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Goals of this course

» Introduction to beam-beam interaction.
» This is a complex topic and we will cover a small part.
» Mostly related to induced tune shift.

» Introduce some concepts to compensate beam-beam effects.
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Beam-beam effects

When two beams collide, protons may collide or not:
> Wanted Physics
» Un-wanted Physics
In real colliders:
» Only a small fraction of the particles contained in the bunch collide.

» But the rest feel the EM interaction of the opposite beam.
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Luminosity and crossing angle

The interaction will depend on the beam parameters and the geometry of the collision:
> Beam size.

» Collision angle.

This will affect luminosity:
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Crossing angle

In pp colliders, to avoid parasitic collisions, we need to introduce a crossing angle.
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Now, the overlapping between bunches is not optimal. There are methods to mitigate
this effect.
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Beam-Beam force

The electrostatic field are obtained by integrating over the charge distribution.

Gaussian distribution

Electrostatic potential
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where n is the density of particles in the beam, e the elementary charge and ¢g the
permitivity of empty space.
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Beam-Beam force and tune shift
The field E is obtained by taking the gradient of the potential:

E: _VU(X’y)O-Xao-y)

Assuming round beams (o = 0, = o) the Lorentz force F=q(E+ V x

—

F =q(E + BcBy) x 1
From the electrostatic potential in Eq. (3), we can write the fields, as,
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Beam-Beam force

From Eq. (6) and Eq. (7) we can finally obtain the radial force,
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where, in cartesian coordinates, takes the form,
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Beam-Beam force
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Beam-Beam parameter
When small amplitudes are considered, we can derive the linear tune shift produced by

beam-beam interaction.
Kick received from the opposite beam:

1 o0
Ar' = o / F(r,s,t)dt (11)
2Nrp 1 r?
Ar = — o [1 — exp <_2a2>] (12)

where rg = €2 /4megmc?.

for small amplitudes, the asymptotic limit:
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Beam-Beam parameter

We already know how the focal length relates to a tune change.
Linear tune shift &:
NrO/B;,y

2my0oxy(0x + 0y)

Exy = (14)

This expression is often used to quantify the strength of the interaction. However, it
does not include the non-linear part of the interaction.

Tune shift

For small values of £ and a tune far away from resonances:

Ex~AQ (15)
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Non-linear effects

When we take the non-linear part of the beam-beam interaction:
> Amplitude-dependent tune shift.

» Tune spread. Tune footprint for head-on collision
0.31 — —
Detuning with amplitude o
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Beam stability

When the beam-beam interaction becomes too strong, the beam can become unstable
or the dynamics is strongly affected.

» Dynamic aperture reduction, particle loss and lifetime reduction.
» Beam optics distortion.
» Vertical blow-up.
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Beam-beam limit

Regular operation High-current operation

> Luminosity: £ ~ N2. » Luminostiy: £ ~ N.

> Beam-beam: ¢ ~ N » Beam-beam: { ~ constant
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Weak-Strong and Strong-Strong interaction

Sometimes beam-beam effects are classified into different categories depending on the
nature of the two colliding beams.

» Strong-Strong: both high-intensity beams are equally affected.
» LHC, LEP, RHIC.

» Weak-Strong: Asymmetric beams. Only one of the beams is really affected.
> Tevatron, SPS.
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Pinch effect in eTe™ colliders

Due to the opposite charge of the beams, there exists an extra focusing (pinch effect).

z, micron

This may increase luminosity up to a factor 2 (ILC, CLIC).
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Long range interactions

» Symmetry breaking between planes.

» Mostly affect large-amplitude particles.

» Tune shift has opposite sign in the
plane of separation compared to
head-on tune shift.

» They cause changes in the closed orbit.
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Strength of LR interactions

Assuming a separation d in the horizontal
plane:
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Long range interactions
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Figure: Tune footprint for two head-on interactions, LR in the H and V planes (left). Combined
head-on and long-range interactions (right).
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Beam-beam compensation
When the beam-beam effects limit the performance of the collider, several schemes are
proposed to compensate the detrimental effects.

Build a non-linear lens to counteract the distortion from the
non-linear beam-beam lens

» Head-on effects:

» Electron lenses.

» Linear lens to shift tunes.

20
» Non-linear lens to decrease tune
spread.

» Long-range effects:
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> At large distances, beam-beam force
~1/r.

» Same force as a wire.
» Crab cavities.
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Electron lens

A proton beam travels through a counter-rotating high-current electron beam.

negative space charge reduces the effect from beam-beam interaction.

Superconducting magnet

Solenoid GSB Solenoid CSB

Solenoid GS2 Solenoid CS2

Solenoid GS1 Solenoid CS1

Electron gun

Figure: RHIC electron lens for beam-beam compensation.

The
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Electrostatic Wire

To compensate the tune spread from
long-range interactions a non-linear lens is
required. Since, for large amplitude, the
beam-beam force goes like 1/r an
electrostatic wire located parallel to the
beam.
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Crab cavities

We can increase the crossing angle so long-range interaction becomes larger.
Crab cavity
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Summary

» Beam-beam interaction limits the performance of particle colliders.
» The linear effect is expressed in terms of the beam-beam parameters, £.

» There are some techniques to compensate its effects.
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Thank you!
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