Investigating the multiplicities and femtoscopic correlation functions of heavy-flavor and exotic hadrons

Luciano Melo Abreu

Universidade Federal da Bahia

Hadron spectroscopy and the new unexpected resonances

September 22-28, 2024

Paraty

- A brief overview on the state-of-the-art of exotic hadron spectroscopy
- Discussion about the underlying structure and the most promising approaches
- Summary of some of our recent contributions (focus on femtoscopy)

2 Our contributions

blog.ufba.br/lucianoabreu/

Image: Image:

< ∃→

The heavy exotics collection

• Since 2003 [X(3872)]: about fifty candidates observed!

blog.ufba.br/lucianoabreu/

Paraty, 2024

Intepretations for composition and binding mechanisms?

Theoretical perspective

A compelling and unified understanding has not yet emerged

- No single theoretical framework explains the exotics collection
- Candidates: different interpretations (hadron molecule, diquark-antidiquark, kinematical effects, ...)
- (m, Γ) can be explained by different models or even superposition of them
- Necessity of more studies, more observables to distinguish their internal structure

blog.ufba.br/lucianoabreu/

Exotic Hadrons

Paraty, 2024

< ∃⇒

Image: A matrix

Strategy $1 \Rightarrow$ Exotics in Heavy-Ion Collisions

blog.ufba.br/lucianoabreu/

Paraty, 2024

Strategy 2 \rightarrow Exotics in hadron decays

(Abreu, Albaladejo, Feijoo, Oset,

Nieves); EPJC 83, 309 (2023)]

blog.ufba.br/lucianoabreu/

Exotic Hadrons

3740 3760 M_ (ηη) [MeV]

054004 (2023)] (Brandão's talk)

BB(10550) in $\Upsilon(4S) \rightarrow \gamma X(10550)$

$$\Gamma_{\Upsilon({f 4}S)
ightarrow \gamma X({f 10550})} \sim 0.5-192~ {\it keV}$$

[Collaboration UFRB-UFBA (Britto,

3

Abreu); PRD 110, 056008 (2024)]

Paraty, 2024

blog.ufba.br/lucianoabreu/

Exotic Hadrons

Paraty, 2024

Strategy 5 \rightarrow exotic states as kinematical effects

- *Z_c*(3900): triangle singularity or new hadron?
- Can HICs help to discern the correct interpretation?

Singularity disappears at temperatures just below T_H
Medium: spectroscopic filter to distinguish actual hadrons from TSs

[Collaboration U.Complutense Madrid-UFBA (F. Llanes-Estrada, ...); EPJ C 81, 430 (2021); PoS EPS-HEP2021

(2022) 278]; Nucl.Part.Phys.Proc. 318, 32 (2022)]

blog.ufba.br/lucianoabreu/

Paraty, 2024

< ∃⇒

Image: A matrix

Strategy 6 \rightarrow Femtoscopy

Generalized coupled-channel CF for a specific channel *i*

$$\begin{aligned} C_i(k) &= \frac{N_i(\vec{k}_1, \vec{k}_2)}{N(\vec{k}_1)N(\vec{k}_2)} \simeq \int d^3 \vec{r} S_{12}(\vec{r}) |\Psi_i(\vec{r}, \vec{k})|^2 \\ &= 1 + 4\pi \int_0^\infty dr r^2 S_{12}(\vec{r}) \left(\sum_j w_j |j_0(kr)\delta_{ji} + T_{ji}(\sqrt{s})\widetilde{G}_j(r;s)|^2 - j_0^2(kr) \right), \end{aligned}$$

 \vec{k} : relative momentum;

 w_j : weight of the observed channel j (common choice: $w_j = 1$);

 $E = \sqrt{s}$: the CM energy;

 T_{ji} : elements of the scattering matrix encoding the meson-meson interactions;

$$\widetilde{G}_{j}(r;s) = \int_{|\vec{q}| < \Lambda} \frac{d^{3}q}{(2\pi)^{3}} \frac{\omega_{1}^{(j)} + \omega_{2}^{(j)}}{2\omega_{1}^{(j)}\omega_{2}^{(j)}} \frac{j_{0}(qr)}{s - (\omega_{1}^{(j)} + \omega_{2}^{(j)})^{2} + i\varepsilon}$$

$$\begin{split} \omega_a^{(j)} &\equiv \omega_a^{(j)}(k) = \sqrt{k^2 + m_a^2}; \ \Lambda = 700 \ \text{MeV}; \\ S_{12}(\vec{r}): \text{ source function,} \end{split}$$

$$S_{12}(\vec{r}) = rac{1}{(4\pi)^{rac{3}{2}}R^3} \exp\left(-rac{r^2}{4R^2}
ight),$$

R: source size parameter (larger R : larger system size $pp \rightarrow pA \rightarrow AA$ collisions)

Lednicky-Lyuboshits (LL) approximation (asymptotic Ψ ($r \rightarrow \infty$))

Using

$$-\frac{T}{8\pi\sqrt{s}} = f(k) \equiv \frac{1}{k\cot\delta(k) - ik} = \frac{R}{-R/a - ikR}$$

then

$$C_{LL}(x,y) = 1 + \frac{1}{x^2 + y^2} \left[\frac{1}{2} - \frac{2y}{\sqrt{\pi}} F_2(2x) - xF_3(2x) \right],$$

x = kR; y = R/a (a: scattering length); $F_2(z) = \int dt \frac{e^{t^2 - z^2}}{z}, F_3(z) = \frac{1 - e^{-z^2}}{z}$

Dependence on $R, a \rightarrow$ bound or quasi-bound state; resonance

blog.ufba.br/lucianoabreu/

Exotic Hadrons

Predictions for the T_{bb}^+ state

$B^{*+}B^0$; $B^{*0}B^+$ interactions

Bethe-Salpeter formalism:

$$T = \left[1 - VG\right]^{-1} V ,$$

V: interaction potential (Use of local hidden gauge approach);

G: loop function ($q_{max} = 420$ MeV).

I = 0 state:

$$|BB, I = 0\rangle = -\frac{1}{\sqrt{2}}(B^{*+}B^0 - B^{*0}B^+).$$

[Collaboration Valencia-Huzhou-UFBA (Dai, LMA, Feijoo, Molina, Oset); PRD **109**, 016014 (2024)]

T_{bb}^+ as a molecular state \rightarrow the only interpretation from these CF's?

Inverse Problem

- Extraction of relevant observables from the CFs
- Assumption: isospin symmetry, $\langle I = 0 | V | I = 0 \rangle = 1 \rightarrow V_{11} = V_{22}$
- No a priori choice: freedom is left for nonmolecular components
- Contribution from nonmolecular states: energy-dependent terms,

$$V_{11} = V'_{11} + \frac{\alpha}{m_V^2}(s - s_0)$$
$$V_{12} = V'_{12} + \frac{\beta}{m_V^2}(s - s_0)$$

Fit to the synthetic data

- Parameter space:
 {*q*_{max}, *V*'₁₁, *V*'₁₂, α, β, *R*}
- CFs are used to produce synthetic data
- Fit for the CFs ($R^{(input)} = 1$ fm):
 - $q_{max} ~=~ 445\pm 29~{\rm MeV},$
 - $V'_{11} = 70 \pm 360,$
 - $V_{12}' = 3463 \pm 1272,$
 - $\alpha \quad = \quad -170 \pm 336,$
 - $\beta = 290 \pm 346,$

・ロト ・ 同ト ・ ヨト ・ ヨト

 $R = 0.98 \pm 0.02 \text{fm}$

- From CFs: Bound state with I = 0!
- $E_b = 20.62 \text{ MeV} (R^{(input)} = 1 \text{ fm})$
- $E_b = 18.48 \text{ MeV} (R^{(input)} = 5 \text{ fm})$
- In Dai et al. PRD 105, 074017 (2022): E_b = 21 MeV

R ^{input} (fm)	a_1 (fm) $r_{0,1}$ (fm)		a_2 (fm)		$r_{0,2}$ (fm)	
1 5	$\begin{array}{c} 0.85 \pm 0.18 \\ 0.85 \pm 0.19 \end{array}$	$\begin{array}{c} -0.11 \pm 0.51 \\ -0.92 \pm 1.78 \end{array}$	(0.81 ± 0.12) (0.77 ± 0.12)	$ 3) - i(0.03 \pm 0.03) 3) - i(0.05 \pm 0.06) $	$\begin{array}{c} (0.43\pm 0.11) \\ (0.26\pm 0.40) \end{array}$	$\begin{array}{l} -i(0.38 \pm 0.29) \\ -i(0.87 \pm 1.13) \end{array}$
R ^{input} (fm)	<i>g</i> ₁ (Me	V) g	2 (MeV)	P_1	<i>P</i> ₂	Z
1 5	33039 ± 1 30970 ± 1	4744 –320 9666 –31	031 ± 17367 181 ± 19718	$\begin{array}{c} 0.44 \pm 0.06 \\ 0.41 \pm 0.11 \end{array}$	$\begin{array}{c} 0.43 \pm 0.05 \\ 0.39 \pm 0.11 \end{array}$	$\begin{array}{c} 0.13 \pm 0.11 \\ 0.19 \pm 0.22 \end{array}$

- Molecular probability: $P_1 + P_2 = 0.87 \pm 0.11$ (compatible with 1)
- Nonmolecular probability: $Z = 1 (P_1 + P_2) = 0.13 \pm 0.11$
- A clear molecular nature for the T_{bb}^+ state!

PDG: evidence of two D_1 states with $J^P = 1^+$

 $D_1(2420)$: $M = 2422.1 \pm 0.6$ MeV, $\Gamma = 31.3 \pm 1.9$ MeV. $D_1(2430)$: $M = 2412 \pm 9$ MeV, $\Gamma = 314 \pm 29$ MeV.

Description of *M*'s and $R = \Gamma_{D_1(2420)}/\Gamma_{D_1(2430)} \sim 10$ from the same dynamics: controversies (see Kamchandani et al. PRD **110**, 036008 (2024))

Our purpose [Collaboration USP-UNIFESP-UFBA: Navarra, Torres, Kamchandani, LMA]

- Model: Meson-meson coupled channel + Bare quark-model pole (Interplay of quark-hadron degrees of freedom)
- Investigation if CFs can be useful Focus: channels $D^{*+(0)}\pi^{0(+)}$, dominated by strong interactions

イロト イポト イヨト イヨト

Model A

$$V_{QM} = -\frac{6000^2}{s - 2440^2}$$

• $D^*\pi$: $M\sim 2304$ MeV, $\Gamma\sim 160$ MeV

(Lower limit for $D_1(2430)$ from Babar (2006))

• $a_{D^*\pi}^{(1/2)} = -0.20 \text{ fm}$

(In accordance with lattice results for $a_{D\pi}^{(1/2)}$ (Liu et

al. PRD 87, 014508 (2013)))

Model B

$$V_{QM} = rac{10000^2}{s - 2370^2}$$

(g_{QM}, M_{QM} considered as free parameters)

(In accordance with recent Alice results for

 $a_{D^*\pi}^{(1/2)}$ (e-Print: 2401.13541 [nucl-ex]))

blog.ufba.br/lucianoabreu/

Results [Kamchandani, LMA, Torres, Navarra; PRD 110, 036008 (2024)]:

• Model A: $C_{D^*} \bullet_{\pi^+} (k=0)|_{R=1 \mathrm{fm}} > 1$ (attractive character)

- Model B: $C_{D^{*0}\pi^+}(k=0)|_{R=1\mathrm{fm}} < 1~(a_{D^*\pi}^{(1/2)}=0.1~\mathrm{fm} < 2.3R$)
- Both models: $C_{D^{*0}\pi^+}(k>0)$ reflects the behavior of $T_{D^{*0}\pi^+}$
- Dip in C_{0ρ+}(k = 0): influence of the narrow state in T^(1/2)_{Dρ,Dρ} below the Dρ threshold
- $D^{*0}\pi^+$ and $D^0\rho^+$: more appropriate to test both models

 $[\phi N \text{ CF: LMA, Gubler, Khemchandani, Torres, Hosaka, arXiv:2409.05170]}$

2 Our contributions

blog.ufba.br/lucianoabreu/

Exotic Hadrons

Paraty, 2024

< ∃⇒

Image: A matrix

Summary

- Hadron Spectrum: richer than what we expected
- New particle zoo near $D^{(*)}\bar{D}^*, B^{(*)}\bar{B}^*$ thresholds: not $(\bar{q}q, qqq)$

General description of exotic states?

- It remains a great challenge!!!
- More experimental and theoretical investigations are necessary to shed light on their dynamics

Thank You!!!

Financial support:

blog.ufba.br/lucianoabreu/

Exotic Hadrons

Paraty, 2024