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Electric force

– A kid sliding on a plastic surface
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• Common life examples



Electric force

• Common life examples

– Polystyrene on a cat
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Electric force

• The force that 

– repels the hairs

– attracts polystyrene to the cat’s fur

is due to electric charge

• If electric charges are at rest then we call it

electrostatic force
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Coulomb law

• Electrostatic force between point-like objects is

– Proportional to electric charge of 
each of the two interacting objects
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𝐹𝐸 = 𝐾 ⋅
𝒒𝟏 ⋅ 𝒒𝟐
𝑟2



Coulomb law

• Electrostatic force between point-like objects is

– Proportional to electric charge of 
each of the two interacting objects

– Inversely proportional to square of the distance

7

𝐹𝐸 = 𝐾 ⋅
𝑞1 ⋅ 𝑞2
𝒓𝟐



Coulomb law

• Electrostatic force between point-like objects is

– Proportional to electric charge of 
each of the two interacting objects

– Inversely proportional to square of the distance

– Proportional to Coulomb constant K
• Which depends on medium type (vacuum, air, water)
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2



Distance

• Electrostatic force between point-like objects is

– Inversely proportional to square of the distance

– If we increase the distance 2x then the force is 4x smaller

– If we increase the distance 10x then the force is 100x smaller
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2



Electric charge

• Electrostatic force between point-like objects is

– Proportional to electric charge of 
each interacting objects

– It means that if one of the objects has 2x more charge
then the force is 2x stronger
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𝐹𝐸 = 𝐾 ⋅
𝒒𝟏 ⋅ 𝒒𝟐
𝑟2



Electric charge

• Electric charge can be negative or positive

• If charge of both objects is the same then
the force is repelling
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2



Electric charge

• Electric charge can be negative or positive

• If charge of both objects is opposite then
the force is attracting
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𝐹𝐸 = 𝐾 ⋅ −
𝒒𝟏 ⋅ 𝒒𝟐
𝑟2



What is electric charge?

• It is a fundamental property of 
some elementary particles

• It has unit of Coulomb [C]
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What is electric charge?

• Charge can be negative, for example for electron,
or positive, for example for proton

• Electron charge, e = -1.602∙10-19 C, 
is exactly opposite of proton charge

– Why? Because proton can decay to 
positron, i.e. anti-electron, plus neutral stuff
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Electric charge

• All free particles have charge that is multiple of e

• Quarks have charge of 2/3 or -1/3 of e

– But they are bound to exist only in triplets 
such that the total charge is 0, e, 2e

– N.B. beta decay is in fact 
a decay of up quark to down quark 
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Electrostatic force

• The force acts in direction of the 2 objects

• In vector notation the equation is written  
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𝐹𝐸 = 𝐾 ⋅
𝑞1 ⋅ 𝑞2
𝒓𝟐

𝐹𝐸 = 𝐾 ⋅
𝑞1 ⋅ 𝑞2 ⋅ Ԧ𝑟

𝒓 𝟑



Multibody interaction

• If there is more than 2 charges interacting then 
we can calculate force of each pair
and add the resulting forces as vectors:
principle of superposition
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Electric field
• It is much easier to do multibody calculations 

if we introduce electric field

• To every point in space we assign a vector

• It corresponds to force that the charged object creating 
the field would exert on a 1 Coulomb point like charge
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Electric field of a 
positively charged sphere
e.g., a proton

𝐸 = 𝐾 ⋅
𝑞

𝒓 𝟑
Ԧ𝑟

𝐸 = 𝐾 ⋅
𝑞

𝑟2



Electric field
• It is much easier to do multibody calculations 

if we introduce electric field

• To every point in space we assign a vector

• It corresponds to force that the charged object creating 
the field would exert on a 1 Coulomb point like charge
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Electric field of a 
negatively charged sphere
e.g., an electron

𝐸 = −𝐾 ⋅
𝑞

𝒓 𝟑
Ԧ𝑟

𝐸 = −𝐾 ⋅
𝑞

𝑟2



Superposition of electric fields

• The fields can be simply added

• Having electric field 𝐸 we can calculate force Ԧ𝐹 = 𝑞𝐸
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Electric fields

• Field of an electric dipole
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Electric fields

• Field of an electric quadrupole
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Electric fields

• Field between charged plates
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Electrostatic forces and object shapes

• The electric field distribution depends on the shape 
of the charged objects

• The same way the electrostatic force between arbitrary 
objects depends on their shape
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Influence of medium

• The force changes depending on the medium 
that the objects are immersed in

– Why? Electric charge stays the same …

– Because the medium is made of charged particles
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2



Influence of medium

• In metals electrons can freely move within volume
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2
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Influence of medium

• In metals electrons can freely move within volume

• External charge exerts force on the electrons and protons
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2
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Influence of medium

• In metals electrons can freely move within volume

• External charge exerts force on the electrons and protons

– Electrons are attracted towards a positive charge and 
are repelled from a negative one

– Their displacement creates uneven distribution within the volume
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2
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Influence of medium

• In metals electrons can freely move within volume

• External charge exerts force on the electrons and protons

– Electrons are attracted towards a positive charge and 
are repelled from a negative one

– Their displacement creates uneven distribution within the volume

– The resulting electric field is exactly opposite 
to the one of the external charge
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2
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Influence of medium

• In metals electrons can freely move within volume

• External charge exerts force on the electrons and protons

– Electrons are attracted towards positive charge and 
are repelled from a negative one

– Their displacement creates uneven distribution within the volume

– The resulting electric field is exactly opposite 
to the one of the external charge

– The electron motion 
continues until 
there is no electric 
field in the volume
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2
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Influence of medium
• In metals electrons can freely move within volume

→ Electric fields cannot penetrate metallic volumes
→ Field lines are perpendicular to metallic surfaces
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2



Influence of medium

• In non-metallic materials electrons cannot freely move

• Still upon external electric field electrons displace within 
their molecules and the material becomes polarized

• Induced electric field reduces the external field 
by the amount that depends on 
how much the electrons can displace
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2
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Influence of medium

• Coulomb constant depends on the medium

• For vacuum 𝐾 =
1

4𝜋𝜀0
= 9 ⋅ 109

𝐶

𝑁⋅𝑚

– where 𝜀0 is the vacuum permittivity

• For dielectrics 𝐾 =
1

4𝜋𝜀
, where 𝜀 is 

the material permittivity

• 𝜀 = 𝜀𝑟𝜀0 = 1 + 𝜒 𝜀0, where

– 𝜀𝑟 is the relative permittivity of the material

– 𝜒 is susceptibility of the material
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2



Influence of medium

• The material permittivity 𝜀 = 𝜀𝑟𝜀0 = 1 + 𝜒 𝜀0, where

– 𝜀𝑟 is the relative permittivity of the material

– 𝜒 is the susceptibility of the material

• Material permittivity in general depends on many factors

– Temperature, pressure, if external electric field is time varying 
then on its frequency, …

– One needs to take into account multiple phenomena to 
calculate correctly the electric field in dielectric
• Sound waves, heat waves, ….
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𝐹𝐸 = 𝑲 ⋅
𝑞1 ⋅ 𝑞2
𝑟2



Gauss Law
Field flux Φ𝐸 out of an arbitrary closed surface 
is proportional to the charge enclosed by the surface
irrespective of how that charge is distributed

35

+

Φ𝐸 =
𝑞

𝜀0

∯𝑆𝐸 ⋅ 𝑑 Ԧ𝑆 =
𝑞

𝜀0

or



Gauss Law
Field flux Φ𝐸 out of an arbitrary closed surface 
is proportional to the charge enclosed by the surface
irrespective of how that charge is distributed
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How much field 𝑬 crosses area 𝑺

S is a vector sticking out of a surface.
The vector length is the area of the surface

𝑺

𝑬𝜃

For and infinitesimally small area 
we get a differential equation

Φ𝐸 = ∯𝑆𝐸 ⋅ 𝑑 Ԧ𝑆

𝑑Φ𝐸 = 𝐸 ⋅ 𝑑 Ԧ𝑆



Gauss Law
Field flux out of an arbitrary closed surface 
is proportional to the charge enclosed by the surface
irrespective of how that charge is distributed
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+
∯𝑆𝐸 ⋅ 𝑑 Ԧ𝑆 =

𝑞

𝜀0



Gauss Law
Field flux out of an arbitrary closed surface 
is proportional to the charge enclosed by the surface
irrespective of how that charge is distributed

38

+

Only electric charges 
can create field lines

∯𝑆𝐸 ⋅ 𝑑 Ԧ𝑆 =
𝑞

𝜀0



Gauss Law
If there is no charge inside the volume, then 
the total flux is zero, because the same amount of field 
enters the volume as it leaves it

39

+



Gauss Law

Field flux out of an arbitrary closed surface 
is proportional to the charge enclosed by the surface
irrespective of how that charge is distributed
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+

• Gauss Law has another form using divergence operator 

∇ ⋅ 𝐸 =
𝜕𝐸𝑥
𝜕𝑥

+
𝜕𝐸𝑦

𝜕𝑦
+
𝜕𝐸𝑧
𝜕𝑧

=
𝜌

𝜀0
– Where 𝜌 is the volume charge density

• Divergence tells how much field is created at a given point

• Only electric charges can 
create electric field lines ∯𝑆𝐸 ⋅ 𝑑 Ԧ𝑆 =

𝑞

𝜀0



Electrostatic potential energy 

• If we let the charges move upon electrostatic force, 
then they start accelerating → they gain kinetic energy
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Electrostatic potential energy 

• If we want to separate opposite sign charges, 
then we need to put work into it
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Electrostatic potential energy 

• Work needed to bring 2 point-like charges to a distance r

43

𝑊 = න
∞

𝑟

Ԧ𝐹 ⋅ 𝑑 Ԧ𝑟 = 𝑞1න
∞

𝑟

𝐸 ⋅ 𝑑 Ԧ𝑟 = 𝐾𝑞1𝑞2න
∞

𝑟 𝑑𝑟

𝑟2
= 𝐾𝑞1 𝑞2

1

𝑟



Electrostatic potential energy 

• If we let the charges move upon electrostatic force, 
then  they start accelerating → they gain kinetic energy

• If we want to separate opposite sign charges, 
then we need to put work into it

• Electric field has potential energy

– For example, potential energy of 2 point-like charges of 1 C 
brought together to a distance of 1 cm is 

𝑈𝐸 =
1

4𝜋𝜀0
⋅
𝑞1 ⋅ 𝑞2
𝑟

= 9 ⋅ 109 ⋅
1 ⋅ 1

0.01
= 9 ⋅ 1011 𝐽

44



Electrostatic potential energy 

• Potential energy of electric field

– For example, potential energy of 2 point-like charges of +1 C 
brought together at distance of 1cm is 

𝑈𝐸 =
1

4𝜋𝜀0
⋅
𝑞1 ⋅ 𝑞2
𝑟

= 9 ⋅ 109 ⋅
1 ⋅ 1

0.01
= 9 ⋅ 107 𝐽

– If one of the charges has mass of 1 kg and we let it go, 
then all the potential energy will be converted to kinetic energy

𝑈𝐸 = 𝐸𝐾 =
𝑚𝑣2

2
⇒

𝑣 = 2𝑈𝐸/𝑚 = 1′341.6 Τ𝑘𝑚 𝑠 = 4′829′907 Τ𝑘𝑚 ℎ

– 1 Coulomb it is a lot of charge!
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Electric potential

• Potential energy per 1 Coulomb is called potential

𝑉 =
𝑈𝐸
𝑞

• It corresponds to the energy needed to 
bring 1 C charge from infinity to a given point

• Unit is called Volt [V]

• For point-like charges 

𝑉 = 𝐾
𝑞

𝑟
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Electric potential

• Usually, it is much easier to solve equations using 
potentials than using fields and forces

– Potential is a scalar, single value at each point in space

– Field is a vector, it has 3 values for each point in space, 
so normally 3 equations are needed

– Field can be easily obtained from potential, namely,
field is equal to gradient of potential:

𝐸 = 𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧 =
𝜕𝑉

𝜕𝑥
,
𝜕𝑉

𝜕𝑦
,
𝜕𝑉

𝜕𝑧
= ∇V
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Field and potential

𝐸 = (
𝜕𝑉

𝜕𝑥
,
𝜕𝑉

𝜕𝑦
,
𝜕𝑉

𝜕𝑧
)

• Thin lines = equipotential lines

• Thick lines = electric field lines

• Electric field lines are 
always perpendicular to 
equipotential lines
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Capacitance

• It’s the ratio between 
charge and produced voltage

𝐶 =
𝑞

𝑉

• Unit is Farad [F]
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MAGNETISM

50



Magnetic Force

• Real life examples

– Compass

– Magnets

– Attracted pair of wires
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𝐼1

𝐼2Ԧ𝐹 Ԧ𝐹



Electric current
• Magnetic force is due to moving electric charges

• Flow of charges is called electric current 

𝐼 =
𝑑𝑞

𝑑𝑡
• It measures how much charge 

flows through a surface 
in a unit of time

• Unit is Ampere [A]
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Electric current
• Positive current when

– Positive charge moves towards positive direction

– Negative charge moves towards negative direction 
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Magnetic Force

• Magnetic force occurs only when 
both charges are moving
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𝐼1

𝐼2Ԧ𝐹 Ԧ𝐹

𝐼1

𝑞

Ԧ𝐹

+

Ԧ𝑣



Magnetic Force charge and wire

• Only velocity component in plane with the wire and 
charge is important

Ԧ𝐹 =
𝜇0
2𝜋𝑟

𝑞 Ԧ𝑣∥ 𝐼1

• If current and charge are positive, then
the force is always towards the wire

• As closer to the wire as 
stronger the force

• Is proportional to charge and current

• 𝜇0 is the magnetic vacuum permeability (physical const.)

𝐼1

𝐼2
Ԧ𝐹

+

Ԧ𝑣

Ԧ𝑣∥ Ԧ𝑣⊥
𝛼



Magnetic Field

• The force is the same for the same r: Ԧ𝐹 =
𝜇0

2𝜋𝑟
𝑞 Ԧ𝑣∥𝐼1

• Field of magnetic force creates circles around the wire

• Strength of magnetic field from a wire is 𝐵 =
𝜇0

2𝜋𝑟
𝐼1

𝐼1

𝑞

Ԧ𝐹

+

Ԧ𝑣

Ԧ𝑣∥

Ԧ𝑣⊥
𝛼



Direction of magnetic field

• For positive current direction of magnetic field is 
determined with rule of right hand
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Magnetic Force
• Equation for force from magnetic field

Ԧ𝐹 = 𝑞 ⋅ Ԧ𝑣 × 𝐵

• Direction of force determined with
rule of right hand

– Index finger: direction of v

– Middle finger: direction of B

– Thumb gives direction of force

𝐵

𝐼1

𝑞

Ԧ𝐹

+

Ԧ𝑣

Ԧ𝑣∥
Ԧ𝑣⊥

𝛼

 

 

    



Magnetic Force
• Equation for force from magnetic field

Ԧ𝐹 = 𝑞 ⋅ Ԧ𝑣 × 𝐵

• Direction of force determined with 
rule of right hand

– Index finger: direction of I

– Middle finger: direction of B

– Thumb gives direction of force



ELECTROMAGNETISM
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Electromagnetism

• Magnetic force is electrostatic force 
transformed by relativistic motion of charges
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Electromagnetism
• Magnetic force is electrostatic force 

transformed by relativistic motion of charges
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• Let’s take a cable with flowing electric current

– Positive current to the right

– Electrons are flowing to the left

• The cable is electrically neutral

• Atoms of the metal are at rest
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Electromagnetism
• Magnetic force is electrostatic force 

transformed by relativistic motion of charges
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• A test negative charge moves along the cable to the left

• Magnetic force attracts the test charge to the cable
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Electromagnetism
• Magnetic force is electrostatic force 

transformed by relativistic motion of charges
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• Lets move to the rest frame of the test charge

• The test charge now is at rest

• Electrons in the cable are almost at rest (𝑣𝑡 ≃ 𝑣𝑒𝑐)

• Cable atoms move to the right with −𝑣𝑡
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𝑣𝑡 = 0
𝑣𝑐𝑎𝑏𝑙𝑒 ≫ 0



Electromagnetism
• Magnetic force is electrostatic force 

transformed by relativistic motion of charges

65

• Due to relativistic Lorentz contraction the cable gets shorter

• Distance between atoms (positive charges) gets smaller

• Density of positive charges gets larger

+ +
+

+
+ +

+
+

+
+

+ +
+

+
+ +

+
+

+
+

+ +
+

+
+ +

+
+

+
+

𝐼𝑣𝑒𝑐 ≃ 0

𝑣𝑡 = 0
𝑣𝑐𝑎𝑏𝑙𝑒 ≫ 0



Electromagnetism
• Magnetic force is electrostatic force 

transformed by relativistic motion of charges

66

• Density of positive charges gets larger

• Density of electrons gets smaller

• Therefore, the cable is positively charged 
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Electromagnetism
• Magnetic force is electrostatic force 

transformed by relativistic motion of charges
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• Cable is positively charged 

• Electrostatic force attracts the test charge to the cable

𝐹𝑒𝑙𝑒𝑐𝑡𝑟
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Electromagnetism
• Magnetic force is electrostatic force 

transformed by relativistic motion of charges
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• Magnetic force when cable is at rest is the same as 
electric force when test charge is at rest

• With reference frame change 
one field changes to another one
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Electromagnetism

69

• With reference frame change 
one field changes to another one

• Only transverse components change

• Electric field gets weaker with speed

• Magnetic field gets stronger

• The reason we use magnetic fields
at high particle energies

   

  

  

  

   

   

   

     

   

   

  

  

  

   

   

   

  

  

  

  

   

   

   

  

        



Force strength comparison

• As an example, let’s compare “easily achievable” 
electric and magnetic fields

– Electric: 1 MV/m (10 MV voltage over 10 cm gap)

– Magnetic: 1 T

𝐹𝑚𝑎𝑔𝑛

𝐹𝑒𝑙𝑒𝑐
=

𝑞𝑣𝐵

𝑞𝐸
=

𝑐𝛽𝑟𝑒𝑙𝐵

𝐸
=

𝑐𝛽𝑟𝑒𝑙𝐵

𝐸
=𝛽𝑟𝑒𝑙

3⋅108⋅1

106
= 300 ⋅ 𝛽𝑟𝑒𝑙

• If 𝛽𝑟𝑒𝑙 is smaller than 1/300 
then the electric force is stronger

– At CERN only behind the particle sources and in ELENA
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LORENTZ FORCE
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Lorentz force

• The electromagnetic force is called Lorentz force 

Ԧ𝐹 = 𝑞 ⋅ 𝐸 + Ԧ𝑣 × 𝐵

• It is the sum of forces due to 
electric and magnetic fields
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AMPERE’S LAW
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Ampere’s law
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The field integrated around any closed loop 
is proportional to the current enclosed by the loop
irrespective of how that current is distributed

∮𝐶𝐵 ⋅ 𝑑Ԧ𝑙 = 𝜇0𝐼
𝐵

𝐼

Magnetostatic case!
When fields are time-varying 
additional term needs to be 
added on R.H.S.



Magnetic coil
• Ampere’s law allows to calculate magnetic fields 

from given distribution of electric currents

– Or shapes of the wire

• For example, of a 

– Loop

– Solenoid coil
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Solenoid coil
• Selecting contour like the orange box: 

only the line inside solenoid counts and 
it has constant B field 

N: number of windings
76

∮𝐶𝐵 ⋅ 𝑑Ԧ𝑙 = 𝜇0𝐼



A loop with current

• In many problems it is conceptually useful to split a 
source of magnetic field into very small loops with current

• 𝐼𝑎𝑏 or 𝐼 Ԧ𝐴 is called magnetic dipole moment vector
or simply magnetic moment Ԧ𝜇
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a

b
I

x

y
z

𝐵𝑥 =
𝐼𝑎𝑏

4𝜋𝜀0𝑐
2

3𝑥𝑧

𝑅5

𝐵𝑦 =
𝐼𝑎𝑏

4𝜋𝜀0𝑐
2

3𝑦𝑧

𝑅5

𝐵𝑥 =
𝐼𝑎𝑏

4𝜋𝜀0𝑐
2 (

1

𝑅3
−
3𝑧2

𝑅5
)



Forces acting on loop with current

• Put a loop with current in uniform magnetic field and 
it will rotate such that m is in direction of the field

• Torque Ԧ𝜏 = Ԧ𝜇 × 𝐵

• Energy U = − Ԧ𝜇 ⋅ 𝐵
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I

Ԧ𝜇

x

yz

Ԧ𝐹

𝐵

𝐵

Ԧ𝐹



Magnetic moments 
of particles and atoms

• Charged elementary particles have magnetic moments

• They act like very small loops with current

• One can think of it as charge rotating due to spin

• Usually, magnetic moments are distributed randomly

• But some materials can have moments of their atoms 
aligned: they are magnets
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Magnets

• Magnetic materials can have their moments aligned,
they can be magnetized by external magnetic field

• Magnetization can stay forever: permanent magnets

• Or only when external field is present: electromagnets

80

Ferrimagnetic
Ferromagnetic



MAGNETIC INDUCTION
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Magnetic Induction
•Real life examples:

– Electric generator

• Voltage out of rotating magnet
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Induction
• Change of magnetic field induces electric field

• Change of electric field induces magnetic field

83



Faraday law

• Change of magnetic field induces electric field

– When magnet is inserted into the loop then 𝐵 is increasing and
electric field is induced along the wire loop

– Electric field pushes electrons in the wire
and generates induced current

– Induced current creates magnetic field 𝐵𝑖𝑛𝑑𝑢𝑐𝑒𝑑
such that it is against the external field 𝐵
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Faraday law

• Electromotive force around a closed loop C is opposite to 
change of magnetic field flux in time

• Unit is Volt [V]

• The sign of B field is not important

• But what is important it is 
if B field is increasing or 
if it is decreasing in time

85

𝜀𝑒𝑙𝑒𝑐𝑟𝑜𝑚𝑜𝑡𝑖𝑣𝑒 = ∮𝐶𝐸 ⋅ 𝑑Ԧ𝑙 = −
𝑑Φ𝐵

𝑑𝑡 Φ𝐵 = ∯𝑆𝐵 ⋅ 𝑑 Ԧ𝑆



Maxwell's addition to Ampere's law

• Magnetic Field integrated around any closed loop 
is proportional to the current enclosed by the loop
plus change of electric field flux in time
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∮𝐶𝐵 ⋅ 𝑑Ԧ𝑙 = 𝜇0𝐼 + 𝜇0𝜀0
𝑑Φ𝐸

𝑑𝑡

Φ𝐸 = ∯𝑆𝐸 ⋅ 𝑑 Ԧ𝑆



MAXWELL EQUATIONS
Putting it all together
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Maxwell equations
1. Gauss law for electric field

- Electric charge is the source of electric field 

2. Gauss law for magnetic field
- Magnetic field has no source, there is no “magnetic charges”

3. Faraday law
- Electric field around a loop  (electromotive force) is 

opposite to change of magnetic field flux through the loop

4. Ampere law
- Magnetic field around a loop is equal to 

electric current plus change of electric field flux through the loop

88



Maxwell equations

• Integral form
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∯𝑆𝐸 ⋅ 𝑑 Ԧ𝑆 =
𝑞

𝜀0

∯𝑆𝐵 ⋅ 𝑑 Ԧ𝑆 = 0

∮𝐶𝐸 ⋅ 𝑑Ԧ𝑙 = −∯𝑆

𝜕𝐵

𝜕𝑡
⋅ 𝑑 Ԧ𝑆

∮𝐶𝐵 ⋅ 𝑑Ԧ𝑙 = 𝜇0𝐼 + 𝜇0𝜀0∯𝑆

𝜕𝐸

𝜕𝑡
⋅ 𝑑 Ԧ𝑆



Curl
• Curl is, by definition, line integral around 

infinitesimally small closed loop

• It measures how much the field is curling, or circulating
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Maxwell equations
• Differential form
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∇ ⋅ 𝐸 =
𝜌

𝜀0
∇ ⋅ 𝐵 = 0

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐵 = 𝜇0 Ԧ𝐽 + 𝜇0𝜀0
𝜕𝐸

𝜕𝑡

• Integral form

∯𝑆𝐸 ⋅ 𝑑 Ԧ𝑆 =
𝑞

𝜀0
∯𝑆𝐵 ⋅ 𝑑 Ԧ𝑆 = 0

∮𝐶𝐸 ⋅ 𝑑Ԧ𝑙 = −∯𝑆

𝜕𝐵

𝜕𝑡
⋅ 𝑑 Ԧ𝑆

∮𝐶𝐵 ⋅ 𝑑Ԧ𝑙 = 𝜇0𝐼 + 𝜇0𝜀0∯𝑆

𝜕𝐸

𝜕𝑡
⋅ 𝑑 Ԧ𝑆



ELECTROMAGNETIC WAVES
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How the fields propagate ?

• Solve Maxwell equations for different 
situations and conditions 
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EM field propagation in vacuum:
Wave equations

• Derivations in Appendix 

• These are vector equations

– Vectors have direction
• We can always choose a reference frame

we chose it so the wave moves along x axis

– This allows to reduce them to a scalar equation
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∇2𝐵 = 𝜇0𝜀0
𝜕2𝐵

𝜕𝑡2

∇2𝐸 = 𝜇0𝜀0
𝜕2𝐸

𝜕𝑡2

𝜕2𝐸𝑦

𝜕𝑥2
= 𝜇0𝜀0

𝜕2𝐸𝑦

𝜕𝑡2



Solution of wave eq. in vacuum:
Plane waves

• General solution:

– x is direction of wave propagation

• How did we find it? 
Someone guessed it and it fits

• f and g are arbitrary functions, they are defined by 
the source of the wave
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𝐸𝑦 = f 𝑥 − 𝑡/ 𝜇0𝜀0 + 𝑔(𝑥 − 𝑡/ 𝜇0𝜀0)



Plane wave

• f can be an arbitrary function

– At t=0 source at x=0 generates Ey pulse

– Pulse in space at time t1 and t2:

𝐸𝑦 = 𝑓 𝑥 − 𝑐𝑡 + 𝑓(𝑥 + 𝑐𝑡)

𝐸𝑦

𝑡

𝑓

𝐸𝑦

𝑥𝑡1/ 𝜇0𝜀0−𝑡1/ 𝜇0𝜀0−𝑡2/ 𝜇0𝜀0 𝑡2/ 𝜇0𝜀0

𝑓(𝑥 − 𝑐𝑡)

is the wave moving right 
from the source

𝑓(𝑥 + 𝑐𝑡)

is the wave moving left 
from the source



Sinusoidal plane waves

• If the source is resonating with frequency 𝜔, 
and the source amplitude is sinusoidal 𝐴𝑠 = 𝐴0𝑠 sin𝜔𝑡,  
then the wave accordingly has sinusoidal form 

• To facilitate calculations and equation,
very often complex exponents are employed

– But only the real part has a physical meaning
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𝐸𝑦 = 𝐸0𝑦 sin𝜔 𝑡 − Τ𝑥 𝑐

𝐹 𝑡 −
𝑥

𝑐
= 𝐹 −

𝑥−𝑐𝑡

𝑐
= 𝑓 𝑥 − 𝑐𝑡

𝐸𝑦 = 𝐸0𝑦𝑒
𝑖𝜔 𝑡− Τ𝑥 𝑐

A function of (t-x/c) is also function of (x-ct)



Wavenumber

• If plane wave propagates in an arbitrary direction
then equation becomes 

• To simplify, we put k = 𝜔/c

• k is called angular wavenumber

– It describes how phase changes per unit length 

– The unit is radian/m
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𝐸𝑦 = 𝐸0𝑦𝑒
𝑖𝜔 𝑡−

𝑥
𝑐
−
𝑦
𝑐
−
𝑧
𝑐

𝐸𝑦 = 𝐸0𝑦𝑒
𝑖(𝜔𝑡 −𝑘𝑥 −𝑘𝑦−𝑘𝑧)



RECTANGULAR WAVEGUIDE
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Rectangular waveguide

• Metallic (ideally conducting) tube 
with a rectangular profile

• Vacuum inside the tube

– No charges, no currents

• Wave equations still hold

• Boundary conditions need
to be respected

– No electric fields along the metallic surfaces

– No magnetic fields perpendicular to metallic surfaces
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∇2𝐵 = 𝜇0𝜀0
𝜕2𝐵

𝜕𝑡2

∇2𝐸 = 𝜇0𝜀0
𝜕2𝐸

𝜕𝑡2



Rectangular waveguide

• Independent 2 equations that lead to 
independent 2 solutions

– The final solution is sum of these 2 solutions
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TE and TM modes

• If one takes Ez = 0 and Bz ≠ 0, then only transverse 
Ex and Ey remain: TE (Transverse Electric) wave

• If one takes Ez ≠ 0 and Bz = 0, then only transverse 
Bx and By remain: TM (Transverse Magnetic) wave
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Rectangular waveguide modes

•
𝜕𝐵𝑧

𝜕𝑥
= 0 for  x = 0 and x = a ()

so, 𝑘𝑥 = 𝑚𝜋/𝑎

• The same applies for Y 

• Finally
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𝐵𝑧 = 𝐵0 cos
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏
cos(𝜔 𝑡 − Τ𝑧 𝑐 )

Electric field Ex component of 
the TE31 mode inside 
a hollow metallic waveguide.



Electric field for different modes
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https://cds.cern.ch/record/1416619/

TE10

TE11

TE20

TE11

TE12

TE21

TE22

TE01

TE20

TM11 TM21
TM12



Frequencies of the modes 

• Wavenumber

• It must be positive, what gives condition for minimum 
frequency that can propagate,
the cutoff frequency:

• The lowest 𝜔mn is for mode TE10 (m=1 and n=0): 𝜔10 =
𝑐𝜋

𝑎

• Waves with lower frequencies cannot propagate in 
waveguide having width a (assuming b<a)
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𝐵𝑧 = 𝐵0 cos
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏



Credits

• Certain figures were copied from
– Wikipedia.org

– xaktly.com by Dr. Jeff Cruzan 
• Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

– Erk Jensen’s lecture on CAS 2010  https://cds.cern.ch/record/1416619/
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https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US


Rectangular waveguide

• The wave needs to propagate along the waveguide

so the x dependent component needs to be 𝐸𝑥 = 𝑒𝑖(𝜔𝑡 −𝑘𝑥)

• Putting these to Faraday and Ampere laws
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𝐸 𝑥, 𝑦, 𝑧, 𝑡 = 𝐸𝑇 𝑦, 𝑧 𝑒𝑖(𝜔𝑡 −𝑘𝑥)

𝐵 𝑥, 𝑦, 𝑧, 𝑡 = 𝐵𝑇 𝑦, 𝑧 𝑒𝑖(𝜔𝑡 −𝑘𝑥)

𝜕𝐸𝑧
𝜕𝑦

+
𝜕𝐸𝑦

𝜕𝑧
= 𝑖𝜔𝐵𝑥

𝜕𝐸𝑥

𝜕𝑧
+

𝜕𝐸𝑧

𝜕𝑥
= 𝑖 𝜔𝐵𝑦

𝜕𝐸𝑦

𝜕𝑥
+
𝜕𝐸𝑧
𝜕𝑦

= 𝑖𝜔𝐵𝑧



APPENDIXES



SOLVING MAXWELL EQUATIONS IN VACUUM:
WAVE EQUATION
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Solving Maxwell equation in vacuum

• The trick to quickly solve the equations:
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∇ × ∇ × 𝐸 = ∇ × (−
𝜕𝐵

𝜕𝑡
)

∇ × ∇ × 𝐸 ≡ ∇(∇ ⋅ 𝐸) - ∇2𝐸 = −
𝜕

𝜕𝑡
∇ × 𝐵

Apply curl operator on both 
sides on Faraday Law 

∇ × 𝐵 = 𝜇0 Ԧ𝐽 + 𝜇0𝜀0
𝜕𝐸

𝜕𝑡

Apply Gauss and Ampere laws

∇ ⋅ 𝐸 =
𝜌

𝜀0

∇(
𝜌

𝜀0
) -∇2𝐸 = − 𝜇0

𝜕 Ԧ𝐽

𝜕𝑡
− 𝜇0𝜀0

𝜕2𝐸

𝜕𝑡2



How the fields propagate in vacuum?

• In vacuum there is no charges and no currents
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∇(
𝜌

𝜀0
) -∇2𝐸 = − 𝜇0

𝜕 Ԧ𝐽

𝜕𝑡
− 𝜇0𝜀0

𝜕2𝐸

𝜕𝑡2

∇2𝐸 ≡
𝜕2𝐸𝑥
𝜕𝑡2

+
𝜕2𝐸𝑦

𝜕𝑡2
+
𝜕2𝐸𝑧
𝜕𝑡2

= 𝜇0𝜀0
𝜕2𝐸

𝜕𝑡2

𝜌 = 0
Ԧ𝐽 = 0



How the fields propagate in vacuum?

• The same trick with curl applied on both sides of 
Ampere’s Law leads to
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∇2𝐵 = 𝜇0𝜀0
𝜕2𝐵

𝜕𝑡2

∇2𝐵 ≡
𝜕2𝐵𝑥
𝜕𝑡2

+
𝜕2𝐵𝑦

𝜕𝑡2
+
𝜕2𝐵𝑧
𝜕𝑡2

= 𝜇0𝜀0
𝜕2𝐵

𝜕𝑡2



How the fields propagate in vacuum?
• Wave equations 

• These are vector equations

– Vectors have direction
• We can always choose a reference frame

we chose it so the wave moves along x axis

– We induce that the amplitudes do not change in transverse
i.e. all derivatives w.r.t. y and z are zero
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∇2𝐵 = 𝜇0𝜀0
𝜕2𝐵

𝜕𝑡2

∇2𝐸 = 𝜇0𝜀0
𝜕2𝐸

𝜕𝑡2



How the fields propagate in vacuum?

• Gauss Law

Ex constant along x

not interesting, choosing special case Ex = 0

• Faraday Law, developing curl operator

Bx constant in time 

By constant in time 

• Only Bz is changing in time
putting Bx=0 and By=0 (constant fields are not interesting)
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𝜕𝐸𝑥

𝜕𝑥
+

𝜕𝐸𝑦

𝜕𝑦
+

𝜕𝐸𝑧

𝜕𝑧
= 0 ⇒

𝜕𝐸𝑥

𝜕𝑥
+ 0 +0 = 0 ⇒

𝜕𝐸𝑥

𝜕𝑥
= 0⇒

(∇ × 𝐸)𝑥= −
𝜕𝐵𝑥

𝜕𝑡
⇒

𝜕𝐸𝑧

𝜕𝑦
+

𝜕𝐸𝑦

𝜕𝑧
= −

𝜕𝐵𝑥

𝜕𝑡
⇒

𝜕𝐵𝑥

𝜕𝑡
= 0

(∇ × 𝐸)𝑦= −
𝜕𝐵𝑦

𝜕𝑡
⇒

𝜕𝐸𝑥

𝜕𝑧
+

𝜕𝐸𝑧

𝜕𝑥
= −

𝜕𝐵𝑦

𝜕𝑡
⇒

𝜕𝐵𝑦

𝜕𝑡
= 0

(∇ × 𝐸)𝑧= −
𝜕𝐵𝑧

𝜕𝑡
⇒

𝜕𝐸𝑦

𝜕𝑥
+

𝜕𝐸𝑥

𝜕𝑦
=

𝜕𝐵𝑧

𝜕𝑡
⇒

𝜕𝐸𝑦

𝜕𝑥
= −

𝜕𝐵𝑧

𝜕𝑡



How the fields propagate in vacuum?
• Ampere’s Law, developing curl operator

• Only Ey is changing in time
putting Ex=0 and Ez=0 (constant fields are not interesting)
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(∇ × 𝐵)𝑥= 𝜇0𝜀0
𝜕𝐸𝑥

𝜕𝑡
⇒

𝜕𝐵𝑧

𝜕𝑦
+

𝜕𝐵𝑦

𝜕𝑧
= 𝜇0𝜀0

𝜕𝐸𝑥

𝜕𝑡
⇒

𝜕𝐸𝑥

𝜕𝑡
= 0

(∇ × 𝐵)𝑦= 𝜇0𝜀0
𝜕𝐸𝑦

𝜕𝑡
⇒

𝜕𝐵𝑥

𝜕𝑧
+

𝜕𝐵𝑧

𝜕𝑥
= 𝜇0𝜀0

𝜕𝐸𝑦

𝜕𝑡
⇒

𝜕𝐵𝑧

𝜕𝑥
= 𝜇0𝜀0

𝜕𝐸𝑦

𝜕𝑡

(∇ × 𝐵)𝑧= 𝜇0𝜀0
𝜕𝐸𝑧

𝜕𝑡
⇒

𝜕𝐵𝑧

𝜕𝑥
+

𝜕𝐵𝑧

𝜕𝑦
= 𝜇0𝜀0

𝜕𝐸𝑥

𝜕𝑡
⇒

𝜕𝐵𝑧

𝜕𝑡
= 0



How the fields propagate in vacuum?
• Only Ey and Bz are left

– Electric field changes only in Y plane

– Magnetic field changes only in Z plane

– Magnetic field is perpendicular to electric field

• Putting all together allows to reduce it to 
a single scalar wave equation 
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𝜕2𝐸𝑦

𝜕𝑥2
= 𝜇0𝜀0

𝜕2𝐸𝑦

𝜕𝑡2

𝜕𝐵𝑧
𝜕𝑥

= −𝜇0𝜀0
𝜕𝐸𝑦

𝜕𝑡

𝜕𝐸𝑦

𝜕𝑥
= −

𝜕𝐵𝑧
𝜕𝑡



Plane waves

• General solution:

• How did we find it? 
Someone guessed it and it fits

• f and g are arbitrary functions, they are defined by 
the source of the wave
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𝐸𝑦 = f 𝑥 − 𝑡/ 𝜇0𝜀0 + 𝑔(𝑥 − 𝑡/ 𝜇0𝜀0)



Plane wave

• f can be an arbitrary function

– At t=0 source at x=0 generates Ey pulse

– Pulse in space at time t1 and t2:
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𝐸𝑦 = 𝑓 𝑥 − 𝑡/ 𝜇0𝜀0 + 𝑓(𝑥 + 𝑡/ 𝜇0𝜀0)

𝐸𝑦

𝑡

𝑓

𝐸𝑦

𝑥

𝑡1/ 𝜇0𝜀0−𝑡1/ 𝜇0𝜀0

1

𝜇0𝜀0
= 𝑐 =299792458 m/s is the speed of propagation

−𝑡2/ 𝜇0𝜀0 𝑡2/ 𝜇0𝜀0



Plane wave

• f can be an arbitrary function

– At t=0 source at x=0 generates Ey pulse

– Pulse in space at time t1 and t2:

𝐸𝑦 = 𝑓 𝑥 − 𝑐𝑡 + 𝑓(𝑥 + 𝑐𝑡)

𝐸𝑦

𝑡

𝑓

𝐸𝑦

𝑥𝑡1/ 𝜇0𝜀0−𝑡1/ 𝜇0𝜀0−𝑡2/ 𝜇0𝜀0 𝑡2/ 𝜇0𝜀0

𝑓(𝑥 − 𝑐𝑡)

is the wave moving right 
from the source

𝑓(𝑥 + 𝑐𝑡)

is the wave moving left 
from the source



Sinusoidal plane waves

• If the source is resonating with frequency 𝜔, 
and the source amplitude is sinusoidal 𝐴𝑠 = 𝐴0𝑠 sin𝜔𝑡,  
then the wave accordingly has sinusoidal form 

• To facilitate calculations and equation,
very often complex exponents are employed

– But only the real part has a physical meaning
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𝐸𝑦 = 𝐸0𝑦 sin𝜔 𝑡 − Τ𝑥 𝑐

𝐹 𝑡 −
𝑥

𝑐
= 𝐹 −

𝑥−𝑐𝑡

𝑐
= 𝑓 𝑥 − 𝑐𝑡

𝐸𝑦 = 𝐸0𝑦𝑒
𝑖𝜔 𝑡− Τ𝑥 𝑐

A function of (t-x/c) is also function of (x-ct)



Sinusoidal plane wave

• If plane wave propagates in an arbitrary direction
then equation becomes 

• To simplify, we put k = 𝜔/c

• k is called angular wavenumber

– It describes how phase changes per unit length 

– The unit is radian/m
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𝐸𝑦 = 𝐸0𝑦𝑒
𝑖𝜔 𝑡−

𝑥
𝑐
−
𝑦
𝑐
−
𝑧
𝑐

𝐸𝑦 = 𝐸0𝑦𝑒
𝑖(𝜔𝑡 −𝑘𝑥 −𝑘𝑦−𝑘𝑧)



Source of plane waves

• A metallic plate of infinite dimensions

• Not really a realistic concept

• But in many cases 
a very good approximation

– For example, close to the plate

– Far away from the source

• It allows to simplify the equations
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Rectangular waveguide

• Metallic (ideally conducting) tube 
with a rectangular profile

• Vacuum inside the tube

– No charges, no currents

• Wave equations still hold

• Boundary conditions need
to be respected

– No electric fields along the metallic surfaces

– No magnetic fields perpendicular to metallic surfaces

124

∇2𝐵 = 𝜇0𝜀0
𝜕2𝐵

𝜕𝑡2

∇2𝐸 = 𝜇0𝜀0
𝜕2𝐸

𝜕𝑡2



Rectangular waveguide

• We assume that source is a resonating one

• The wave propagates along the waveguide, 
so only z component depends on time t
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Different reference system 
then used for vacuum! 
Now wave propagates towards z

x

y

z

𝐸 𝑥, 𝑦, 𝑧, 𝑡 = 𝐸𝑇 𝑥, 𝑦 𝑒𝑖(𝑘𝑧−𝜔𝑡)

𝐵 𝑥, 𝑦, 𝑧, 𝑡 = 𝐵𝑇 𝑥, 𝑦 𝑒𝑖(𝑘𝑧−𝜔𝑡)



Rectangular waveguide

Step1: Insert these 

into Faraday’s and Ampere’s 
Laws

It gives
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𝐸 𝑥, 𝑦, 𝑧, 𝑡 = 𝐸𝑇 𝑥, 𝑦 𝑒𝑖(𝑘𝑧−𝜔𝑡)

𝐵 𝑥, 𝑦, 𝑧, 𝑡 = 𝐵𝑇 𝑥, 𝑦 𝑒𝑖(𝑘𝑧−𝜔𝑡)



Rectangular waveguide

• These equations reduce to

• All 4 depend only on the longitudinal fields Ez and Bz
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Rectangular waveguide

• Step 2: put these 
into Gauss Law

• Use Ex and Ey

from previous page
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𝐸 𝑥, 𝑦, 𝑧, 𝑡 = 𝐸𝑇 𝑥, 𝑦 𝑒𝑖(𝑘𝑧−𝜔𝑡)

𝐵 𝑥, 𝑦, 𝑧, 𝑡 = 𝐵𝑇 𝑥, 𝑦 𝑒𝑖(𝑘𝑧−𝜔𝑡)



Rectangular waveguide

• Gives

• Step 3: Using Gauss Law for magnetic field yields

• Independent 2 equations that lead to 
independent 2 solutions

– The final solution is sum of these 2 solutions
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Rectangular waveguide

• If one takes Ez = 0 and Bz ≠ 0, then only transverse 
Ex and Ey remain: TE (Transverse Electric) wave

• If one takes Ez ≠ 0 and Bz = 0, then only transverse 
Bx and By remain: TM (Transverse Magnetic) wave
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Rectangular waveguide

• We consider TE wave

• Write

• Then
is

• 𝑘2 −
𝜔2

𝑐2
is a constant, so 

1

𝑋

𝜕2𝑋

𝜕𝑥2
= const and 

1

𝑌

𝜕2𝑌

𝜕𝑦2
= const
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1

𝑋

𝜕2𝑋

𝜕𝑥2
+
1

𝑌

𝜕2𝑌

𝜕𝑦2
= 𝑘2 −

𝜔2

𝑐2

𝐵𝑧 𝑥, 𝑦 = 𝑋 𝑥 𝑌(𝑦)



Rectangular waveguide

• So, we can write and

• General solution of this equation is

• But

must vanish at the waveguide boundary, so 
𝜕𝐵𝑧

𝜕𝑥
= 0 for

x = 0 and x = a
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1

𝑋

𝜕2𝑋

𝜕𝑥2
= −𝑘𝑥

2 1

𝑌

𝜕2𝑌

𝜕𝑦2
= −𝑘𝑦

2



Rectangular waveguide

•
𝜕𝐵𝑧

𝜕𝑥
= 0 for  x = 0 and x = a

so, 𝑘𝑥 = 𝑚𝜋/𝑎

• The same applies for Y 

• Finally
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𝐵𝑧 = 𝐵0 cos
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏

Electric field Ex component of 
the TE31 mode inside 
a hollow metallic waveguide.



Rectangular waveguide

• Wavenumber

• It must be positive, what gives condition for minimum 
frequency that can propagate,
the cutoff frequency:

• The lowest 𝜔mn is for mode TE10 (m=1 and n=0): 𝜔10 =
𝑐𝜋

𝑎

• Waves with lower frequencies cannot propagate

134

𝐵𝑧 = 𝐵0 cos
𝑚𝜋𝑥

𝑎
cos

𝑛𝜋𝑦

𝑏


