

Helium Synchrotron Optics Design

Heli Huttunen

Foteini Asvesta, Elena Benedetto, Rebecca Taylor

15.1.2024

Outline

- Introduction
- Beam optics
- Outlook & Conclusions

Hadron therapy

- High-precision radiotherapy for tumours
 - surgically inoperable
 - resistant to traditional radiotherapy
- Utilises charged particle beams
 - characteristic Bragg peak
- Particle species:

Helium synchrotron

- Compact triangular design
 - 30 m circumference
- Particle species: protons and helium ions

AG-CCT

- Relatively low energy accelerator
 - o 5 220 MeV/u
- Multiturn injection

EES Q1

AG-CCT

Q2 EMS

Q2 AG-CCT

• Slow extraction

AG-CCT

Q2

Accelerator physics

- From a particle's point of view, an accelerator is a sequence of
 - drifts: no external fields, particles go straight
 - magnetic fields: modify trajectory of the particles
 - dipoles and quadrupoles
 - electric fields: change the particle's energy
 - RF-cavities
- Synchrotron a type of circular accelerator
- Lattice a sequence of principle elements

Beam optics

- Focusing magnets work like lenses in optics
 - focusing and defocusing elements are quadrupoles focusing in one plane while defocusing in the other
- Particles oscillate around a design orbit
- Tune = number of oscillation per one revolution
- Beta function
 - describes oscillations of the particle beam
 - relates to the aperture of the beam

What we need?

- A tune that produces an integer number if multiplied by 3
 - requirement for slow extraction
- Beam that fits the aperture
 - beta functions relate directly to the beam size!!
 - $\circ \beta_{x,max}$ < 20 m, $\beta_{y,max}$ < 10 m
- Flexibility with use
- Cost-effective design

Beam optics

What we have?

- Simple linear design
- Tune: Qx = 2.67
- β_{x,max}≈ 26 m, β_{y,max}≈ 15 m (too big!) ×

×

×

- No flexibility
- Complex bending magnets

Beam optics

What can we do?

- Optimise drift spaces between elements
- Change the magnet design
 - switch to less complex magnets
- Add flexibility with defocusing quadrupoles

Focusing effects on dipole magnets

Edge focusing

- At the ends dipoles can be either sector or parallel edge
 - different focusing effect on the beam
- Rectangular magnets easier to manufacture

Combined function magnets

- Combined dipole and quadrupole field
- Generated by shaping of the poles
 - introducing a gradient to a regular dipole
- Expensive to manufacture

Optics optimization

Changes

- Rectangular bending magnets
 - additional beam focusing
 - easier/cheaper manufacturing
- Smaller gradient or no gradient in bending magnets
 - \circ better field condition
 - easier/cheaper manufacturing

Changes

Optics optimization

- \circ more flexibility with use
- Change to tune Qx = 2.33
- $\beta_{x,max} \approx 20 \text{ m}, \beta_{y,max} \approx 8 \text{ m}$
 - reduced by >20% and >45%

in x and y respectively

Outlook

So what next?

- Looking into higher order effects
- Finalising of the triangular lattice design and identifying

potential limitations (magnet errors, collective effects etc.)

- Comparing different particle species protons and helium ions
- Exploring different layout geometries, for example the rectangular one

What to take home?

• Designing a facility optimised for helium beams is important in the

development of hadrontherapy

• This project offers a perfect opportunity to build connections and

introduce hadron therapy into Finland

Thank you!

home.cern