

Testing Chiral Perturbation Theory in Soft Hadron-Photon Reactions at COMPASS and AMBER

Jan Friedrich Institute for Hadronic Structures and Fundamental Symmetries Physik-Department, School of Natural Sciences, TUM

Brazilian-German WE Heraeus Seminar

Quantum Chromodynamics

- Quantum Chromodynamics (QCD) as the underlying theory of strong interaction
- Lagrangian of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \bar{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$
flavor-symmetry breaking term
 $(m_u \neq m_d \neq m_s)$

- Symmetries:
 - Local color symmetry (strong interaction couples equally to red, green, and blue color charges)
 → conservation of color charge, coupling to gluons
 - 2. Flavor symmetries? \rightarrow only **approximate** symmetries

 $m_u = (2.16 \pm 0.49) \text{MeV}$ $m_d = (4.67 \pm 0.48) \text{MeV}$ $m_s = (93 \pm 11) \text{MeV}$ $m_c = (1.27 \pm 0.02) \text{GeV}$ $m_b = (4.18 \pm 0.03) \text{GeV}$ $m_t \approx 170 \text{GeV}$

Flavor symmetries of QCD

• Lagrangian of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \overline{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$
flavor-symmetry breaking term

• Approximate flavor symmetries:

Chiral symmetry of QCD

• Lagrangian of QCD:

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \bar{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

• Flavor symmetries in chiral limit

 $SU(3)_R \times SU(3)_L$

- Left- and right-handed fields decouple for massless particles
- Chirality can directly be translated to parity of particle ٠ \rightarrow mass-degenerate doublets of states with opposite parity
- Why is chiral symmetry not manifested in the spectrum (in ٠ contrast to isospin and the eightfold way)?
 - \rightarrow Nambu-Goldstone mechanism for spontaneous/dynamic breakdown of chiral symmetry

Spontaneous symmetry breaking

- \Rightarrow Eight massless, spinless Goldstone bosons $\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \overline{K}^{0}, \eta$
- \Rightarrow Explicit breaking of chiral symmetry due to the small quark masses \rightarrow Goldstone bosons acquire mass
- $\Rightarrow SU(3)_R \times SU(3)_L \rightarrow SU(3)_V$
- ⇒ Chiral Perturbation Theory: effective Lagrangian with power-counting scheme as low-energy theory for QCD makes use of chiral symmetry

The chiral anomaly

• Lagrangian of QCD

$$\mathcal{L}_{QCD} = \sum_{\substack{f = u, d, s, \\ c, b, t}} \overline{q}_f (i \not D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

• features axial U(1)-symmetry in chiral limit:

$$q(x) \to e^{i\theta\gamma_5}q(x)$$

- No ninth "unnaturally light" meson
- Anomalous symmetry breaking: symmetry of the Lagrangian does not lead to conserved Noether currents
- Anomaly: Symmetry of classical Lagrangian violated at quantum level

Wess-Zumino-Witten term

- Chiral anomaly in ChPT taken into account by Wess-Zumino-Witten (WZW) term
- Describes the coupling of an odd number of Goldstone bosons:

SU(2) flavor	SU(3) flavor
$\pi^0 \rightarrow \gamma \gamma$	$K^+K^-\!\to\pi^+\pi^-\pi^0$
$\gamma \pi^- \rightarrow \pi^- \pi^0$	$\eta ightarrow \pi^+ \pi^- \gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

• Effective theory \rightarrow pion decay constant F_{π} measured from leptonic ($\pi^{\pm} \rightarrow \mu^{\pm} + \nu$)arged pion

Discovery of the chiral anomaly: π^0 lifetime

• First definitive measurement of π^0 -lifetime in 1963:

 $\tau_{\rm exp}(\pi^0) = (9.5 \pm 1.5) \cdot 10^{-17} \text{s} \neq \tau_{\rm PCAC}(\pi^0) \approx 10^{-13} \text{s}$

• Adler, Bell, Jackiw, Bardeen 1969: calculation of triangle diagram

$$\Gamma^{\text{anom}}(\pi^{0} \to \gamma \gamma) = F_{\pi \gamma \gamma}^{2} \cdot \frac{m_{\pi^{0}}^{3}}{64\pi} = \left(\frac{e^{2}N_{c}}{12\pi^{2}F_{\pi}}\right)^{2} \frac{m_{\pi^{0}}^{3}}{64\pi} = 7.75 \,\text{eV}$$
$$\tau(\pi^{0}) = \text{BR}(\pi^{0} \to \gamma \gamma) \cdot \frac{\hbar}{\Gamma^{\text{anom}}(\pi^{0} \to \gamma \gamma)}$$
$$= 8.38 \cdot 10^{-17} \,\text{s}$$

• Moussalam and Kampf 2009: NLO-calculation in chiral perturbation theory

$$\tau_{\rm NLO}(\pi^0) = (8.04 \pm 0.11) \cdot 10^{-17} \,\mathrm{s}$$

- pion scattering lengths predictions at 2 loops
 - $a_0^0 m_{\pi} = 0.220 \pm 0.005$ confirmed by E865 in $K^+ \to \pi^+ \pi^- e^+ \nu_e$
 - $a_0^2 m_\pi = 0.264 \pm 0.006$ confirmed by NA48 in $K^+ \to \pi^+ \pi^0 \pi^0$ (0.268 ± 0.010)
- pion polarisabilities: α_{π} (electric) and β_{π} (magnetic)
 - visible in Compton scattering cross-section
 - $\alpha_{\pi} + \beta_{\pi} = (0.2 \pm 0.1) \ 10^{-4} \ \mathrm{fm}^3$
 - $\alpha_{\pi} \beta_{\pi} = (5.7 \pm 1.0) \ 10^{-4} \ \mathrm{fm}^3$
 - $\alpha_{\pi} = (2.9 \pm 0.5) \ 10^{-4} \ \mathrm{fm}^3$
- pion-pion scattering with additional coupling to a photon
 - leading-order prediction from ChPT (scattering lengths + QED)
 - chiral-loop contributions: calculated, test with data pending

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS spectrometer

For the measurements presented in the following:

- 190 GeV negative hadron beam
- Beam PID
- Nuclear target(s): Ni and W
- Calorimetric trigger on neutrals
- Two stage spectrometer (LAS and SAS) with tracking and calorimeter

Pion-Photon reactions through the Primakoff technique

- Photon is provided by the strong Coulomb field of a nucleus (typical field strength at $d = 5R_{Ni}$: $E \approx 300 \text{ kV/fm}$)
- Coulomb field of nucleus is a source of quasi-real ($P_{\gamma}^2 \ll m_{\pi}^2$) photons
- Large impact parameters (ultra-peripheral scattering)

Jan Friedrich | Paraty | 24.9.2024

Measurement of the cross-section for $\pi^-\gamma \rightarrow \pi^-\pi^-\pi^+$

Higher chiral order for $\pi^-\gamma \rightarrow \pi^-\pi \pi$

Pion polarisability: COMPASS measurement

Compton cross-section contains information about e.m. polarisability (as deviation from the expectation for a pointlike particle)

Phys. Rev. Lett. 114, 062002 (2015)

1.15^{_pion beam}

1.10

1.05

 σ

Testing the chiral anomaly - $F_{3\pi}$

• Processes described by WZW term:

SU(2) flavor	SU(3) flavor
$\pi^0 \rightarrow \gamma \gamma$	$K^+K^- \to \pi^+\pi^-\pi^0$
$\gamma \pi^- \! ightarrow \! \pi^- \pi^0$	$\eta \rightarrow \pi^+ \pi^- \gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^* \rightarrow \pi^-\pi^0$
- Problem of explicit chiral symmetry breaking:

$$F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)$$

Testing the chiral anomaly - $F_{3\pi}$

• Processes described by WZW term:

SU(2) flavor	SU(3) flavor
$\pi^0 \rightarrow \gamma \gamma$	$K^+K^- \to \pi^+\pi^-\pi^0$
$\gamma \pi^- \rightarrow \pi^- \pi^0$	$\eta { ightarrow} \pi^+\pi^-\gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^* \rightarrow \pi^-\pi^0$
- Problem of explicit chiral symmetry breaking:

$$F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)$$

Previous measurement of $F_{3\pi}$:

Antipov, Y. *et al.* Phys.Rev. D36 (1987) 101103 from Serpukhov experiments

As previously noted, the value $F^{3\pi}$ is supposed to vary slowly with $s, t, q^2 \ll m_{\rho}^2$ so that $F^{3\pi} \simeq F^{3\pi}(0)$. $\frac{d\sigma_{\gamma\pi\to\pi\pi}}{dt} = \frac{(F^{3\pi})^2}{128\pi} \frac{1}{4} (s - 4m_{\pi}^2) \sin^2\theta$ 30 number of events 20 10 8 10 12 6 S/m^2_{π}

 $\Rightarrow F_{3\pi} = (12.9 \pm 0.9 \pm 0.5) \text{ GeV}^{-3}$

Testing the chiral anomaly - $F_{3\pi}$

Processes described by WZW term:

SU(2) flavor	SU(3) flavor
$\pi^0 \to \gamma \gamma$	$K^+K^- \! \to \pi^+\pi^-\pi^0$
$\gamma\pi^- \rightarrow \pi^-\pi^0$	$\eta ightarrow \pi^+ \pi^- \gamma$
$\pi^+ \rightarrow e^+ \nu_e \gamma$	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$
etc.	etc.

- $F_{3\pi}$: Direct coupling of γ to 3π process proceeds primarily via the chiral anomaly => one of the most definitive tests of low-energy QCD
- Accessible in Primakoff reactions via: $\pi^-\gamma^* \to \pi^-\pi^0$
- Problem of explicit chiral symmetry breaking:

 $F_{3\pi} = \frac{eN_C}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{GeV}^{-3} = F(s = t = u = 0)$

Reanalysis of Serpukhov data:

Ametller, L. et al. Phys.Rev. D64 (2001) 094009

- Using extrapolation & em corr:
 - $F_{3\pi} = (10.7 \pm 1.2) \, \mathrm{GeV^{-3}}$
- Compare to prediction from ChPT:
- $F_{3\pi} = (9.78 \pm 0.05) \,\mathrm{GeV^{-3}}$

Precision of previous measurements: O(10%)

⇒ More precise experimental determination desirable

Analysis of COMPASS measurement

• Dispersive framework to deduce $F_{3\pi}$ from a fit to the $\pi^{-}\pi^{0}$ mass distribution up to 1.0 GeV including the $\rho(770)$ -resonance:

$$\sigma(s) = \frac{(s - 4m_{\pi}^2)^{3/2}(s - m_{\pi}^2)}{1024\pi\sqrt{s}} \int_{-1}^{1} \mathrm{d}z(1 - z^2) |\mathcal{F}(s, t, u)|^2$$

With

$$\mathcal{F}(s,t,u) = C_2^{(1)} \mathcal{F}_2^{(1)}(s,t,u) + C_2^{(2)} \mathcal{F}_2^{(2)}(s,t,u) - \frac{2e^2 F_\pi^2 F_{3\pi}}{t}$$

 $C_2^{(1)}$, $C_2^{(2)}$: fit parameters

 $\mathcal{F}_{2}^{(1)}(s, t, u), \mathcal{F}_{2}^{(2)}(s, t, u)$: provided by theory colleagues (Kubis, Hoferichter)

<u>M. Hoferichter, B. Kubis, and D. Sakkas, *PRD* **86** (2012) 116009</u>

Luminosity Determination

 Needed for absolute cross section measurement: effective integrated luminosity (DAQ dead time taken into account)

Effective luminosity: $L_{eff} = L \cdot (1 - \epsilon_{DAQ})$

- Luminosity can be determined via free decays of beam kaons in the beam:
 - Use CEDARs to tag kaons
 - Measure free decays where no material
 - Exclusive events with zero momentum transfer

Decay channel	Γ_i/Γ	Remark
$K^- \to \mu^- \bar{\nu}_\mu$	(63.56 ± 0.11) %	Does not deposit energy in ECAL2 (Primakoff-trigger)
$K^- o \pi^- \pi^0$	(20.67 ± 0.08) %	Similar systematics as Primakoff $\pi^- \rightarrow \pi^- \pi^0$ channel
$K^- \rightarrow \pi^- \pi^- \pi^+$	(5.583 ± 0.024) %	Does not deposit energy in ECAL2 (Primakoff-trigger)
$K^- ightarrow e^- \pi^0 \overline{\nu}_e$	(5.07 ± 0.08) %	Non exclusive, missing energy
$K^- o \mu^- \pi^0 \overline{ u}_\mu$	(3.352 ± 0.033) %	Non exclusive, missing energy
$K^- o \pi^- \pi^0 \pi^0$	(1.760 ± 0.023) %	Used to determine π/K -ratio in the beam
others	$< 10^{-4}$	No significant contribution to background expected

 Different channels may form background for each other, but give possibility to crosscheck results

Used for luminosity determination Considered as background process

Luminosity from Kaon decays

 $L_{2\pi,eff} = 5.21 \pm 0.04_{stat} \text{ nb}^{-1}$ $L_{3\pi,eff} = 5.06 \pm 0.12_{stat} \text{ nb}^{-1}$

Largest contributions to systematic uncertainty:

- CEDAR tag efficiency: 7%
- ECAL reconstruction: 5%
- kaon/pion beam ratio: 2.5%

Result:

$$L_{eff} = 5.21 \pm 0.48_{syst} \pm 0.04_{stat}$$

Main background for $\pi^-\gamma \rightarrow \pi^-\pi^0$: $\pi^-\pi^0 \pi^0$ final states

• $\pi^{-}\pi^{0}$ -final state forbidden by *G*-parity conservation

- Large cross section for $\pi^{-}\pi^{0}\pi^{0}$ final state \Rightarrow loss of one (soft) π^{0}
- Approach: determine leakage from 3pi MC data with 2pi event selection

Approach for 3π leakage:

- Select diffractive 3π events
- Develop partial-wave model
- Weight 3π Monte Carlo data set according to model
- Subtract from 2π event sample

Background Subtraction

- Kinematic distributions of the 3-pion background fit well with the observed spectra
- some upscaling by 15-25% needed ?!

Challenges in Photon Detection

- Comparison of 3-pion PWA model with lab distributions shows clear inefficient structures for forward photons
- roughly consistent with the observed upscaling factor

QED Radiative Corrections

The The

Implementation of QED radiative corrections:

- Calculated on the base of the paper of Ametller et al. (extended and corrected by N. Kaiser, TUM)
- Included in MC generator: event distribution according to 1-photon emission spectrum, events in "hand-over" region replaced by correct fraction of purely elastic events (including virtual corrections)

QED Radiative Corrections

Result of fitting with the Kubis-Hoferichter model

- Selection: $Q^2 < 1.296 \cdot 10^{-3} \, \text{GeV}^2/c^2$
 - $C_{2}^{(1)} = (10.5 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$ $C_{2}^{(2)} = (24.5 \pm 0.1_{stat})^{+1.6} \text{GeV}^{-5}$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$

$$\Gamma_{\rho \to \pi \gamma} = \left(76 \pm 1_{stat}^{+10}_{-8}\right) \text{keV}$$

- Preliminary result for $F_{3\pi}$ in agreement with theory prediction from ChPT
- Lower systematics to be achieved

Interpretation of the new preliminary result

• COMPASS: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho \to \pi \gamma}$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$
$$\Gamma_{\rho \to \pi\gamma} = \left(76 \pm 1_{stat} + 10_{syst}^{+10}\right) \text{keV}$$

- Intensive test of systematics:
 - Different K^- decay channels
 - Studies on different background contributions (ω and π exchange)
- Accompanied with intensive analysis of $\pi^-\text{Ni} \rightarrow \pi^-\pi^0\pi^0\text{Ni}$ for background estimation

<u>Capraro, L. *et al.* NPB 288 (1987) 659-680</u> at CERN (SPS):

 $\Gamma_{\rho \to \pi \gamma} = (81 \pm 4 \pm 4) \text{ keV}$

Obtained by fitting $d\sigma/dt$ distribution (separation of nuclear and Coulomb processes)

- Neglecting chiral production of $\pi^-\pi^0$
- Presumably underestimation of systematics $(3\pi \text{ leakage, beam composition})$

$\Gamma(\pi^{\pm}\gamma)$)					Гз
VALUE (ke	∨)	DOCUMENT ID		TECN	CHG	COMMENT
68 ±7	OUR FIT	Error includes scale	e fact	or of 2.3		
68 ±7	OUR AVE	RAGE Error includ	es sca	ale factor	of 2.2	. See the ideogram below.
81 ± 4	± 4	CAPRARO	87	SPEC	_	$200 \ \pi^- A \rightarrow \ \pi^- \pi^0 A$
59.8 ± 4.0)	HUSTON	86	SPEC	+	202 $\pi^+ A \rightarrow \pi^+ \pi^0 A$
71 ± 7		JENSEN	83	SPEC	_	156–260 $\pi^- A \rightarrow \pi^- \pi^0 A$

Interpretation of the new preliminary result

• COMPASS: First combined measurement of $F_{3\pi}$ and $\Gamma_{\rho \to \pi \gamma}$

$$F_{3\pi} = (10.3 \pm 0.1_{stat} \pm 0.6_{syst}) \text{GeV}^{-3}$$
$$\Gamma_{\rho \to \pi\gamma} = \left(76 \pm 1_{stat}^{+10}_{-8}\right) \text{keV}$$

- Intensive test of systematics:
 - Different K^- decay channels
 - Studies on different background contributions (ω and π exchange)
- Accompanied with intensive analysis of $\pi^-\text{Ni} \rightarrow \pi^-\pi^0\pi^0\text{Ni}$ for background estimation

Antipov, Y. et al. PRD 36 (1987) 101103 and reanalyzed by Ametller, L. et al. PRD 64 (2001) 094009

 $F_{3\pi} = (10.7 \pm 1.2) \, \text{GeV}^{-3}$

- Neglecting s-channel production of ρ meson
- No proper consideration of systematics

COMPASS vs. Serpukhov

AMBER

AMBER spectrometer (former COMPASS)

- currently 153 members from 36 institutions and 14 countries (plus master and bachelor students)
- Memorandum of Understanding July 2023
- Major contributions by Italian and German groups

Proton radius via muon-proton scattering, •

Apparatus for Meson and Barvon **Experimental Research**

٠

- recoiling proton and scattered muon are measured in coincidence: unique in terms of systematics control
- Pion and kaon partonic structure via Drell-Yan • processes: separate valence and sea contributions in unprecedented precision

RICH PID: Cerenkov angle vs. momentum

Mass budgets: emergence of the light-hadron masses is linked to both the QCD partonic structure and to confinement

plot courtesy C. Robert

chiral limit (EHM) EHM+HB HB

Size of the proton: experiment and theory ~ 1960

(from: J. David Jackson, Emilio Gino Segrè 1905-1989")

1956 at SLAC.

few-hundred-MeV

proton reveals internal

structure effect.

 $< r_p > \approx 0.8$ fm

R. Hofstadter

Proton Radius Measurement at

Apparatus for Meson and Baryon Experimental Research

- 100 GeV **muon** beam, $2 \cdot 10^6$ /sec
- Active-target TPC with high-pressure H₂
- high-precision tracking and spectrometer for muon reconstruction
- goal: 70 million elastic scattering events in $10^{-3} < Q^2 < 4 \cdot 10^{-2} \text{ GeV}^2$
- Precision on the proton radius ~0.01 fm
- Measurement under extreme forward conditions: demanding event recognition → **free-running data acquisition** with event selection on recorded data

Ideas of the Phase-2 Program

Apparatus for Meson and Baryon Experimental Research

 Kaon structure via the Drell-Yan process → feasible already in Phase-1 (?)

 Gluon structure of pions and kaons via prompt photons

 Generalized Parton Distributions in DVCS and HEMP

 Spectroscopy of mesons with strangeness

- Meson charge radii via electron scattering in inverse kinematics
- Diffractive production of vector mesons and di-jets to study distribution amplitudes 35

Jan Friedrich | Paraty | 24.9.2024

Conclusions and Outlook

- Chiral perturbation theory has, since its development in the 1980s, made many correct predictions in low-energy pion-nucleon dynamics, and thus proven its validity as effective theory of QCD
- The limits of predictive power and precision of ChPT are still to be challenged by experiment
- COMPASS has played a key role in the pion sector, and there are still data to harvest

2004	$\pi^{-}\pi^{-}\pi^{+}$	published result PRL108 (2012)
2009	$\pi^- \gamma$	pion polarisability PRL114 (2015)
	$\pi^-\pi^0$, $\pi^-\eta$	chiral anomaly
	$\pi^-\pi^0\pi^0$	chiral dynamics
2012	4x larger data set	

• New options in the AMBER Phase-2 program: extension of kinematic ranges and to the K sector

Fig. 8: Cross section for the charged (blue) and neutral (red) kaon Compton scattering. The dashed red line represents Eq. (37).

Stamen, Dammann, Korte, Kubis https://arxiv.org/pdf/2409.05955

Thank you for your attention

Chiral anomaly in pi-eta

The possibility of $\pi^-\eta$ measurement

$$\pi^-+(Z,A) \rightarrow \pi^-+\pi^0+(Z,A)$$

• access to $\gamma\pi o \pi\pi$

- final state production via $\rho(770)$
- $F_{3\pi} = \frac{e}{4\pi^2 f_{\pi}^3} =$ 9.78 ± 0.05 GeV⁻³
- dominant background from G-parity-conserving $\pi^-\pi^0\pi^0$

- access to $\gamma\pi o \eta\pi$

 $\pi^- + (Z, A) \rightarrow \pi^- + \eta + (Z, A)$

- final state production via a₂(1320)
- $F_{\eta \pi \pi \gamma} = \frac{e}{4\sqrt{3}\pi^2 f_{\pi}^3} = 5.65 \pm 0.03 \text{ GeV}^{-3}$
- background from diffractive $\pi^- + (Z, \mathcal{A}) o \pi^- + \eta + (Z, \mathcal{A})$

Radiative width of ρ -meson

- Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

 π^{-} ρ^{-} π^{0} Ni

⇒ possibility of extraction of radiative width of ρmeson: $\Gamma_{(\rho \to \pi \gamma)}/\Gamma_{tot} \approx 4.5 \cdot 10^{-4}$

Radiative width of ho-meson

- Coherent background of $\rho(770)$ -production (strong and electro-magnetic)

⇒ possibility of extraction of radiative width of ρ meson: $\Gamma_{(\rho \to \pi \gamma)} / \Gamma_{tot} \approx 4.5 \cdot 10^{-4}$ Radiative width of ρ -meson:

<u>Capraro, L. *et al.* Nucl.Phys. B288 (1987) 659-680</u> at CERN (SPS):

• From fit of $d\sigma/dt$ for ρ production: $\Gamma(\rho \rightarrow \pi \gamma) = (81 \pm 4 \pm 4) \text{ keV}$

Approach for 3π -leakage

Approach for 3π -leakage

Jan Friedrich | Paraty | 24.9.2024