

Testing Chiral Perturbation Theory in Soft Hadron-Photon Reactions at COMPASS and AMBER

Jan Friedrich Institute for Hadronic Structures and Fundamental Symmetries Physik-Department, School of Natural Sciences, TUM

Brazilian-German WE Heraeus Seminar

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) as the underlying theory of strong interaction
- Lagrangian of QCD:

$$
\mathcal{L}_{QCD} = \sum_{f=\substack{u,d,s,\\c,b,t}} \overline{q}_f \left(i\rlap{\,/}D - m_f \right) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a
$$
\nflavor-symmetry breaking term
\n
$$
(m_u \neq m_d \neq m_s)
$$

- Symmetries:
	- 1. Local **color** symmetry (strong interaction couples equally to red, green, and blue color charges) \rightarrow conservation of color charge, coupling to gluons
	- 2. Flavor symmetries? \rightarrow only **approximate** symmetries

 $m_u = (2.16 \pm 0.49) \text{MeV}$ $m_d = (4.67 \pm 0.48) \text{MeV}$ $m_s = (93 \pm 11) \text{MeV}$ $m_c = (1.27 \pm 0.02)$ GeV $m_h = (4.18 \pm 0.03)$ GeV $m_t \approx 170 \,\text{GeV}$

Flavor symmetries of QCD

• Lagrangian of QCD:

$$
\mathcal{L}_{QCD} = \sum_{f=\substack{u,d,s,\\c,b,t}} \bar{q}_f(i\rlap{\,/}D - m_f)q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a
$$

• Approximate flavor symmetries:

Chiral symmetry of QCD

• Lagrangian of QCD:

$$
\mathcal{L}_{QCD} = \sum_{f=\substack{u,d,s, \\ c,b,t}} \overline{q}_f \left(i\rlap{\,/}D - m_f \right) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a
$$

• Flavor symmetries in chiral limit

 $\left\langle SU(3)_R \times SU(3)_L \right\rangle$

- Left- and right-handed fields decouple for massless particles
- Chirality can directly be translated to parity of particle \rightarrow mass-degenerate doublets of states with opposite parity
- Why is chiral symmetry not manifested in the spectrum (in contrast to isospin and the eightfold way)?
	- \rightarrow Nambu-Goldstone mechanism for spontaneous/dynamic breakdown of chiral symmetry

Spontaneous symmetry breaking

- Eight massless, spinless Goldstone bosons π^{\pm} , π^0 , K^{\pm} , K^0 , $\overline{K}{}^0$, η
- \Rightarrow Explicit breaking of chiral symmetry due to the small quark masses \rightarrow Goldstone bosons acquire mass
- $\Rightarrow SU(3)_R \times SU(3)_L \rightarrow SU(3)_V$
- Chiral Perturbation Theory: effective Lagrangian with power-counting scheme as low-energy theory for QCD makes use of chiral symmetry

(almost) massless Goldstone bosons

The chiral anomaly

• Lagrangian of QCD

$$
\mathcal{L}_{QCD} = \sum_{\substack{u,d,s, \\ f = \text{c,b,t}}} \overline{q}_f \left(i \rlap{\,/}D - m_f \right) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a
$$

• features $axial U(1)$ -symmetry in chiral limit:

 $q(x) \rightarrow e^{i\theta\gamma_5}q(x)$

- No ninth "unnaturally light" meson
- **Anomalous** symmetry breaking: symmetry of the Lagrangian does not lead to conserved Noether currents
- **Anomaly:** Symmetry of classical Lagrangian violated at quantum level

Wess-Zumino-Witten term

- Chiral anomaly in ChPT taken into account by Wess-Zumino-Witten (WZW) term
- Describes the coupling of an odd number of Goldstone bosons:

• Effective theory \rightarrow pion decay constant F_{π} measured from leptonic $(\pi^{\pm} \rightarrow \mu^{\pm} + \nu)$ arged pion

Discovery of the chiral anomaly: π^0 lifetime

• First definitive measurement of π^0 -lifetime in 1963:

 $\tau_{\rm exp}(\pi^0) = (9.5 \pm 1.5) \cdot 10^{-17}$ s $\neq \tau_{\rm PCAC}(\pi^0) \approx 10^{-13}$ s

• Adler, Bell, Jackiw, Bardeen 1969: calculation of triangle diagram

$$
\Gamma^{\text{anom}}(\pi^0 \to \gamma \gamma) = F_{\pi \gamma \gamma}^2 \cdot \frac{m_{\pi^0}^3}{64\pi} = \left(\frac{e^2 N_c}{12\pi^2 F_{\pi}}\right)^2 \frac{m_{\pi^0}^3}{64\pi} = 7.75 \text{ eV}
$$

$$
\tau(\pi^0) = BR(\pi^0 \to \gamma \gamma) \cdot \frac{\hbar}{\Gamma^{\text{anom}}(\pi^0 \to \gamma \gamma)}
$$

$$
= 8.38 \cdot 10^{-17} \text{ s}
$$

• Moussalam and Kampf 2009: NLO-calculation in chiral perturbation theory

$$
\tau_{\rm NLO}(\pi^0) = (8.04 \pm 0.11) \cdot 10^{-17} \rm s
$$

- pion scattering lengths predictions at 2 loops
	- $a_0^0 m_\pi = 0.220 \pm 0.005$ confirmed by E865 in $K^+ \to \pi^+ \pi^- e^+ \nu_e$
	- $a_0^2 m_\pi = 0.264 \pm 0.006$ confirmed by NA48 in $K^+ \to \pi^+ \pi^0 \pi^0$ (0.268 \pm 0.010)
- pion polarisabilities: α_{π} (electric) and β_{π} (magnetic)
	- visible in Compton scattering cross-section
	- $\alpha_{\pi} + \beta_{\pi} = (0.2 \pm 0.1) 10^{-4}$ fm³
	- $\alpha_{\pi} \beta_{\pi} = (5.7 \pm 1.0) 10^{-4}$ fm³
	- $\alpha_{\pi} = (2.9 \pm 0.5) 10^{-4}$ fm³
- pion-pion scattering with additional coupling to a photon
	- leading-order prediction from ChPT (scattering lengths + QED)
	- chiral-loop contributions: calculated, test with data pending

π

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS spectrometer

For the measurements presented in the following:

- 190 GeV negative hadron beam
- Beam PID
- Nuclear target(s): Ni and W
- · Calorimetric trigger on neutrals
- Two stage spectrometer (LAS and SAS) with tracking and calorimeter

Pion-Photon reactions through the Primakoff technique^{nlm}

- Photon is provided by the strong Coulomb field of a nucleus (typical field strength at $d = 5R_{Ni}:$ $E \approx 300 \text{ kV/fm}$
- Coulomb field of nucleus is a source of quasireal ($P_v^2 \ll m_\pi^2$) photons
- Large impact parameters (ultra-peripheral scattering)

Jan Friedrich | Paraty | 24.9.2024 11

Measurement of the cross-section for $\pi^-\gamma \rightarrow \pi^-\pi^+\pi^+$

Higher chiral order for $\pi^-\gamma \rightarrow \pi^-\pi \pi$

Pion polarisability: COMPASS measurement

 $\pi + \gamma \rightarrow \pi + \gamma$

 1.05 Compton cross-section contains information about e.m. polarisability σ (as deviation from the expectation for a pointlike particle) $\sigma_{p.l.}$

Phys. Rev. Lett. 114, 062002 (2015)

 1.15 pion beam

 1.10ε

Testing the chiral anomaly - $F_{3\pi}$

• Processes described by WZW term:

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^{-}\gamma^{*} \to \pi^{-}\pi^{0}$
- Problem of explicit chiral symmetry breaking:

$$
F_{3\pi} = \frac{eN_C}{12\pi^2 F_\pi^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)
$$

Testing the chiral anomaly - $F_{3\pi}$

• Processes described by WZW term: **The Contract of Previous measurement of "** Previous "

 $SU(2)$ flavor $SU(3)$ flavor $K^+K^-\rightarrow \pi^+\pi^-\pi^0$ $\pi^0\!\rightarrow\!\gamma\gamma$ $\gamma \pi^- \rightarrow \pi^- \pi^0$
 $\pi^+ \rightarrow e^+ \nu_e \gamma$ $\eta \rightarrow \pi^+ \pi^- \gamma$ $K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$ etc. etc.

Antip from

As pre vary sl d

 \Rightarrow F_{33}

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^*\to\pi^-\pi^0$
- Problem of explicit chiral symmetry breaking:

$$
F_{3\pi} = \frac{eN_C}{12\pi^2 F_\pi^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)
$$

Testing the chiral anomaly - $F_{3\pi}$

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^*\to\pi^-\pi^0$
- Problem of explicit chiral symmetry breaking:

$$
F_{3\pi} = \frac{eN_C}{12\pi^2 F_\pi^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)
$$

Amet

• Usir

 $F_{3\pi}$

- Con
	- $F_{3\pi}$

Precis

- \Rightarrow M
	- de

Jan Friedrich | Paraty | 24.9.2024 17

Analysis of COMPASS measurement

• Dispersive framework to deduce $F_{3\pi}$ from a fit to the $\pi^-\pi^0$ mass distribution up to 1.0 GeV including the $\rho(770)$ -resonance:

$$
\sigma(s) = \frac{(s - 4m_{\pi}^2)^{3/2}(s - m_{\pi}^2)}{1024\pi\sqrt{s}} \int_{-1}^1 dz (1 - z^2) |\mathcal{F}(s, t, u)|^2
$$

With

$$
\mathcal{F}(s, t, u) = C_2^{(1)} \mathcal{F}_2^{(1)}(s, t, u) + C_2^{(2)} \mathcal{F}_2^{(2)}(s, t, u) - \frac{2e^2 F_\pi^2 F_{3\pi}}{t}
$$

 $C_2^{(1)}$, $C_2^{(2)}$: fit parameters

 $\mathcal{F}_2^{(1)}(s,t,u)$, $\mathcal{F}_2^{(2)}(s,t,u)$; provided by theory colleagues (Kubis, Hoferichter)

M. Hoferichter, B. Kubis, and D. Sakkas, *PRD* **86** (2012) 116009

Luminosity Determination

• Needed for absolute cross section measurement: effective integrated luminosity (DAQ dead time taken into account)

Effective luminosity: $L_{eff} = L \cdot (1 - \epsilon_{DAQ})$

- Luminosity can be determined via free decays of beam kaons in the beam:
	- Use CEDARs to tag kaons
	- Measure free decays where no material
	- Exclusive events with zero momentum transfer

• Different channels may form background for each other, but give possibility to crosscheck results

Used for luminosity determination Considered as background process

Luminosity from Kaon decays

 $L_{2\pi, \text{eff}} = 5.21 \pm 0.04_{\text{stat}} \text{ nb-1}$ $L_{3\pi, \text{eff}} = 5.06 \pm 0.12_{\text{stat}}$ nb⁻¹

Largest contributions to systematic uncertainty:

- CEDAR tag efficiency: 7% \bullet
- **ECAL reconstruction: 5%** \bullet
- kaon/pion beam ratio: 2.5% \bullet

Result:

$$
L_{\text{eff}} = 5.21 \pm 0.48_{\text{syst}} \pm 0.04_{\text{stat}}
$$

Main background for $\pi^-\gamma \to \pi^-\pi^0$: $\pi^-\pi^0$ π^0 final states

• $\pi^-\pi^0$ -final state forbidden by G-parity conservation

- Large cross section for $\pi^-\pi^0\pi^0$ final state \implies loss of one (soft) π^0
- (π^0) Approach: determine leakage from 3pi MC data with (π^0)

Approach for 3π leakage:

- Select diffractive 3π events
- Develop partial-wave model
- Weight 3π Monte Carlo data set according to model
- Subtract from 2π event sample

Background Subtraction

- Kinematic distributions of the 3-pion background fit well with the observed spectra
- some upscaling by 15-25% needed ?!

Challenges in Photon Detection

- Comparison of 3-pion PWA model with lab distributions shows clear inefficient structures for forward photons
- roughly consistent with the observed upscaling factor

QED Radiative Corrections

Implementation of QED radiative corrections:

- Calculated on the base of the paper of Ametller et al. (extended and corrected by N. Kaiser, TUM)
- Included in MC generator: event distribution according to 1-photon emission spectrum, events in "hand-over" region replaced by correct fraction of purely elastic events (including virtual corrections)

QED Radiative Corrections

Result of fitting with the Kubis-Hoferichter model

- Selection: $Q^2 < 1.296 \cdot 10^{-3}$ GeV²/ c^2
	- $C_2^{(1)} = (10.5 \pm 0.1_{stat} \pm 0.6_{syst})$ GeV⁻³ $C_2^{(2)} = \left(24.5 \pm 0.1_{stat} \right. ^{+1.6}_{-1.4_{syst}}\right)$ GeV⁻⁵

$$
F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}
$$

$$
\Gamma_{\rho \to \pi \gamma} = \left(76 \pm 1_{stat} \frac{+10}{-8} \frac{\text{V}}{\text{syst}}\right) \text{keV}
$$

- Preliminary result for $F_{3\pi}$ in agreement with theory prediction from ChPT
- Lower systematics to be achieved

Interpretation of the new preliminary resul

• COMPASS: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho\to\pi\nu}$

Capraro, L. CERN (SPS):

$$
F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}
$$

$$
\Gamma_{\rho \to \pi\gamma} = (76 \pm 1_{stat-8} \frac{+10}{syst}) \text{keV}
$$

- Intensive test of systematics:
	- Different K^- decay channels
	- Studies on different background contributions (ω and π exchange)
- Accompanied with intensive analysis of π^- Ni $\rightarrow \pi^- \pi^0 \pi^0$ Ni for background estimation

Obtained b (separation

- Neglectin
- Presumat (3 π leaka

Interpretation of the new preliminary resul

• COMPASS: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho\to\pi\gamma}$

$$
F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}
$$

$$
\Gamma_{\rho \to \pi\gamma} = (76 \pm 1_{stat-8} \frac{+10}{syst}) \text{keV}
$$

- Intensive test of systematics:
	- Different K^- decay channels
	- Studies on different background contributions (ω and π exchange)
- Accompanied with intensive analysis of π^- Ni $\rightarrow \pi^- \pi^0 \pi^0$ Ni for background estimation

Antipov, Y. and reanaly Ametller, L.

- Neglectin
- No prope

COMPASS vs. Serpukhov

AMBER

AMBER spectrometer (former COMPASS)

- currently 153 members from 36 institutions and 14 countries (plus master and bachelor students)
- Memorandum of Understanding July 2023
- Major contributions by Italian and German groups

Experimental Research

Apparatus for Meson and Baryon

• **Anti-proton production cross sections** in p-He and p-p collisions for constraining cosmic dark-matter search data: unique data sets in unexplored beam momentum range 60-250 GeV, successful p-He data taking in 2023

Phase-1 Program

- **Proton radius** via muon-proton scattering, recoiling proton and scattered muon are measured in coincidence: unique in terms of systematics control
- **Pion and kaon partonic structure** via Drell-Yan processes: separate valence and sea contributions in unprecedented precision

Mass budgets: **emergence** of the light-hadron masses is linked to both the QCD partonic structure and to confinement

plot courtesy C. Robert

RICH PID: Cerenkov angle vs. momentum

Size of the proton: experiment and theory \sim 1960

(from: J. David Jackson, Emilio Gino Segrè 1905-1989")

1956 at SLAC.

few-hundred-MeV

electron scattering on the

proton reveals internal

structure effect.

 $\langle r_{p}\rangle\approx 0.8$ fm

R. Hofstadter

Proton Radius Measurement at

Apparatus for Meson and Baryon **Experimental Research**

- 100 GeV muon beam, $2 \cdot 10^6$ /sec
- Active-target TPC with high-pressure H_2
- high-precision tracking and spectrometer for muon reconstruction
- goal: 70 million elastic scattering events in $10^{-3} < Q^2 < 4 \cdot 10^{-2}$ GeV²
- Precision on the proton radius ~0.01 fm
- Measurement under extreme forward conditions: demanding event recognition → **free-running data acquisition** with event selection on recorded data

Ideas of the Phase-2 Program

Apparatus for Meson and Baryon **Experimental Research**

• Kaon structure via the Drell-Yan process \rightarrow feasible already in Phase-1 (?)

 π/K

• Gluon structure of pions and kaons via prompt photons

• Primakoff reactions to investigate kaon-photon coupling: kaon polarisability, $F_{KK\pi}$

Spectroscopy of mesons

with strangeness

- Generalized Parton Distributions in DVCS and **HEMP**
- Meson charge radii via electron scattering in inverse kinematics
- **Jan Friedrich | Paraty | 24.9.2024 35** • Diffractive production of vector mesons and di-jets to study distribution amplitudes

Conclusions and Outlook

- Chiral perturbation theory has, since its development in the 1980s, made **many correct predictions** in low-energy pion-nucleon dynamics, and thus proven its validity as **effective theory of QCD**
- The limits of predictive power and precision of ChPT are still to be challenged by experiment
- **COMPASS** has played a key role in the pion sector, and there are still data to harvest

• New options in the **AMBER** Phase-2 program: extension of kinematic ranges and to the K sector

Fig. 8: Cross section for the charged (blue) and neutral (red) kaon Compton scattering. The dashed red line represents Eq. (37) .

> https://arxiv.org/pdf/2409.05955 Stamen, Dammann, Korte, Kubis

Thank you for your attention

Chiral anomaly in pi-eta

The possibility of $\pi^-\eta$ measurement

$$
\pi^-+(Z,A)\to\pi^-+\pi^0+(Z,A)
$$

• access to $\gamma\pi \rightarrow \pi\pi$

- final state production via $\rho(770)$
- $F_{3\pi} = \frac{e}{4\pi^2 f_\pi^3} =$ 9.78 ± 0.05 GeV⁻³
- dominant background from G-parity-conserving $\pi^-\pi^0\pi^0$

• access to $\gamma \pi \rightarrow \eta \pi$

 $\pi^- + (Z,A) \rightarrow \pi^- + \eta + (Z,A)$

- final state production via $a_2(1320)$
- $F_{\eta\pi\pi\gamma} = \frac{e}{4\sqrt{3}\pi^2f_\pi^3} =$ 5.65 ± 0.03 GeV⁻³
- background from diffractive $\pi^- + (Z, A) \to \pi^- + \eta + (Z, A)$

Radiative width of ρ -meson

• Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

> $\rho^ \cdot \pi^0$ Ni

 \Rightarrow possibility of extraction of radiative width of ρ meson: $\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$

Radiative width of ρ -meson

• Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

Radiative

Capraro, L. at CERN (S

• From fit $\Gamma(\rho \to \pi$

 \Rightarrow possibility of extraction of radiative width of ρ meson: $\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{\text{tot}} \approx 4.5 \cdot 10^{-4}$

Approach for 3π -leakage

Approach for 3π -leakage

Jan Friedrich | Paraty | 24.9.2024 42