

CERN Beamlines for Fixed Target Experiments

Prof. Alexander Gerbershagen

Head of PARTREC UMCG, Groningen, Netherlands a.gerbershagen@umcg.nl

university of
groningen

University Medical Center Groningen

Overview

- Introduction: Purpose and users
- Targets and particle production
- Design of secondary/tertiary beamlines
- **Experiments at CFRN**

Introduction

Fixed Target (FT) setup

- Higher event rates
- Easier installation, access
- Less space restrictions
- Large momentum range
- Flexible particle types

But only fraction of beam energy available for physics:

 $E_{CM} \approx \sqrt{(2 \text{ m}_0 \text{ E}_{beam})}$

Collider

- All beam energy available for producing new particles/physics
- $E_{CM} \approx 2 E_{beam}$

Physics at FT and collider are both useful and needed

Purpose and Users

Secondary Beam Areas (SBA) are hosting:

- **FT experiments**: COMPASS,NA61, NA62, NA63, NA64, CLOUD, …
	- Precision studies (QCD, standard model, BSM physics)
	- Stable beam conditions for weeks and weeks
- **Radiation facilities**: HiRadMat, Charm, Irrad, GIF++
- **Test beams:**
	- Detector prototype tests
	- Detector calibration

e.g. for LHC, linear colliders, space & balloon experiments

- Outreach
- Usually require a large spectrum of beam conditions within few days

Targets and particle production

- Principle taken from cosmic radiation
	- Primary proton beam initiating hadronic cascade
	- Always followed by an electro-magnetic cascade

Targets and particle production

- Principle taken from cosmic radiation
- Particles are produced in a large momentum range

Target length and production rates

- Beryllium has
	- radiation length $X_0 = 35.3$ cm,
	- nuclear interaction length $\lambda_1 = 42.1$ cm, \Rightarrow high X_0/λ _I ratio
	- low density (1.848 g/cm^3)
	- high melting point (1560 K)
- The e/π ratio increases approx. linearly with the target length
- Hadrons

- are produced via $p + N \rightarrow$ hadron (rate $\sim L$)
- reabsorbed (rate $\sim e^{-L}$)
- => Overall rate ∼ Le^{-∟} (maximum at L≈ λ_ι)
- Electrons are mainly produced via
	- $p + N \rightarrow \pi^0 \rightarrow V V$ (rate $\sim L$)
	- γ converts to $e^+ + e^-$ (rate also \sim L)
	- reabsorbed (rate $\sim e^{-L}$)
	- => Overall rate ∼ L² e^{-∟} (maximum at L ≈ 2λ_l)

Targets and hadron production

Atherton parameterisation (CERN 80-07):

Targets and particle production

Beamlines

- Experiments and test beams require "clean" beams with high purity (one particle type) and small momentum spread
- Beam lines design ("optics")
	- 1. Collect produced particles from target
	- 2. Select momentum
	- 3. Select particle type
	- 4. Transport beam to experiment
	- 5. Select transverse beam parameters for experiment

NA beamline design considerations

- NA beams were originally (end of 1970's) designed for the fixed target experiments. Design considerations were
	- Muon range (absorb underground)
	- Charged pion lifetime
	- Momentum selection (2⋅10⁻⁴)

Dipoles

Basic beam design

• Transport and momentum (*p*) selection: bending magnets

Dipole electro-magnets:

Momentum selection

Basic beam design

- momentum selection in the vertical plane
- two sets of bending magnets
	- Upstream BENDs
		- Between the primary target and the momentum slit
		- Vertical focus of monochromatic beam at the momentum slit
	- Downstream BENDs

partrec

B3

B4

Collimator (C9)

H₈

Secondary beamlines - collimators

- TAX (Target attenuator)
	- Define initial acceptance of the beam line

- Acceptance collimators
- Cleaning collimators

Cleaning collimator **Acceptance** collimator

Secondary beamlines – muon scrapers

SCRAPERS (Magnetic Collimators)

Secondary beamlines – muon sweepers

Secondary beamlines - intensities

Basic beam design

• Selection of particle types

• Intensities

Selection of particle type - Converter

Selection of particle type - Synch. rad.

• Synchrotron radiation

(for one full revolution)

$$
P_s = \frac{e^2 c}{6\pi \varepsilon_0 (m_0 c^2)^4} \frac{E^4}{\rho^2}
$$

- E.g. e^{\pm} at 200 GeV lose in 1° bending magnet of 1 T field 590 MeV
	- = > With beamline momentum acceptance of $\Delta p / p < 0.3$ % it is possible to separate them from (heavier) hadrons and muons. So set up the following bends either
		- at the constant energy to select heavier particles or
		- scale it with energy loss of electrons.

Works only for $p_e > 120-150$ GeV/c

Selection of particle type - Absorber

20

Selection of particle type - Radiator

Beams from PS

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron AD Antiproton Decelerator CTF3 Clic Test Facility AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine REX/HIE Radioactive EXperiment/High Intensity and Energy ISOLDE LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

partrec

2/14/2024 A. Gerbershagen, Beamlines for Fixed Target Experiments 22

East Area

Area under renovation

After LS2

- Secondary beams:
	- Momentum < 15 GeV/c
	- **▶ Irradiation facilities CHARM and IRRAD**
	- \triangleright Test beamlines T9 and T10
	- **Fill beamline for CLOUD experiment**
	- Horizontal momentum selection
- Particle types and intensity
	- Pure electrons, hadrons, muons
	- Max. $~5.10^6$ particles per spill
- Spill structure from PS
	- 400ms spill length
	- Typically 1 spill every 18s (15bp), more on request
- Quick access from control room to experimental area (< 1 minute)
- Short cables

IRRAD

23

The CLOUD Experiment in T11 Beam

The Beam Line for CLOUD

Beams from SPS

partrec

AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine REX/HIE Radioactive EXperiment/High Intensity and Energy ISOLDE LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

2/14/2024 A. Gerbershagen, Beamlines for Fixed Target Experiments 26

North Area beamlines - schematic

EHN2: COMPASS

THE M2 MUON BEAM

FOR COMPASS / NA58

Muons from pion decay

•Pion decay in π center of mass:

$$
p^* = \frac{m_{\pi}^2 - m_{\mu}^2}{2 m_{\pi}} = 30 \text{ MeV/c}
$$

$$
E^* = \frac{m_{\pi}^2 + m_{\mu}^2}{2 m_{\pi}} = 110 \text{ MeV}
$$

 $0.57 < E_{\text{n}}/E_{\pi} < 1$

• Boost to laboratory frame:

 $E_{\mu} = \gamma_{\pi} (E^* + \beta_{\pi} p^* \cos \theta^*)$ with $\beta_{\pi} \approx 1$

• Limiting cases: $\cos \theta = +1 \rightarrow E_{\text{max}} = 1.0 E_{\pi}$

$$
\cos \theta = -1 \rightarrow E_{\text{min}} = 0.57 E_{\pi}
$$

Momentum acceptance of FODO cells

Phase advance for M2 beam

Muon Polarisation

Historical Note - Kaon beam for NA48

partrec

35

Other experiments with fixed-target beams

partrec

2/14/2024

A. Gerbershagen, Beamlines for Fixed Target Experiments 36

Summary

- Many physics experiments can be performed (only) with fixed targets
- CERN has a rich fixed target complex
	- Beams from PSB, PS or SPS
		- Momenta : <1.4 GeV/c, <15 GeV/c, <400 GeV/c
	- Capable to provide:
		- Protons, electrons, hadrons, pions, tagged kaons, muons, tagged photons
	- Beamlines designed for high flexibility in:
		- Particle type, beam size, divergence, momentum, intensity, polarization etc.

