

Accelerator Science and Particle Therapy

Alexander Gerbershagen

University Medical Center Groningen

a.gerbershagen@umcg.nl

Content

• Beam optics properties

-
- Dose delivery techniques
- Possible facility and gantry layouts
- Introduction: Hadron therapy

Introduction: Hadron therapy

Dose and mechanism of action

- Direct and indirect interraction
- Single DNA strand breaks are usually reparable
- Double DNA strand breaks are usually irreparable

Photon (X-ray) dose

X-rays **scatter** and are **absorbed** energy deposition in "dots"

partrec

 Energy Penetration depth **Range in water** (cm) ≈ *E1.77 (in MeV) / 450* Range scales with 1/density: $1/\rho$

1/31/2024 A. Gerbershagen, Accelerator Science and Particle Therapy 6

X-rays vs. Protons

X-rays vs. Protons

X-rays vs. Protons

X-ray beams (IMRT) from 7 directions

partrec

Proton beams from 3 directions

pictures: Medaustron

Therapeutic Window

Protons irradiate less normal tissue

Therapeutic Window

Possible facility and gantry layouts

Cyclotron driven facilities

Cyclotron has fixed energy => slow down (degrade) to desired energy

Synchrotrons

- Asymmetric emittance
	- Cause: Extraction in one plane
- Single turn vs multi-turn extraction

partrec

Sources: Hitachi, Loma Linda University Medical Center

Linacs

• Fast energy switching (milliseconds)

• Very low beam emittance (~1 mm mrad)

• Lower average current than cyclotrons

Radio Frequency Quadrupole (RFQ)

Proton Source

Side Coupled Drift Tube Linac (SCDTL)

Source: AVO/ADAM SA

Modulator-klystron systems

Gantry types and topologies

Conical gantry - Commercial standard layout

IBA Sumitomo Hitachi Mitsubishi Varian

Beam scanning downstream of the last bend

Munich

- 135°bending magnet
	- Shorter length but larger radius
	- Cylindrical treatment cell
- Initially only for passive scattering
- Lately also for scanning

First commercial scanning-gantry of Varian in Munich

First gantry for heavy ion therapy at HIT

partrec

Small cyclotron on a gantry

H. Blosser, NSCL (~1990): cyclotron for neutron therapy; 30 MeV protons, mounted on a gantry Used in Harper Hospital, Detroit

Fig. 2 Photo of the superconducting medical cyclotron on its gantry. Dr. William Powers and

For proton therapy 70-230 MeV Treating patients since 2013

Dose delivery techniques

Energy selection system

transmisison a.u.

partrec

Dose delivery techniques: Width

Scattering

Nuclear Coulomb scattering

partrec

Nucleus is several times heavier as a proton

- \rightarrow Almost no energy loss ("elastic")
- \rightarrow Much larger deflection than from electrons

Multiple Scattering Scattering

Nozzle for a scattered beam

Nozzle for a scanning beam

partrec

Scanning: best dose distribution

Dose distribution of scattered beam:

Pencil-beam scanning: behind & in front of tumor optimal

Scatter – IMPT

partrec

Scattered beam Scanned beam with IMPT

Spot scanning

Beam size 7 mm FWHM 5 mm steps

10'000 spots/liter (21 x 21 x 21) Dose painted only once

~**1 Gy / liter / minute**

Fast pencil beam scanning in 3D

Upstream versus downstream scanning

- Upstream scanning
- Parallel beam
- Infinite source-to-axis distance (SAD)
- Reduced skin dose
- Large aperture last bend
	- Heavier
	- Higher costs (magnet, mechanical support)
- Easy to implement movable nozzle to reduce air gap (monitors, passive elements)
- Downstream scanning
- Divergent beam
- Finite source-to-axis distance (SAD)
- Larger skin dose
- Large fields possible with large SAD (increase diameter)
- Larger diameter \rightarrow larger room (costs)

Also possible: Combination of 1 sweeper upstream 1 sweeper downstream

Possible solutions: Organ / tumor motion

Gating

Organ motion

partrec

Inspiratory Respiration Signal Expiratory **Extracted Beam**

• Adaptive scanning

(tumor tracking)

• Fast rescanning

Beam optics properties

Magnetic fields

Lorenz force = "centripetal force" *mv2/*^ρ \Rightarrow track = circular orbit with radius $\bm{\rho}$

energy *E* and charge *q* determine magnetic rigidity *B*^ρ *:* **magnet strength** *B* **to bend with radius** ^ρ **B**ρ **[in Tm] = p/e = 3.3356 p [in GeV]** 250 MeV p: $B\rho = 2.4$ Tm 450 MeV/nucl C^{6+} : $B\rho = 6.8$ Tm

Chromaticity and dispersion suppression

Optimal gantry beam line design

Coupling point

- Rotational symmetrical phase space
- Fixed collimator

Beam optics

- Imaging from coupling point to iso-center
	- $(R_{12} = R_{34} = 0)$
- Achromatic beam optics $(R_{16} = R_{36} = 0)$
- Point-to-parallel setting from scanning magnets to iso-center $(R_{22} = R_{44} = 0)$

Purple: Beam envelopes trough Gantry 2 Green: Action of the sweepers Red: Dispersion trajectory for a 1% momentum band

Matching asymmetric phase-space

Summary

- Proton therapy makes use of the Bragg peak
- In most facilities the beam is accelerated in a cyclotron and the energy is reduced by a degrader
- The target can be
	- irradiated by a scattered beam or
	- scanned by a pensil beam with sweeper magnets
		- Upstream or
		- Downstream of the final bend
- Neccessary properties of the gantry beam optics:
	- Rotational symmetrical phase space at coupling point and iso-center
	- Imaging between coupling point and iso-center
	- **Achromaticity**

partrec

Many thanks for the slides to D. Meer from PSI and M. Schippers from PARTREC

