

Accelerator Science and Particle Therapy

Alexander Gerbershagen

University Medical Center Groningen

a.gerbershagen@umcg.nl

Content

Introduction: Hadron therapy

Possible facility and gantry layouts

Dose delivery techniques

Beam optics properties

2

Introduction: Hadron therapy

Dose and mechanism of action

1/31/2024

partrec

- Direct and indirect interraction
- Single DNA strand breaks are usually reparable
- Double DNA strand breaks are usually irreparable

Photon (X-ray) dose

X-rays scatter and are absorbed \rightarrow energy deposition in "dots"

partrec

Proton depth-dose curve

→ Energy → Penetration depth Range in water (cm) $\approx E^{1.77}$ (in MeV) / 450 Range scales with 1/density: 1/ ρ

Dartrec1/31/2024A. Gerbershagen, Accelerator Science and Particle Therapy

X-rays vs. Protons

1/31/2024

partrec

A. Gerbershagen, Accelerator Science and Particle Therapy

7

X-rays vs. Protons

partrec

X-rays vs. Protons

X-ray beams (IMRT) from 7 directions

1/31/2024

partrec

Proton beams from 3 directions

pictures: Medaustron

A. Gerbershagen, Accelerator Science and Particle Therapy

Therapeutic Window

1/31/2024

A. Gerbershagen, Accelerator Science and Particle Therapy

10

Protons irradiate less normal tissue

Therapeutic Window

Possible facility and gantry layouts

partrec

Cyclotron driven facilities

Cyclotron has fixed energy => slow down (degrade) to desired energy

Synchrotrons

- Asymmetric emittance
 - Cause: Extraction in one plane
- Single turn vs multi-turn extraction

Sources: Hitachi, Loma Linda University Medical Center

Linacs

 Fast energy switching (milliseconds)

 Very low beam emittance (~1 mm mrad)

• Lower average current than cyclotrons

Radio Frequency Quadrupole (RFQ)

Proton Source

Source: AVO/ADAM SA

Modulator-klystron systems

Gantry types and topologies

Conical gantry - Commercial standard layout

Beam scanning downstream of the last bend

Munich

- 135°bending magnet
 - Shorter length but larger radius
 - Cylindrical treatment cell
- Initially only for passive scattering
- Lately also for scanning

First commercial scanning-gantry of Varian in Munich

First gantry for heavy ion therapy at HIT

A. Gerbershagen, Accelerator Science and Particle Therapy 19

Small cyclotron on a gantry

H. Blosser, NSCL (~1990):
cyclotron for neutron therapy;
30 MeV protons, mounted on a gantry
Used in Harper Hospital, Detroit

Fig. 2 Photo of the superconducting medical cyclotron on its gantry. Dr. William Powers and

For proton therapy 70-230 MeV Treating patients since 2013

Dose delivery techniques

partrec

Energy selection system

transmisison a.u.

partrec

Dose delivery techniques: Width

partrec

Scattering

Nuclear Coulomb scattering

Nucleus is several times heavier as a proton

→ Almost no energy loss ("elastic")

 \rightarrow Much larger deflection than from electrons

Scattering Multiple Scattering

Nozzle for a scattered beam

1/31/2024

A. Gerbershagen, Accelerator Science and Particle Therapy

Nozzle for a scanning beam

partrec

Scanning: best dose distribution

Dose distribution of scattered beam:

Pencil-beam scanning: behind <u>& in front of</u> tumor optimal

1/31/2024

partrec

Scatter – IMPT

Scattered beam

Scanned beam with IMPT

A. Gerbershagen, Accelerator Science and Particle Therapy 30

Spot scanning

Beam size 7 mm FWHM 5 mm steps

10'000 spots/liter (21 x 21 x 21) Dose painted only once

~1 Gy / liter / minute

Fast pencil beam scanning in 3D

Upstream versus downstream scanning

- Upstream scanning
- Parallel beam
- Infinite source-to-axis distance (SAD)
- Reduced skin dose

partrec

- Large aperture last bend
 - Heavier
 - Higher costs (magnet, mechanical support)

1/31/2024

• Easy to implement movable nozzle to reduce air gap (monitors, passive elements)

- Downstream scanning
- Divergent beam
- Finite source-to-axis distance (SAD)
- Larger skin dose
- Large fields possible with large SAD (increase diameter)
- Larger diameter \rightarrow larger room (costs)

Also possible: Combination of 1 sweeper upstream 1 sweeper downstream

Organ / tumor motion **Possible solutions:**

Gating

Organ motion

partrec

1/31/2024

Inspiratory Respiration Signal Expiratory Extracted Beam

Adaptive scanning

(tumor tracking)

Fast rescanning •

Beam optics properties

partrec

Magnetic fields

Lorenz force = "centripetal force" mv^2/ρ \Rightarrow track = circular orbit with radius ρ

energy *E* and charge *q* determine magnetic rigidity $B\rho$: magnet strength *B* to bend with radius ρ $B\rho$ [in Tm] = p/e = 3.3356 p [in GeV] 250 MeV p: $B\rho$ = 2.4 Tm 450 MeV/nucl C⁶⁺: $B\rho$ = 6.8 Tm

Chromaticity and dispersion suppression

Optimal gantry beam line design Sweeper **Coupling point** Rotational symmetrical phase space **Fixed collimator Beam optics** ransversa Imaging from coupling point to iso-center UUU^{ULI} $(R_{12} = R_{34} = 0)$ Ш Achromatic beam optics $(R_{16} = R_{36} = 0)$

Dispersive

 Point-to-parallel setting from scanning magnets to iso-center (R₂₂ = R₄₄ = 0)

Purple: Beam envelopes trough Gantry 2 Green: Action of the sweepers Red: Dispersion trajectory for a 1% momentum band

1/31/2024

partrec

ΠΠ

ΠΠ

38

Matching asymmetric phase-space

Summary

- Proton therapy makes use of the Bragg peak
- In most facilities the beam is accelerated in a cyclotron and the energy is reduced by a degrader
- The target can be
 - irradiated by a scattered beam or
 - scanned by a pensil beam with sweeper magnets
 - Upstream or
 - Downstream of the final bend
- Neccessary properties of the gantry beam optics:
 - Rotational symmetrical phase space at coupling point and iso-center
 - Imaging between coupling point and iso-center
 - Achromaticity

Many thanks for the slides to D. Meer from PSI and M. Schippers from PARTREC

Dartrec 31-Jan-24