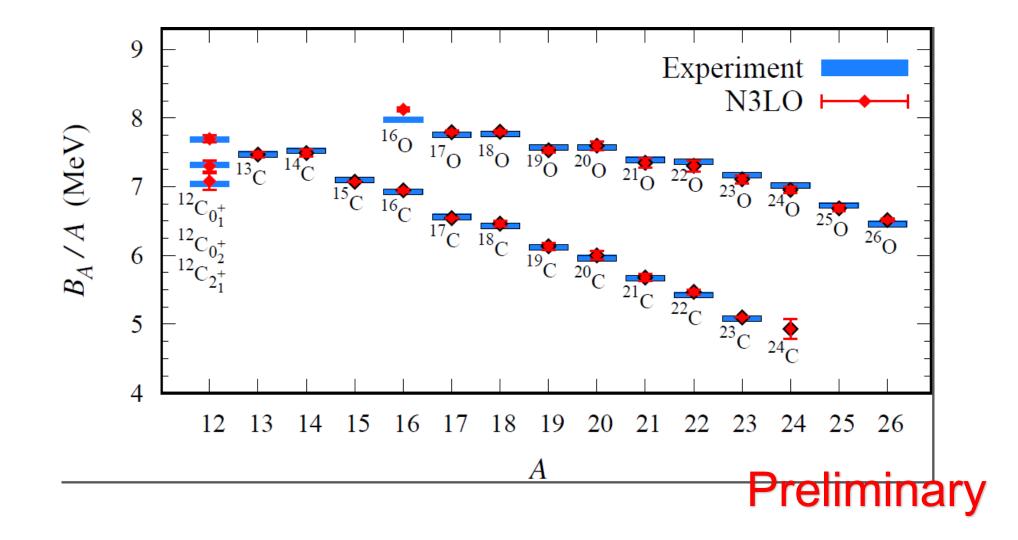
Neutron matter: A=4~80 box size 6.6 ~ 13.2 fm.

Nuclear matter: A=4 ~ 160 Box size 7.92~9.24 fm.

Carbon isotopes



Carbon and Oxygen



Summary

- Wave function matching method seems to be promising
 - New method to improve the N3LO calculation of NLEFT
 - Preliminary study shows promising results for wide range of observables in one scheme (same interaction and many-body method)
 - NN scattering
 - Binding energy (from 3H to 40Ca)
 - Symmetric Nuclear matter
 - Neutron matter
 - Dripline of Oxygen isotope.
 - Carbon excited states
- Also, Carbon isotopes, odd Oxygen isotopes, Cluster structure, excited states will be studied.