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Abstract
The subject of this introductory course is transverse dynamics of charged
particle beams in linear approximation. Starting with a discussion of the most
important types of magnets and defining their multipole strengths, the linear-
ized equations of motion of charged particles in static magnetic fields are de-
rived using an orthogonal reference frame following the design orbit. Analyt-
ical solutions are determined for linear elements of a typical beam transfer line
(drift, dipole and quadrupole magnets), and stepwise combined by introdu-
cing the matrix formalism in which each element’s contribution is represented
by a single transfer matrix. Application of this formalism allows to calcu-
late single particle’s trajectories in linear approximation. After introducing the
beam emittance as the area occupied by a particle beam in phase space, a linear
treatment of transverse beam dynamics based on appropriately defined optical
functions is introduced. The formalism is applied to the concepts of both weak
and strong focusing, in particular discussing the properties of the widely-used
FODO cell. Specific characteristics of transverse beam dynamics in periodic
systems like circular accelerators are studied in detail, emphazising the effects
of linear field errors on orbit stability and introducing the phenomena of optical
resonances. Finally, the dynamics of off-momentum particles is presented, in-
troducing dispersion functions and explaining effects like chromaticity.

Keywords
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1 Introduction
We will start looking at typical large-scale accelerators such like high energy colliders, synchrotron
radiation sources, free electron lasers, or compact medical accelerators used for treatments for patients
with cancer (cf. Fig 1). In all such accelerators a beam of charged particles (electrons, protons, ions) is
generated in a dedicated source, preaccelerated in (often a series of) linear and/or circular accelerators
which are connected by beam transfer lines and finally either injected into a storage ring, guided through
a series of alternating dipole magnets called undulators, or directed to an external target.

In order to guide the beam along its often curved path through the accelerators and beam transfer
lines, it has to be deflected by dedicated devices acting on the individual beam particles, a process which
is called beam bending. Ideally, all particles should then move on the design orbit, starting at the source
and ending at the target (or being closed in a storage ring). In fact, most particles of the beam will deviate
slightly from this ideal path and therefore have to be repeatedly bend back towards the desing orbit,
a process which is called beam focusing. The resulting movement of the particles under the influence of
external forces is described by the beam dynamics.

In this introductory course, we will concentrate on the transverse beam dynamics in linear approx-
imation, thus only treating the impact of beam bending and focusing. We will not only present single
particle’s dynamics, but as well discuss the properties of macroscopic beams being formed by an en-
semble of thousands up to many billions of charged particles. For this purpose, appropriate physical
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Figure 1: Sketches of different types of accelerators (not to scale). a) Synchrotron radiation source. b) High
energy collider. c) Free electron laser. d) Linear accelerator for medical radiotherapy.

quantities like beam emittance and optical functions will be defined and used for describing the evolu-
tion of the beam’s properties.

1.1 Magnetic rigidity
Both bending and focusing forces can be accomplished with electromagnetic fields. When a particle with
charge q and velocity v⃗ is moving through electric (E⃗) and magnetic (B⃗) fields, the Lorentz force

F⃗ = q(E⃗ + v⃗ × B⃗) (1)

is acting on the particle. Whereas only longitudinal electric fields (E⃗∥ ∥ v⃗) will change the particle’s
energy, transverse electric (E⃗⊥ ⊥ v⃗) and magnetic (B⃗⊥ ⊥ v⃗) fields will deflect the particle without
changing the absolute value of the particle’s velocity |v⃗|. Pure transverse fields will therefore lead to
a circular orbit with bending radius ρ for which the Lorentz force has to equal the centripetal force

m
v2

ρ
= q(E⊥ + vB⊥) , (2)

where m = γrm0 is the relativistic mass of a particle with rest mass m0.

Since ultra-relativistic particles move with a velocity very close to the speed of light (v ≈ c)
the impact of magnetic fields is enhanced by a remarkable factor of c = 3 · 108 m

s . Thus the bending
force generated by a comparatively easy to produce magnetic field of B = 1T would require an equi-
valent electric field of E = 300 MV

m which is far beyond the technical limits. Hence only transverse
magnetic fields are applied for beam deflection and focusing in high energy particle accelerators. We
will hereinafter only regard transverse magnetic fields and skip the index “⊥”.

Introducing the particle’s momentum p = mv, Eq. (2) can be written as

p = qBρ , (3)
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giving rise to the definition of a new and important quantity, the magnetic rigidity or magnetic stiffness
Bρ. Given a bending magnet that is designed to bend a beam on a circular orbit with bending radius
ρ, its Bρ value indicates the corresponding beam momentum. This can be used to characterize circular
accelerators as it was done for the heavy ion synchrotrons (SIS18, SIS100) of the FAIR accelerator
complex, where the numbers indicate the maximum magnetic rigidity in units Tm.

2 Multipole expansion of magnetic fields
In the following, we will spend some efforts to classify transverse magnetic fields in a quite general
way by expanding them into a series of “multipoles”. The aim is to gain a detailed understanding of
the impact of a given magnetic field B⃗ by regarding the action of its different “multipole components”
on the beam individually. We will restrict our treatment to transverse displacements from the design orbit
which is defined by the magnetic fields. In addition, we will assume that there is no dependence of B⃗ on
the longitudinal coordinate inside a given accelerator magnet.

The transverse plane will be denoted as the (x, y) plane. Since we are only interested in the dis-
placements from the “ideal” orbit, the reference orbit is put to (0, 0). The transverse components
Bx(x, y), By(x, y) of the magnetic field will be classified according to their dependence on x and y,
that is on the deviation from the reference orbit. The resulting contributions (constant, linear, quadratic,
etc.) are called multipole components.

Typically, the fields of accelerator magnets are generated by excitation coils which are placed
outside the beam volume. Thus, there are no excitation currents in the vicinity of the beam defining
our area of interest (meaning at considerably small displacements x and y). Maxwell’s equations then
require that both the divergence and curl of B will vanish

∇⃗ · B⃗ = 0 ,

∇⃗ × B⃗ = 0 .
(4)

In general, the magnetic field can be derived from a vector potential A⃗. The vanishing curl of B⃗ in
addition allows to express B⃗ in terms of a scalar potential Φ. Both A⃗ and Φ are only depending on
the transverse coordinates x and y

B⃗(x, y) = −∇⃗Φ(x, y) = ∇⃗ × A⃗(x, y) . (5)

Since B⃗ is in the (x, y) plane and ∇⃗ × A⃗ ⊥ A⃗ there is only one non-vanishing component Az . Thus
we can represent the two components of the magnetic field by two other scalar quantities, Az and Φ.
Evaluating Eq. (5) yields

Bx(x, y) = −∂Φ
∂x

= +
∂Az

∂y
,

By(x, y) = −∂Φ
∂y

= −∂Az

∂x
.

(6)

The two Eqs. (6) are the Cauchy-Riemann partial differential equations linking the real and imaginary
part of a complex analytical function

V = Az + iΦ . (7)

Using a complex argument z which can de decomposed into cartesian (x, y) or polar (r, φ) coordinates

z = x+ iy = r · eiφ , (8)

the complex potential can be expressed as a complex power series

V (z) =
∞∑
n=0

Vn(z) =
∞∑
n=0

(Az,n + iΦn) =
∞∑
n=0

cn · zn =
∞∑
n=0

(λn + iµn) · zn , (9)
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where we have decomposed the complex expansion coefficients cn into their real and imaginary parts λn
and µn. The transverse magnetic field components can be calculated using Eq. (6) and can be represented
either by their cartesian or their polar components.

2.1 Expansion using polar coordinates
In polar coordinates we will use the coordinate vector z = r · eiφ and

zn = rn · einφ = rn (cos(nφ) + i sin(nφ)) . (10)

We therewith can express the summands in Eq. (9) as

Vn(r, φ) = (λn + iµn) r
n (cos(nφ) + i sin(nφ)) . (11)

The magnetic field components are given by the gradient of the scalar potential Φ:

Br = −∂Φ
∂r

= −
∞∑
n=1

nrn−1 (µn cos(nφ) + λn sin(nφ)) , (12)

Bφ = −1

r

∂Φ

∂φ
= −

∞∑
n=1

nrn−1 (λn cos(nφ)− µn sin(nφ)) . (13)

The summands are the multipole components of order n of the magnetic field in polar coordinates.
It is convenient to normalize the not dimensionless coefficients λn and µn to a “main field” B0 and
a “reference radius” r0. Both are in principal free parameters but typically the field configuration offers
a “natural” or “useful” choice. We therewith can define dimensionless expansion coefficients an and bn
as

an =
nµn
B0

rn−1
0 , (14)

bn = −nλn
B0

rn−1
0 , (15)

and finally get the conventional multipole decomposition in polar coordinates

Br(r, φ) =
∞∑
n=1

Br,n(r, φ) = B0

∞∑
n=1

(
r

r0

)n−1

(−an cos(nφ) + bn sin(nφ))

Bφ(r, φ) =
∞∑
n=1

Bφ,n(r, φ) = B0

∞∑
n=1

(
r

r0

)n−1

(bn cos(nφ) + an sin(nφ))

. (16)

This representation offers an immediate insight into the general field pattern of a given magnetic multi-
pole: the field components Br,n and Bφ,n of the n-th multipole have a 2π

n rotational symmetry whereas
the magnitude of each multipole contribution Bn has no azimuthal dependence, scales with rn−1 and is
proportional to the main field B0

|Bn| =
√
B2

r,n +B2
φ,n = B0

√
a2n + b2n

(
r

r0

)n−1

. (17)

For reasons shown later, the bn are called the normal (or upright) components whereas the an are called
the skew components. They represent the fraction of the multipole contribution to the B field at the ref-
erence radius r0.

Since, as we will see later, the number of poles required to generate a magnetic multipole of order
n is 2n, the multipoles are named as (2n) which is
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Table 1: Names of different multipoles.

Order Name Number of poles
n = 1 Dipole 2
n = 2 Quadrupole 4
n = 3 Setupole 6
n = 4 Octupole 8
n = 5 Decapole 10
n = 6 Dodecapole 12

2.2 Expansion using cartesian coordinates
Again we will start from Eq. (9) but now using z = x + iy. Taking advantage of the binomial theorem,
we get for the complex contribution Vn

Vn(x, y) = (λn + iµn) (x+ iy)n = (λn + iµn)
n∑

k=0

(
n

k

)
xn−k (iy)k , (18)

with the binomial coefficient
(
n
k

)
defined by(

n

k

)
=

n!

(n− k)! · k!
. (19)

Since the magnetic field is derived from the gradient of the scalar potential Φ, we pick the imaginary part
and get the following expression for the contribution Φn(x, y)

Φn(x, y) = µn

n/2∑
k=0

(
n

2k

)
(−1)kxn−2ky2k + λn

(n+1)/2∑
k=1

(
n

2k − 1

)
(−1)k−1xn−2k+1y2k−1 . (20)

Building the gradient and again using the dimensionless expansion coefficients an and bn, we get for
the upright x and y components Bu

x,y of the magnetic field

Bu
x(x, y) = B0

∞∑
n=1

bnB0

nrn−1
0

n/2∑
k=1

(
n

2k − 1

)
(−1)k−1(n− 2k + 1)xn−2ky2k−1 , (21)

Bu
y (x, y) = B0

∞∑
n=1

bnB0

nrn−1
0

(n+1)/2∑
k=1

(
n

2k − 1

)
(−1)k−1(2k − 1)xn−2k+1y2k−2 , (22)

and for the skew x and y components Bs
x,y of the magnetic field

Bs
x(x, y) = −B0

∞∑
n=1

anB0

nrn−1
0

(n−1)/2∑
k=0

(
n

2k

)
(−1)k(n− 2k)xn−2k−1y2k , (23)

Bs
y(x, y) = −B0

∞∑
n=1

anB0

nrn−1
0

n/2∑
k=1

(
n

2k

)
(−1)k2kxn−2ky2k−1 . (24)

Since the drived equations are quite bulky, it might be useful to explicitly present the first three cartesian
multipole contributions. We obtain for the scalar potential Φ

Φ(x, y) = B0

(
a1x− b1y +

a2
(
x2 − y2

)
− 2b2xy

2r0
+
a3
(
x3 − 3xy2

)
+ b3

(
y3 − 3x2y

)
3r20

+ ...

)
,

(25)
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and for the cartesian components of the magnetic field Bx,y

Bx(x, y) = B0

(
−a1 +

b2y − a2x

r0
+
a3
(
y2 − x2

)
+ 2b3xy

r20
+ ...

)

By(x, y) = B0

(
b1 +

a2y + b2x

r0
+

2a3xy + b3
(
x2 − y2

)
r20

+ ...

) . (26)

Instead of using the dimensionless expansion coefficients an and bn, in cartesian representation often so
called multipole strengths are defined. The n-th upright cartesian multipole strength sn is defined by
the (n-1)-th horizontal partial derivative of the vertical magnetic field at the design orbit, normalized to
particle’s momentum p and inverse charge 1/q (cf. sections 3.2 - 3.4), and is related to the coefficient bn
by

sn =
q

p

∂n−1By(0, 0)

∂xn−1
=

qB0

prn−1
0

· bn . (27)

In contrast to the polar expansion coefficients which are numbered by the order of the multipole, the cartesian
multipole strengths are stated by individual symbols (κ, k,m, r, ...). The following table summarizes
the different definitions for the first four upright and skew multipole components. The skew multipole
strengths are denoted as underlined symbols.

Table 2: Cartesian multipole strengths and their link to the dimensionless polar expansion coefficients.

Order Name Magnetic field Multipole strength

n = 1 upright dipole B⃗1 =
p
qκêy κ = qB0

p b1

n = 1 skew dipole B⃗1 = −p
qκêx κ = qB0

p a1

n = 2 upright quadrupole B⃗2 = −p
qk(yêx + xêy) k = − qB0

pr0
b2

n = 2 skew quadrupole B⃗2 =
p
qk(xêx − yêy) k = − qB0

pr0
a2

n = 3 upright setupole B⃗3 =
p
qm
(
xyêx +

x2−y2

2 êy

)
m = qB0

pr20
b3

n = 3 skew setupole B⃗3 =
p
qm
(
y2−x2

2 êx + xyêy

)
m = qB0

pr20
a3

n = 4 upright octupole B⃗4 =
p
q r
(
3x2y−y3

6 êx +
x3−3xy2

6 êy

)
r = qB0

pr30
b4

n = 4 skew octupole B⃗4 =
p
q r
(
3xy2−x3

6 êx +
3x2y−y3

6 êy

)
r = qB0

pr30
a4

Remark: It is striking that only the quadrupole strengths k and k are defined using an extra minus sign.
A priori, there exist no compelling reason for this definition. It comes from the early days when the
concept of “weak focusing” was applied in the first synchrotrons in which focusing is treated using the
“field index” n that is representing the normalized radial gradient of the magnetic field at the reference
orbit (cf. Section 7.1). It is noticable in this context that, when consulting different textbooks on ac-
celerator physics, one will observe that there is no uniform definition of the quadrupole strength in the
literature regarding the extra minus sign.

Figure 2 shows the magnetic field lines of the first five multipole fields. It nicely illustrates the un-
derlying rotational 2π

n symmetry of a multipole n. In addition, it reveals that for every upright multipole
one obtains its corresponding skew component from an angular rotation of the field pattern by a rotation
angle ∆φ = π

2n and vice versa.

Typically, accelerators are constructed as flat horizontal machines in which the design orbit stays
in the horizontal plane, defined by the horizontal mid-plane (x, 0) of the accelerator magnets. Since ho-
rizontal magnetic fields in this mid-plane would bend the beam out of the horizontal plane, it is therefore
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Figure 2: Field patterns of different magnetic multipoles [1].

desireable that all horizontal magnetic fields vanish at y = 0 (Bx(x, 0) = 0). This condition is fullfilled
for all upright multipoles whereas for the skew multipoles all vertical fields vanish in the vertical plane
(0, y). For this reason, “normally” upright multipoles are used in flat accelerators whereas the skew
multipoles are reserved for special purposes. This gives the reason for naming the upright multipoles as
well “normal” multipoles.

3 Accelerator magnets
Accelerator magnets can be devided in two different main classes:

– iron dominated magnets that uses ferromagnetic material like soft iron to shape the magnetic field
for generating the desired multipole component,

– current defined magnets in which the desired magnetic multipole is determined by the current
distribution defined by the conductor arrangement of the exitation coils.

Since iron dominated magnets are limited by magnetic saturation of the soft iron, magnetic fields greater
than ≈ 2.5T can only be produced by ironless current defined magnets. The latter typically use coils
made from superconductors like NbTi to suppress the Ohmic losses which would be present in normal
conducting coils. Since a detailed discussion is outside the scope of this introductory course and will
be presented in Refs. [2, 3], we will concentrate on a brief presentation of iron dominated magnets and
explain how the most important first magnetic multipoles (dipole, quadrupole, sextupole) are generated.

3.1 Ferromagnets
In vacuum, the magnetic field strength H⃗ and the magnetic field B⃗ (which is often called the magnetic
flux density or magnetic induction) are related by the permeability of free space µ0:

B⃗ = µ0H⃗ . (28)

If a magnetic field penetrates a ferromagnetic material, an additional magnetic field is generated in
the material giving rise to a local enhancement of the magnetic field B⃗ (the magnetization M⃗ ) which
for isotropic materials is described using a factor called the relative permability µr:

B⃗ = µ0

(
H⃗ + M⃗

)
= µ0µrH⃗ . (29)
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The magnetic field strength H⃗ can be computed using Ampère’s law which states that the line integral of
H⃗ · ds⃗ carried out along a closed path equals the enclosed electrical current I:∮

H⃗ · ds⃗ = I . (30)

Ampère’s law guarantees the continuity of H⃗∥, the component of H⃗ parallel to the surface of the ferro-
magnetic material (the tangential component). This can be derived from a line integral carried out along
a rectangular loop enclosing the ferromagnet’s surface in the limits d≪ l and l → 0 (cf. Fig. 3):

Figure 3: Line integral
∮
H⃗ds⃗ to demonstrate the continuity of the tangential component of H⃗ .

0 =

∮
H⃗ · ds⃗ ≈ H inside

∥ · l −Houtside
∥ · l → Houtside

∥ = H inside
∥ . (31)

Using Maxwell’s second equation, the continuity of the normal component of the magnetic field
B⃗ can be shown in the same manner. For doing so, the rectangular loop has to be extruded to a cuboid.
The enclosed area of the rectangular loop will build one of the four faces of the cuboid perpendicular to
the ferromagnet’s surface (cf. Fig. 4).

Figure 4: Surface integral
∮
B⃗ · dA⃗ to demonstrate the continuity of the normal component of B⃗.

We then get from the integral over the closed surface of the cuboid

0 =

∮
B⃗ · dA⃗ ≈ Boutside

⊥ ·A−Binside
⊥ ·A → Boutside

⊥ = Binside
⊥ . (32)

Since for ferromagnets the relative permeability µr ≫ 1 is much greater than one, the tangential com-
ponent of the magnetic field B⃗ must vanish at the ferromagnet’s surface

Boutside
∥ = µ0H

outside
∥ = µ0H

inside
∥ ≪ µ0µrH

inside
∥ = Binside

∥ → Bsurface
∥ = 0 . (33)

Thus, B⃗ is perpendicular to the surface of ferromagnets. Since B⃗ = −∇⃗Φ, the ferromagnet’s surface
build an equipotential surface Φ = const. which simplifies the shaping of the magnetic field significantly.

In order to generate a specific magnetic multipole, the task reduces to build enough and appropri-
ately shaped magnetic poles defining the equipotential surfaces for a wanted magnetic multipole. This
simplifies the precise generation of single magnetic multipole enormously and is the reason why ac-
celerator magnets are mostly build as iron dominated magnets as long as the herewith achievable field
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Figure 5: Magnetic field B⃗ at the surface of a ferromagnet.

strengths meet the requirements. In the following, we will explicitly discuss the different types of iron
dominated magnets and their action on the beam seperately and restrict ourself to the upright multipoles.
The skew multipoles can be easily obtained by a rotation of the magnet around its central symmetry axis.
When discussing the action of a given multipole on the beam, we will always use a right-handed co-
ordinate system (x, y, s) where the coordinate vector ês points in the direction of the reference particle’s
velocity, êy points vertically and êx = êy × ês is in the horizontal plane (see Section 4.1).

3.2 Dipole magnets and beam deflection
In order to deflect a charged particle beam, a constant homogeneous magnetic field pointing perpendic-
ular to the design orbit is required. In flat horizontal accelerators the constant magnetic field has to point
parallel to the vertical direction, which is the case for the first upright multipole component:

B⃗(x, y) = B0 · êy = const. ↔ Φ(x, y) = −B0 · y . (34)

Two equipotential surfaces Φ = ±Φ0 are thus required defining the poles’ profiles to be flat and parallel.
We therewith get a dipole magnet which is often build as C-magnet for which the C-shaped iron core act
as return yoke and the magnetic field is exited by two coils wound around the poles (Fig. 6).

Figure 6: Pole profile and cross section of a dipole magnet creating a vertical homogeneous B field.

The generated dipole field can be calculated from Ampère’s law computing the line integral along
the integration path indicated in Fig. 6

nI =

∮
H⃗ · ds⃗ =

∫
gap
H⃗0 · ds⃗+

∫
yoke

H⃗iron · ds⃗ , (35)

where n is the number of turns of the exitation coils (n2 turns for the upper and n
2 turns for the lower coil)

and I the current which flows through the coils. Since µr ≫ µ0 and B⃗iron = B⃗0, we have |Hiron| ≪ |H0|
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and the integral along the path in the return yoke does not contribute substancially. We therefore get in
good approximation the simple relation

B0 = µ0
nI

h
, (36)

indicating the required ampere-turns nI to generate a magnetic field B0 in a gap of height h.

Example:
With a gap height of 5 cm nI = 40000 Ampère-turns are needed to produce a bending field of 1 Tesla.

According to Section 2.2 the dipole strength κ can be derived from a normalization applying
a factor q

p . It indicates the curvature of the orbit which is equivalent to the inverse bending radius and
has the unit of inverse meters:

κ =
1

ρ
=
q

p
B0 =

qµ0
p

nI

h
, [κ] = m−1 . (37)

It is obvious that the sign of the curvature κ (and therewith also the sign of the bending radius ρ) can
be positive or negative, depending on wether the particle is been bent outwards or inwards. Using our
right-handed coordinate system (x, y, s) we obtain the following relation between bending and curvature:

– if a particle is deflected in the direction of −êx the curvature is positive (κ > 0),
– if a particle is deflected in the direction of êx the curvature is negative (κ < 0).

Of course this is of no importance when only indicating the absolute “strengh” of a dipole magnet, but
explicit care has to be taken when looking at the action of a dipole magnet on off-momentum particles
(see Section 8).

Typical types of iron dominated dipole magnets are presented in Fig. 7. For all of them the field
shaping is accomplished by two parallel magnetic poles made of ferromagnetic material (e.g. iron).

Figure 7: Different types of iron dominated dipole magnets. Left: C dipole magnet; the picture shows a bending
magnet of the SESAME storage ring. Middle: H dipole magnet; the picture shows a prototype of the normal
conducting 11 Super-FRS dipole magnet. Right: window-frame dipole magnet; the picture shows the injection
kicker for the KEK photon factor advanced ring.

3.3 Quadrupole magnets and beam focusing
Beam focusing requires restoring forces which scale linearly with the distance from the center defining
the optical axis of the focusing device. Since the Lorentz force is proportional to the magnetic field,
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beam focusing can be achieved with transverse magnetic fields scaling linearly with the transverse offset
(x,y). Whereas focusing in the horizontal plane requires a vertical field By proportional to x, focusing
in the vertical plane requires a horizontal field Bx proportional to y. Such fields are given by the second
upright magnetic multipole, the quadrupole:

By = −g · x, Bx = −g · y with g = −∂By

∂x
= −∂Bx

∂y
= const. (38)

The corresponding potential can be taken from Eq. 25 and reads using the gradient g as proportionality
factor

Φ(x, y) = g · x · y . (39)

Four hyperbolic equipotential surfaces are thus required defining the poles’ profiles and position for
positive and negative values for Φ0 and x according to

y(x) = ±Φ0

gx
. (40)

We therewith get a quadrupole magnet which consists of four hyperbolic poles connected by a return
yoke. The magnetic field is exited by four coils wound around the poles (cf. Fig. 8).

Figure 8: Cross section of a quadrupole magnet creating a B field which scales linearly with x and y.

Φ0 can be expressed by the smallest distance of the poles from the center which is called the aperture a

Φ0 = Φ(
a√
2
,
a√
2
) =

1

2
ga2 . (41)

Hence, the pole geometry of a quadrupole is exclusively determined by its aperture a

y(x) = ± a2

2x
. (42)

The generated quadrupole field can be calculated from Ampère’s law computing the line integral along
the integration path indicated in Fig. 9

nI =

∮
H⃗ · ds⃗ =

∫ 1

0
H⃗0 · ds⃗+

∫ 2

1
H⃗iron · ds⃗+

∫ 0

2
H⃗ · ds⃗ . (43)

Again |Hiron| ≪ |H0| and the second integral does not contribute substancially. The third integral
vanishes since H⃗ ⊥ ds⃗ along the integration path chosen. We therefore get in good approximation

nI =
1

µ0

∫ a

0
grdr → g =

2µ0nI

a2
, (44)
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Figure 9: Integration path used to compute the quadrupole gradient as a function of the Ampère-turns.

indicating the required ampere-turns nI to generate a gradient g for a quadrupole magnet with a given
aperture a.

The restoring force acting on the charged particles traversing the quadrupole magnet can be derived
from inserting the quadrupole field in the Lorentz force. Again, we will use our right-handed coordinate
system (x, y, s) and obtain

F⃗ = q ·
(
v⃗ × B⃗

)
= qvg · (xêx − yêy) . (45)

A quadrupole magnet is therefore focusing only in one plane and defocusing in the other,
depending on the sign of the gradient g and the charge q!

According to Section 2.2 the quadrupole strength k can be derived from a normalization with
the factor q

p . It indicates the focusing strength of a quadrupole and has the unit of inverse square meters:

k =
q

p
g =

qµ0
p

nI

a2
, [k] = m−2 . (46)

The sign of the quadrupole strength k determines if a particle beam is focused or defocused. It is common
practice to name a quadrupole magnet a focusing quadrupole if it is focusing in the horizontal plane. Such
a quadrupole will act defocusing in the vertical plane. According to Eqs. (45)–(46) horizontal focusing
is achieved for negative k and vertical focusing is achieved for positive k:

– a focusing quadrupole magnet is horizontal focusing and vertical defocusing and has k < 0,
– a defocusing quadrupole magnet is horizontal defocusing and vertical focusing and has k > 0.

In order to gain a more illustrative understanding of the quadrupole strength we will look at a very
“thin” quadrupole, applying the approximation of a thin lens. Thin in this context means that the length
L of the quadrupole magnet is much smaller than its focal length f . In this approximation we can neglect
that the beam size is already changing in the quadrupole field.

From the triangles in Fig. 10 we get

tanα =
x

f
=
L

R
= L

q

p
By = −q

p
gxL = −xkL . (47)

We therewith obtain the following useful relations for the horizontal (fx) and vertical (fy) focusing
lengths of a thin quadrupole magnet acting as an “ideal” lens:

1

fx
= −kL, 1

fy
= kL for L≪ |fx| . (48)
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Figure 10: Beam deflection in a “thin” quadrupole magnet with L≪ f.

3.4 Sextupole magnets
We can extend our treatment to higher multipoles and will exemplarily discuss the multipole of next
higher order, the sextupole. Again, the magnetic field and potential can be taken from Eqs. (26)–(25).
Using g′ as proportional factor the magnetic field is

B⃗ =
1

2
g′
(
x2 − y2

)
êy + g′xyêx with g′ =

∂2By

∂x2
= const. , (49)

and the corresponding potential reads

Φ(x, y) =
1

6
g′
(
y3 − 3x2y

)
. (50)

Six equipotential surfaces are thus required defining the poles’ profiles and position according to

x(y) = ±

√
y2

3
± 2Φ0

g′y
. (51)

We therewith get a setupole magnet which consists of six poles connected by a return yoke. The magnetic

Figure 11: Pole profile and cross section of a setupole magnet.

field is exited by six coils wound around the poles (cf. Fig. 11).

13



Again Φ0 can be expressed by the aperture a

Φ0 = Φ(0, a) =
1

6
g′a3 , (52)

and the geometry of the poles is exclusively determined by the aperture a

x(y) = ±

√
y2

3
± a3

3y
. (53)

The g′ parameter may be related to the current of the coils by evaluating the line integral along the integ-
ration path indicated in Fig. 12

nI =

∮
H⃗ · ds⃗ =

∫ 1

0
H⃗0 · ds⃗+

∫ 2

1
H⃗iron · ds⃗+

∫ 0

2
H⃗ · ds⃗ . (54)

Again |Hiron| ≪ |H0| and the second integral does not contribute substancially. The third integral

Figure 12: Integration path used to compute the sextupole gradient g’ as a function of the Ampère-turns.

vanishes since H⃗ ⊥ ds⃗ along the integration path chosen. We therefore get in good approximation

nI =
1

µ0

∫ a

0

g′

2
y2dy → g′ =

6µ0nI

a3
, (55)

indicating the required ampere-turns nI to generate a gradient g′ for a sextupole magnet with a given
aperture a.

The sextupole strengthm is derived from a normalization with the factor q
p and has the unit inverse

qubic meters:

m =
q

p
g′ =

6qµ0
p

nI

a3
, [m] = m−3 . (56)

A simple understanding of the action of a sextupole will be given later in Section 8.4. In any case we will
expect a coupling of the particles’ motion in the horizontal and vertical plane from the y-dependence of
the vertical and the x-dependence of the horizontal magnetic field.

3.5 Effective field length
So far, we assumed that all magnets will produce only transverse magnetic fields components which do
not vary inside the magnet and immediatly drop to zero outside the magnet. However, in reality there will
be fringe fields at the end of the magnets which will have a longitudinal field component and gradually
decrease to zero. For the following we will neglect the longitudinal field components since they only
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marginally act on the beam. In order to use a field distribution not varying with s, we define an effective
field length leff via ∫ ∞

−∞
B⃗(x, y, s) · ds = B⃗0(x, y) · leff , (57)

which enables us to use a pure transverse magnetic field B⃗0(x, y) which will not vary inside the magnet
and will drop to zero outside the effective field length. This approximation is illustrated in Fig. 13. Please

Figure 13: Rectangular approximation of the evolution of the transverse field component along a magnet. Outside
the effective field length, the field will immediatly drop to zero.

note that the effective field length will not equal the iron length of a given magnet.

4 Equations of motion in the transverse planes
The following sections will deal with the effect of transverse magnetic fields on the dynamics of charged
particles utilizing the multipole decomposition in cartesian coordinates which has been dervied in Sec-
tion 2.2. We will concentrate on the transverse beam dynamics and therefore decouple the motion of
the beam particles in the plane transverse to the orbit from their longitudinal motion. The goal of this
section is to derive the equations of motion in a transverse plane evolving along the orbit. We will utilize
a special coordinate system which is following the design orbit.

4.1 Coordinate system following the reference orbit
Since we are interested in the evolution of the particles’ small transverse deviations from the reference
orbit, a fixed cartesian reference frame would not be well suited for the description of the transverse
dynamics. Instead, we will use an orthogonal right-handed reference frame (x, y, s) which is attached
with its origin to the reference orbit. We will restrict ourself to a flat reference orbit lying in the (x, s)
plane and define the coordinate unit vectors êx, êy, ês in the following way:

– ês is tangential to the reference orbit and pointing in the direction of the reference particle’s speed,
– êy is perpendicular to the plane defined by the flat reference orbit and is pointing upwards,
– êx = êy × ês is in the plane defined by the reference orbit.

The longitudinal coordinate s (sometimes named the arc length parameter) is measured along the design
orbit starting from a position on the reference orbit which is often chosen as the start of a beam transfer
line or a symmetry point in a circular accelerator. Figure 14 illustrates the coordinate system following
the reference orbit.

Remarks: It is important to notice that this frame is not co-moving with the particles (as misleadingly
stated in many textbooks) but fixed to the laboratory at any time! Otherwise, if using an accelerated co-
moving frame complicated Lorentz transformations would be necessary. However, the orientation of our
frame following the orbit is defined by the curved reference orbit and thus changing. We therefore name
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Figure 14: Right-handed coordinate system (x, y, s) following the reference orbit. The unit vectors êx and ês
define the orbit plane, êy is perpendicular to it and pointing upwards.

it a frame “following the reference orbit”. Sometimes it is referred to as “Frenet-Serret” coordinates,
which is again not fully conform with our definitions. In Frenet-Serret coordinates the “normal” and
“binormal” unit vectors n̂ and b̂ are defined as

n̂ =
∂ês
∂s

|∂ês∂s |
, b̂ = ês × n̂ . (58)

Thus n̂ = ±êx and b̂ = ±êy depending on the sign of the curvature κ = 1/ρ which is always positive in
Frenet-Serret coordinates according to its definition via ∂ês

∂s = κ · n̂. Although Frenet-Serret coordinates
seem to be well defined in storage rings where all main dipole magnets deflect the beam in the same
direction and thus allowing to define the coordinate vectors such that one obtains an always positive
curvature, their usage will inevitably lead to confusion when being applied to beam transfer lines where
the beam might be bent in opposite directions.

4.2 Geometric optics
We now want to start with a simplified treatment of the transverse beam dynamics utilizing an approach
which is typically applied in geometric light optics. Here, the transverse position of a light ray is char-
acterized by its transverse displacements from the optical axis. We can adopt this approach to charged
particles moving through magnetic bending and focusing fields by first defining a reference path which
corresponds to the optical axis in light optics. The reference path indicates the trajectory of an “ideal”
particle (the reference particle) moving along the design orbit and can thus be identified with the design
orbit. Using our coordinate system following the design orbit, we can define transverse displacements
x(s) and y(s) from the design orbit at a given longitudinal position s and therewith characterize the trans-
verse position (x, y) of an individual beam particle. This is illustrated in Fig. 15 for the horizontal plane.
The change of the transverse displacements are defined by the derivatives

x′ =
dx

ds
= tanαx , y′ =

dy

ds
= tanαy , (59)
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Figure 15: Top view on the reference path (red curve) and the trajectory of a charged particle with horizontal
transverse displacements x(s) (dashed curve) moving through a sequence of different accelerator magnets.

and are often called the angular displacements since they are related to the angles αx, αy of the projection
of the particle’s trajectory on the (x, s) or (y, s) planes with the reference orbit as illustrated in Fig. 16.

Figure 16: Transverse position and angular displacements in paraxial optics can be derived from the projection of
the particle’s orbit on the horizontal and vertical planes.

In case of small displacements x, y ≪ ρ and x′, y′ ≪ 1 which corresponds to the so-called
paraxial optics, αx,y = tanαx,y holds in good approximation. We can then characterize each particle
by its horizontal and vertical position-dependent vectors

x⃗ =

(
x
x′

)
, y⃗ =

(
y
y′

)
. (60)

The planes (x, x′), (y, y′) are called the transverse trace spaces.

We will now concentrate on first two magnetic multpoles and compute the changes of the initial
vectors x⃗0, y⃗0 caused by a beam line “element” like a drift, dipole magnet or quadrupole magnet.

In a drift section, the angular displacements remain unchanged

x′ = x′0 , y′ = y′0 , (61)

whereas position displacements will change linearly with increasing drift length L

x = x0 + Lx′ , y = y0 + Ly′ . (62)

Since a dipole magnet will deflect each particle on a circular orbit with radius ρ independent of
its initial transverse displacements, it will to first approximation act like a drift in free space.
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Figure 17: Change of the transverse position and angular displacments in a drift and a focusing lens when applying
the appromiation of paraxial optics.

When a charged particle traverses a thin quadrupole magnet of length L ≪ f it will only get
a kick changing the angular displacements by an angle ∆α depending on the position displacement and
the quadrupole’s focal length

x′ = x′0 −
x′0
fx

, y′ = y′0 −
y′0
fy

, fx = −fy , (63)

whereas its position displacements will remain unchanged, thus

x = x0 , y = y0 . (64)

Hence, the action of a drift space and the first two magnetic multipoles can be described by linear maps,
where the trace space vectors x⃗ and y⃗ are transformed by multiplying a matrix Mx or My

x⃗ = Mxx⃗ , y⃗ = Myy⃗ , (65)

which is called the horizontal or vertical transfer matrix of the corresponding beam line element. From
Eqs. (61)–(64) we obtain the following transfer matrix for a drift or dipole of length L

Mdrift,x = Mdrift,y = Mdip,x = Mdip,y =

(
1 L
0 1

)
, (66)

and for a thin quadrupole

Mquad,x =

(
1 0

− 1
fx

1

)
, Mquad,y =

(
1 0

− 1
fy

1

)
. (67)

Please note that these matrices represent only the lowest order approximation of the linear maps for
the first two magnetic multipoles (treating dipoles like a drift and restricting to thin quadrupoles)!

Applying this formalism to a real beam transfer line, the transformation of the trace space vectors
of a particle can be calculated by simple matrix multiplication. For instance, we obtain for the change of
horizontal vector X⃗0 at the entrance of our example beam line in Fig. 15

x⃗ = Mdrift,6·Mquad,3·Mdrift,5·Mdip,2·Mdrift,4·Mquad,2·Mdrift,3·Mdip,1·Mdrift,2·Mquad,2·Mdrift,1·x⃗0 , (68)

where the matrices of the elements have to be ordered from right to left, thus starting with the last
element (drift,6 - the last drift section) and ending with the first element (drift,1 - the first drift section).
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The complete beam transfer line can thus be represented by a single matrix, called the transfer matrix
M, which is computed by multiplying the matrices Mi of the individual elements i:

M =
∏
i

Mi . (69)

If one is interested in the displacements at an intermediate position s in the beam line, this multiplication
then only comprises the matrices of the elements located before this position:

M(s) =

N(s)∏
i=1

Mi → x⃗(s) = M(s) · x⃗0 . (70)

This approach allows the piece-wise calculation of the particle’s full trajectory.

4.3 Equations of motion
A more correct treatment of the transverse beam dynamics requires solving the equations of motion. For
this, we first need to derive these equations. In order to continue using linear maps, we will restrict our
treatment to an approximation considering only linear terms.

We start introducing the transverse position vector of a moving particle at longitudinal position s:

R⃗(s) = [ρ+ x(s)] · êx(s) + y(s) · êy(s) . (71)

Please note that the unit coordinate vectors of our coordinate system following the orbit will change

Figure 18: Coordinates of a charged particle moving on a curved orbit. Left: local orbit with positive curvature
κ = 1

ρ > 0. Right: local orbit with negative curvature κ = 1
ρ < 0.

their orientation and will thus be dependent on s. In the following, we will concentrate on a local orbit
with positive curvature (the case ρ < 0 can be treated fully analog). We use polar coordinates for
the horizontal plane and get

êx =

(
cosφ
sinφ

)
, êφ = −ês =

(
− sinφ
cosφ

)
. (72)

An increase ds along the reference orbit will thus lead to a rotation of êx and ês by

dφ = −1

ρ
ds , (73)

and we get for the derivative of the unit vectors with respect to s

d

ds
êx = ê′x = +

1

ρ
ês ,

d

ds
ês = ê′s = −1

ρ
êx . (74)
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From here on we will use “prime” for derivatives with respect to the longitudinal coordinate s and “dot”
for derivatives with respect to time t. For a particle moving with speed vs along the reference orbit these
derivatives are linked via

d

dt
=

d

ds

ds

dt
= vs ·

d

ds
. (75)

For the following, we make four fundamental assumptions simplifying our derivations:

– All particles are moving with individual, but constant longitudinal velocities ṡ = vs = const.
The longitudinal velocity is much larger than the transverse velocity components vx, vz .

– The curvature of the orbit is varying “slowly”. All derivatives ρ′, ρ′′, ... are therefore neglected.
– The design orbit is in the (x, s) plane. The vertical coordinate vector is independent of s, ê′y = 0.
– The transverse displacements are small compared to the bending radius of the orbit (paraxial op-

tics). There exist no coupling of the transverse to the longitudinal motion. We will therefore
neglect all the longitudinal components and put Rs = R′

s = R′′
s = 0.

Setting r(s) = ρ+ x(s) and stop explicitly indicating the s dependence, we simply write

R⃗ = r · êx + y · êy , (76)

and obtain for the derivatives

R⃗′ = x′ · êx +
r

ρ
· ês + y′ · êy , (77)

R⃗′′ =

(
x′′ − r

ρ2

)
· êx + y′′ · êy + 2

x′

ρ2
· ês , (78)

where all terms along ês will be ignored according to our fundamental assumptions. The change of
the transverse position vector R⃗ is caused by the external Lorentz force leading to a momentum change

dp⃗

dt
= γrm0

d2R⃗

dt2
= q

(
v⃗ × B⃗

)
. (79)

Since in this equation the second derivative of the position vector with respect to time appears, we have
to transform “prime” to “dot”. The transformation for the reference particle given by Eq. (75) has to be
generalized for particles moving with a horizontal displacement x from the reference orbit with constant
vs. From geometrical considerations we obtain (cf. Fig. 19)

Figure 19: Path length element ds for a particle moving with constant velocity vs and horizontal offset x at radius
r = ρ+ x.

ds = vsdt

(
ρ

ρ+ x

)
=
(ρ
r

)
vsdt → d

dt
= vs

(ρ
r

) d

ds
, (80)
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and therewith get

¨⃗
R =

(
vs
ρ

r

)2
R⃗′′ =

(
vs
ρ

r

)2
·
[(
x′′ − r

ρ2

)
· êx + y′′ · êy

]
. (81)

Since vx ≪ vs and vy ≪ vs the Lorentz force can be simplified to

q
(
v⃗ × B⃗

)
= q [−vsBy êx + vsBxêy + (Byvx −Bxvy) ês] ≈ qvs (−By êx +Bxêy) . (82)

Combining Eqs. (79), (81) and (82), and using p = γrm0vs we obtain the equations of motion with
respect s: (

x′′ − x+ ρ

ρ2

)
· êx + y′′ · êy =

q

p

(
x+ ρ

ρ

)2

(−By êx +Bxêy) . (83)

We restrict the magnetic field components to the first two normal magnetic multipoles

Bx = −p0
q
ky , By =

p0
q

(
1

ρ
− kx

)
. (84)

where the multipole strengths 1
ρ and k are normalized to the momentum p0 of the reference particle,

the reference momentum. Since Eq. (83) deals with the actual momentum p of a non-reference particle,
we have to find a simple approximation of the fraction p0

p . We therefore assume a small momentum
deviation ∆p = p− p0 and approximate the reciprocal value 1

p by its first order Taylor expansion

1

p
≈ 1

p0
+∆p

∂ (1/p)

∂p

∣∣∣∣
p=p0

=
1

p0

(
1− ∆p

p0

)
. (85)

Inserting this we obtain

x′′ =
x

ρ2
+

1

ρ
−
(
1− ∆p

p0

)(
1 +

x

ρ

)2(1

ρ
− kx

)
, (86)

y′′ = −
(
1− ∆p

p0

)(
1 +

x

ρ

)2

ky . (87)

Keeping only the lowest order and neglecting all non-linear terms finally lead to the linearized equations
of motion

x′′(s) +

(
1

ρ2(s)
− k(s)

)
· x(s) = 1

ρ

∆p

p0

y′′(s) + k(s) · y(s) = 0

. (88)

It is once again worth mentioning the list of approximations which have been used to derive these
equations:

– paraxial optics where x, y ≪ ρ and vs = const.,
– flat accelerators for which the design orbit lies in a plane,
– linear field changes represented by the first two magnetic multipoles (dipoles and quadrupoles),
– upright magnets ensuring that the motion in the horizontal and vertical plane is decoupled,
– quasi monochromatic beam with only small deviations ∆p from the reference momentum p0,
– only linear terms in x, y,∆p thus restricting to linear beam optics.

One could think that these restrictions would significantly limit the usability of the linearized equations
of motion. In fact it turns out that this is not the case. We will discover that the application of Eqs. (88) in
the framework of the transverse linear beam dynamics will lead to valuable and deep insights into beam
dynamics in particle accelerators. A treatment of more sophisticated non-linear problems is, however, not
possible using Eqs. (88). This requires a different approach using the Hamilton formalism and non-linear
maps, which is out of the scope of this introductory course.
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5 Matrix formalism
In the linearized equations of motion, the transverse dynamics of charged particles in an accelerator (or
a beam transfer line) is fully determined by the location of the installed dipole and quadrupole magnets
(the lattice), their individual multipole strengths 1

ρ and k, and the particles’ relative momentum deviations
∆p
p0

. Since the multipole strengths will change from magnetic element to magnetic element and thus
with longitudinal position s, an analytical solution of the linearized equations of motion can only be
derived for special and simple cases. However, when concentrating on a beam line element for which
the multipole strengths remain constant, the equations of motion turn to linear differential equations
with constant coefficients which can be easily solved analytically. Thus, one powerful method to handle
the problem of the s dependence of the coefficients is to segment the orbit in segments with constant
multipole strengths, solve Eq. (88) for each section seperately, and connect the solutions for the different
sections to a continuous function. This is possible since the equations of motion are linear, allowing
to represent the solutions for the different sections by linear maps (matrices). As already presented in
Section 4.2, these matrices can be applied to the position vectors x⃗ and y⃗ transforming the particle’s initial
coordinates before the element to its final coordinates after the element. This procedure can be repeated
element by element by taking the final coordinates after the previous element as initial coordinates before
the next one and thus leading to a sequential application of the matrices of the individual elements as in
Eq. (70), from which the transfer matrix M(s0, s) of a choosen larger section s0 → s of a complicated
magnetic lattice can be calculated:

M(s0, s) =

n(s)∏
i=m(s0)

Mi → x⃗(s) = M(s0, s) · x⃗(s0) . (89)

Hence, the problem reduces to derive the transfer matrices of the individual beam line elements with
constant multipole strengths, from which the transfer matrix of a given lattice can be calculated according
to Eq. (89). These are namely the free drift, the dipole magnets and the quadrupole magnets (we will
not consider so-called combined function magnets with non-vanishing dipole and quadrupole strengths).
Since we are in the first instance not interested in the influence of a momentum deviation, we will
derive the matrices setting ∆p

p0
= 0 (monochromatic beam). The impact of a non-vanishing momentum

deviation will be presented in the last section on dynamics with off momentum particles.

5.1 4x4 vectors and transverse trace spaces
We will characterize a particle’s state by a 4x4 vector built from the transverse displacements from
the design orbit (our relative coordinates):

x
x′

y
y′

 =


horizontal displacement

horizontal angular displacement
vertical displacement

vertical angular displacement

 . (90)

The plane (x, x′) forms the horizontal trace space, the plane (y, y′) forms the vertical trace space. Both
are often called phase space, which is, strictly speaking, not correct since the phase space is represen-
ted by the canonical conjugated coordinates (x, px) or (y, py) respectively. In case of monochromatic
beams with constant momentum (e.g. no post acceleration), the angular displacements are linked to the
transverse momenta by a constant factor βrγrm0c (cf. Section 7.11)

px = βrγrm0c · x′ , py = βrγrm0c · y′ , (91)

and the trace space can be identified with the phase space.
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We will use the matrix formalism applying 4x4 matrices to the 4x4 vectors to compute particle tra-
jectories. Since we restricted our treatment to upright magnets, there will be no coupling of the transverse
planes. Thus, the 4x4 matrices of all magnetic variants will simplify to

M =


r11 r12 0 0
r21 r22 0 0
0 0 r33 r44
0 0 r43 r44

 , (92)

with maximum 8 non-vanishing elements rik.

5.2 Drift space
Since k = 1

ρ = 0, the equations of motion for a free drift simplify to

x′′(s) = 0 ,

y′′(s) = 0 .
(93)

We thus get for known initial values x0, x′0, y0, y
′
0 and a drift length L

x(L) = x0 + L · x′0
y(L) = y0 + L · y′0

and
x′(L) = x′0
y′(L) = y′0

, (94)

yielding the transfer matrix of a drift with length L:

Mdrift =


1 L 0 0
0 1 0 0
0 0 1 L
0 0 0 1

 . (95)

5.3 Dipole magnet
We will first consider a sector dipole magnet for which the end faces are perpendicular to the reference
orbit. When assuming that the magnetic field drops instantaneously to zero outside the dipole and re-

Figure 20: Left: Sector dipole magnet for which both magnet end faces are perpendicular to the reference orbit.
The length of the curved orbit is the arc length L.

mains constant in the dipole, the reference orbit is bent with constant radius ρ between the two end faces.
The length L of the curved reference orbit (the “arc length”) is determined by the deflection angle φ and
the bending radius ρ and equals

L = ρ · φ . (96)

Since k = 0 for a dipole magnet, the equations of motion reduce to

x′′(s) +
x

ρ2
= 0 ,

y′′(s) = 0 ,
(97)
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and are solved for known initial values x0, x′0, y0, y
′
0 by

x(L) = x0 · cosφ+
x′0
ρ

· sinφ ,

y(L) = y0 + L · y′0 ,
(98)

thus yielding the transfer matrix of a sector dipole magnet of arc length L = ρφ

Mdip =


cosφ ρ sinφ 0 0

−1
ρ sinφ cosφ 0 0

0 0 1 ρφ
0 0 0 1

 . (99)

A sector dipole is therefore focusing in the horizontal plane and acts like a drift in the vertical plane.

Often, dipole magnets are built as rectangular magnets for which the end faces are parallel to each
other and passed by the beam under an angle different from 90°. Here, we will only consider the situation
with a symmetric path, cf. Fig. 21.

Figure 21: Left: Rectangular dipole magnet for which both magnet end faces are parallel and passed by the
reference orbit under an angle 90°+ψ greater than 90°. The length of the curved reference orbit is the arc length
L. Right: A particle with offset x passes the dipole face which is inclined in the (x, s) plane. Due to the reduced
path length δs in the dipole it is less deflected by an angle ∆φ.

In the bending plane, the reference orbit has an angle Ψ with the normal to the end surface.
Particles with a horizontal offset x either have a longer or shorter path in the dipole field than the reference
particle, the path length difference is δs = −x · tanΨ. These particles will be bent more or less,
resulting in an increase or decrease of total deflection angle by ∆φ = δs

ρ = −x
ρ tanΨ and thus leading

to an additional change of the angular displacement by ∆x′ = −∆φ. This additional bending is called
the horizontal “edge effect” and can be described by an additional matrix Medge,x acting on x and x′ in
the horizontal trace space

Medge,x =

(
1 0

tanΨ
ρ 1

)
, (100)

following and/or preluding the matrix of a sector dipole. It acts focusing or defocusing on the beam,
depending on the sign of Ψ and is called edge focusing. For a symmetric path in a rectangular magnet,
Ψ is positive and we obtain an additional horizontal defocusing.

The situation in the vertical plane is different. A correct treatment of the vertical edge effect
requires to consider that the magnetic field cannot instantaneously drop off behind the end faces, thus
leading to so called “fringe fields” having a non-vanishing component Bz ̸= 0 perpendicular to the end
face which decreases with increasing distance z to the end face.

24



Figure 22: Left: Decomposition of the z component of the fringe field into components parallel and perpendicular
to the particle’s orbit. Right: The chosen integration path for calculating the z component of the fringe field.

The integral effect of this fringe field component can be estimated by applying Ampère’s law and
chosing a closed integration path in the plane perpendicular to the end face, cf. Fig. 22

0 =

∮
B⃗ ·ds⃗ =

∫ y

0
Bydy

∣∣∣∣
inside

+

∫ outside

inside
Bz(y)dz+

∫ 0

y
Bydy

∣∣∣∣
outside

+

∫ inside

outside
Bz(y = 0)dz . (101)

Since neither the horizontal path at the reference orbit nor the vertical path far away outside the magnet
make a contribution, we simply get

B0 · y = −
∫ outside

inside
Bz(y)dz , (102)

where B0 denotes the homogeneous vertical bending field inside the dipole magnet. The field Bz can be
decomposed in a longitudinal and a transverse component (cf. Fig. 22),

Bx = −Bz · sinΨ , Bs = Bz · cosΨ , (103)

of which only the transverse component will have an impact on the beam. The resulting vertical bending
angle can be calculated by integrating along ds = dz

cosΨ , yielding

∆y′ =
q

p0

∫
Bxds =

q

p0
tanΨ

∫
Bzdz . (104)

Using Eq. (102) and q
p0

= 1
B0ρ

, we finally obtain

∆y′ = −tanΨ

ρ
y . (105)

Thus, the vertical edge effect can be described by an additional matrix Medge,y acting on y and y′ in
the vertical trace space

Medge,y =

(
1 0

− tanΨ
ρ 1

)
, (106)

again following and/or preluding the matrix of a sector dipole. For a symmetric path in a rectangular
magnet, we obtain an additional vertical focusing.

Both matrices Medge,x and Medge,y can be combined to a 4x4 matrix describing the edge effect
when the beam enters / exits the magnetic field of a rectangular dipole magnet:

Medge =


1 0 0 0

tanΨ
ρ 1 0 0

0 0 1 0

0 0 − tanΨ
ρ 1

 . (107)
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Since for a symmetric path Ψ = φ
2 , we obtain for the transfer matrix of a rectangular dipole magnet

Mrect = Medge ·Mdip ·Medge =


1 ρ sinφ 0 0
0 1 0 0
0 0 1− ρφ

f ρφ

0 0 ρφ
f2 − 2

f 1− ρφ
f

 , (108)

where we have put 1
f = 1

ρ tan
(φ
2

)
. Using tan

(φ
2

)
= 1−cosφ

sinφ and ρ sinφ ≈ ρφ we approximately get

Mrect ≈


1 ρφ 0 0
0 1 0 0
0 0 cosφ ρφ

0 0 − sin2 φ
ρφ cosφ

 . (109)

A rectangular magnet thus shows exactly the opposite behaviour of a sector dipole manget: it is focusing
in the vertical plane and acts like a drift in the horizontal plane.

5.4 Quadrupole magnet
For a pure quadrupole magnet the bending term vanishes, 1

ρ = 0. The equations of motion reduce to

x′′(s)− k(s) · x(s) = 0 ,

y′′(s) + k(s) · y(s) = 0 .
(110)

Their solutions depend on the sign of the quadrupole strength k. For k < 0 we get the solution for
a quadrupole magnet QF which is horizontal focusing and vertical defocusing

x(s) = a · cos
(√

|k|s
)
+ b · sin

(√
|k|s
)
,

y(s) = c · cosh
(√

|k|s
)
+ d · sinh

(√
|k|s
)
.

(111)

The integration constants a, b, c, d can be derived from the initial values x0, x′0, y0, y
′
0 at s = 0:

x(s = 0) = a = x0 , x′(s = 0) =
√
|k|b = x′0 ,

y(s = 0) = c = y0 , y′(s = 0) =
√
|k|d = y′0 .

(112)

Substituting and building the first derivative, we obtain the transfer matrix MQF of a horizontal focusing
quadrupole QF of length L which for L → 0 reduces to the first order approximation presented in
Section 4.2 (cf. Eq. (67))

MQF =


cosΩ 1√

|k|
sinΩ 0 0

−
√
|k| sinΩ cosΩ 0 0
0 0 coshΩ 1√

|k|
sinhΩ

0 0
√
|k| sinhΩ coshΩ

 L→0
≈


1 0 0 0
− 1

f 1 0 0

0 0 1 0
0 0 1

f 1

 ,

(113)
where we have set Ω =

√
|k| · L and 1

f = −kL.

The case k > 0 can be treated completely analog. It deals with a horizontal defocusing quadrupole
QD represented by the transfer matrix MQD

MQD =


coshΩ 1√

|k|
sinhΩ 0 0√

|k| sinhΩ coshΩ 0 0
0 0 cosΩ 1√

|k|
sinΩ

0 0 −
√
|k| sinΩ cosΩ

 L→0
≈


1 0 0 0
1
f 1 0 0

0 0 1 0
0 0 − 1

f 1

 .

(114)
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5.5 General properties of the transfer matrices
Each 4x4 transfer matrix consists of two 2x2 matrices Mx, My parametrizing the transformation of
the coordinates in the horizontal and the vertical trace space:

M =

 Mx

(
0 0
0 0

)
(
0 0
0 0

)
My

 . (115)

The elements of the 2x2 matrices can be expressed by the two independent fundamental solutions C(s)
and S(s) of the equations of motion and their derivatives C ′(s) and S′(s). This representation of the 2x2
transfer matrix acting either on (x, x′) or (y, y′) is known as the fundamental matrix or the “CS-matrix”

M =

(
C S
C ′ S′

)
, (116)

where we have skipped the index x or y for reasons of simplicity. Please note that only in case of constant
multipole strengths, C(s) and S(s) are simple Cosine and Sine functions. In all cases, the fundamental
solutions do not only depend on s but as well on the initial position s0. In particular we have for s = s0

M(s0, s0) =

(
1 0
0 1

)
= I . (117)

So, the determinant in this case is det (M(s0, s0)) = 1, which in general is represented by the so-called
Wronskian

det (M) = det

(
C S
C ′ S′

)
= CS′ − SC ′ . (118)

The derivative of the Wronskian vanishes
d

ds
det (M) = C ′S′ + CS′′ − S′C ′ − SC ′′ = CS′′ − SC ′′ = 0 , (119)

since C and S are solutions of the equations of motion and thereby satisfy C ′′ = −KC and S′′ = −KS.
Thus, the Wronskian is constant. Using Eq. (117) we obtain the very important result that the determinant
of the transfer matrix always equals one:

det (M) = det

(
C S
C ′ S′

)
= CS′ − SC ′ = 1 . (120)

5.6 Particle trajectories
With the derived transfer matrices particle trajectories may be calculated for any given arbitrary beam
transport line by applying the matrix formalism consisting of a sequential application of the transfer
matrices according to Eq. (89). However, a real beam consists of very many particles and we are mainly
interested in the evolution of macroscopic beam parameters like beam size and beam divergence along
a beam transport line. One could think that the envelope of a real beam might be represented by a single
trajectory of a “characteristic particle” with maximum transverse displacement from the reference or-
bit. Unfortunately, this is not the case since all particles are performing individual oscillations around
the reference orbit (cf. Fig. 23).

Thus, we have to extract the beam size from the whole set of particles forming an “ensemble”. In
a straight-forward approach, the beam envelope could be calculated by determining the maximum of all
individual transverse displacements at a given longitudinal position s and repeating this procedure for
different s. Of course, this brute-force approach will be very time-consuming and in addition not well
suited for gaining more insight in the transverse dynamics of real beams. We are rather interested in
a more elegant formalism in which we can take use of the derived transfer matrices. It turns out that such
a formalism exists. It is based on transforming the distribution of particles in the trace space, which will
be defined in the next section.
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Figure 23: Evolution of the horizontal envelope of a real beam formed by very many particles with individual
trajectories.

6 Linear beam optics in transfer lines
6.1 Particle beams and trace space
Each particle of a beam is characterized by its transverse displacements x, x′, y, y′. These displacements
are dependent on the longitudinal position s and thus vary along the beam transfer line. If we take
a snapshot at a fixed s (which often is called a Poincaré section), we will obtain a distribution of points
in the 4-dimensional transverse trace space, where each point represents a single particle. The beam’s
transverse properties at position s are therefore completely characterized by the distribution of points
in the transverse trace space (x, x′, y, y′). Since in linear beam dynamics the motions in the horizontal
and vertical planes are decoupled, we can treat the 2-dimensional horizontal and vertical trace spaces
separately. In the following, we will therefore concentrate on one of the two 2-dimensional trace spaces
(x, x′) and (y, y′) using the coordinate u which can be either x or y. In this universal notation the 2-
dimensional trace space is then formed by (u, u′) and can be either the horizontal or the vertical one.
Figure 24 represents a typical distribution of particles in such a trace space at a fixed s.

Figure 24: Distribution of points in trace space (u, u′) at a fixed longitudinal position s. Each point represents
a single particle. Since the distribution of points shows a correlation of ui and u′i, further calculations are carried
out in a rotated frame (U,U ′) with vanishing correlation of Ui and U ′

i .

In the following, we will assume that the beam is centered on the reference orbit. Since u and u′
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indicate the displacements from the reference orbit, this implies that their mean values will vanish:

⟨u⟩ = 1

N

N∑
i=1

ui = 0 , ⟨u′⟩ = 1

N

N∑
i=1

u′i = 0 . (121)

The transverse distributions of the beam can thus be characterized by the variances

σ2u = ⟨u2⟩ = 1

N

N∑
i=1

u2i , σ2u′ = ⟨u′2⟩ = 1

N

N∑
i=1

u′i
2
. (122)

6.2 Beam emittance
We still restrict our treatment to monochromatic beams, where the momenta |p⃗i| of all particles are
constant and equal to the reference momentum p0. Therefore, the transverse angular displacements u′i
differ from the transverse momenta pui by only a constant factor βrγrm0c and the famous theorem of
Liouville can be applied as well to the trace space. It states that the phase space distribution function,
describing the density of possible states around a phase space point, is invariant under conservative
forces. Applying this to a freely chosen subset of particles (representing possible “states” of our system)
we can conclude that the phase space area occupied by any subset of particles is constant. Thus, it
shall also apply for the beam as a whole stating, that the phase space area covered by the beam remains
constant. Since for constant momenta the areas in phase space and trace space differ by only a constant
factor, the same applies for the trace space.

This gives rise to the definition of the beam emittance ϵu as the area covered by the beam divided
by π:

ϵu =
trace space area

π
. (123)

But how do we define the phase space area covered by the beam? A first possibility is to request that
this area comprises all the particles. This would immediately lead to difficulties if the beam has some
irregular tails which then would completely dominate the emittance. Instead, it is more advisable to
define the emittance with a fraction of the beam only. The most “clean” definition is the one using
the variances σ2u and σ2u′ . Since, as can be seen in Fig. 24, ui and u′i are usually correlated, we will
change to a rotated coordinate system in which the correlation vanishes. We therefore define a system
(U,U ′) which is rotated by an angle θ by the following coordinate transformations:

Ui = ui · cos θ + u′i · sin θ ,
U ′
i = −ui · sin θ + u′i · cos θ ,

(124)

and obtain for the variances in the rotated system

σ2U =
1

N

N∑
i=1

U2
i = ⟨u2⟩ cos2 θ + ⟨u′2⟩ sin2 θ + ⟨uu′⟩ sin(2θ) ,

σ2U ′ =
1

N

N∑
i=1

U ′
i
2
= ⟨u2⟩ sin2 θ + ⟨u′2⟩ cos2 θ − ⟨uu′⟩ sin(2θ) .

(125)

The variances are minimized / maximized with respect to the angle θ when

∂σ2U
∂θ

=
∂σ2U ′

∂θ
= 0 , (126)

yielding

tan(2θ) =
2⟨uu′⟩

⟨u2⟩ − ⟨u′2⟩
, (127)
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and leading to a vanishing correlation of U and U ′. We now build

σ2U + σ2U ′ = ⟨u2⟩+ ⟨u′2⟩ , and σ2U − σ2U ′ =
2⟨uu′⟩
sin(2θ)

, (128)

and obtain

σ2U =
1

2

(
⟨u2⟩+ ⟨u′2⟩+ 2⟨uu′⟩

sin(2θ)

)
,

σ2U ′ =
1

2

(
⟨u2⟩+ ⟨u′2⟩ − 2⟨uu′⟩

sin(2θ)

)
.

(129)

The emittance ϵu is equal to the square root of the product of the variances in the rotated system which
can be expressed by u and u′ using Eqs. (125) and (127)

ϵu = σU · σU ′ =

√
⟨u2⟩⟨u′2⟩ − ⟨uu′⟩2 . (130)

It is important to once again note that this is a statistical definition of the emittance based on
the variances of the distribution of points in the 2-dimensional trace space! More general, the emittance
can be defined by the integral

ϵu =
1

π

∫∫
dudu′ . (131)

Due to Liouville’s theorem, the emittance remains constant under conservative forces. It thus
describes an intrinsic property of the particle beam and therefore often serves as a parameter indicating
the beam’s “quality”. According to its definition by ϵu = σU · σU ′ , the product πϵu represents the area
of an envelope ellipse with the two semi-axes σU and σ′U which covers a certain fraction of the beam
depending on the beam’s shape. For example, for a beam with Gaussian distribution this fraction amounts
to 39.4%.

The parametrization of the ellipse by the rotated coordinates can be derived from the well-known
ellipse equation

U2

σ2U
+
U ′2

σ2U ′
= 1 , (132)

yielding together with Eq. (130)
U2σ2U ′ + U ′2σ2U = ϵ2u . (133)

Squaring Eq. (124) and combining it with Eqs. (127)–(129), the envelope ellipse can be parameterized
by the original trace space coordinates u and u′:

ϵ2u = u2σ2u′ − 2uu′⟨uu′⟩+ u′
2
σ2u . (134)

When using the correlation coefficient r which is defined by

r =
⟨uu′⟩√
⟨u2⟩⟨u′2⟩

, (135)

the ellipse equation can be rewritten as follows:

ϵ2u = u2σ2u′ − 2uu′rσuσu′ + u′
2
σ2u . (136)
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6.3 Optical functions
So far, we have found a new and very important invariant, the beam emittance ϵu indicating the area in
trace space covered by the beam and thus characterizing an intrinsic property of the beam. Of course,
this does not mean that the variances σu and σu′ and the correlation coefficient r will stay constant as
well. Since σu represents the r.m.s. width (or r.m.s. beam size) and σu′ represents the r.m.s. divergence
of the beam, both (as well as r) will be affected by the magnet optics (the magnetic lattice) and will vary
with s. In order to decouple the impact of the magnet optics from the intrinsic properties of the beam, it
is useful to make a normalization to ϵu

σ2u(s) = ⟨u2(s)⟩ = ϵu · βu(s) , (137)

σ2u′(s) = ⟨u′2(s)⟩ = ϵu · γu(s) , (138)

rσuσu′ = ⟨uu′⟩ = −ϵu · αu(s) , (139)

which leads to the definition of three new functions αu(s), βu(s), γu(s). These functions are called
the optical functions (which later will be named Twiss parameters as well). Using them, the equation for
the envelope ellipse reads in the “conventional” form

ϵu = γuu
2 + 2αuuu

′ + βuu
′2 . (140)

It is worth to mention that all the above derived equations appear in identical form for the horizontal and
vertical plane. In the following, we will therefore skip the index u for reasons of simplicity. Please note,
that this does not imply that the emittances and corresponding optical functions are equal in both planes.
They are in fact not!

The meaning of the optical functions can be summarized as follows:

–
√
β represents the r.m.s. beam envelope per unit emittance,

–
√
γ represents the r.m.s. beam divergence per unit emittance,

–
√
α is proportional to the correlation of u and u′.

Figure 25 visualizes the meaning of the optical functions and some more characteristic coordinates.

Figure 25: Trace space ellipse of the beam with some characteristic coordinates.
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Still, the problem remains how to determine the evolution of the optical functions for a given
magnetic lattice. Using Eqs. (137) – (138), only the initial values β0, α0 and γ0 can be extracted from
the trace space distribution of the beam at the beginning of a beam transfer line, specifying the incoming
beam. Their evolution is exclusivly determined by the magnetic lattice, described by the sequence of
transfer matrices. To progress here we first have to gain some further insight in β, γ and α and how they
are linked together. This can be obtained from a more detailed study of the equations of motion.

6.4 Twiss parameters
For the following, we rewrite the equations of motion (Eq. (88)) in a universal form using our general
coordinate u and a new parameter K:

u′′(s) +K(s) · u(s) = 0 . (141)

The definition of the magnet parameter K(s) depends on the plane being considered:

K(s) =

{
1

ρ2(s)
− k(s) horizontal plane

k(s) vertical plane
. (142)

For K(s) = const. > 0 Eq. (141) would describe a harmonic oscillator with constant oscillation fre-
quency

√
K and amplitude A. Since K(s) is now varying we expect that the amplitude as well as

the oscillation frequency will vary and thus be explicitly dependent on s. We therefore make the Ansatz

u(s) = A · w(s) · cos (µ(s) + φ0) . (143)

The argument µ(s) is called phase advance and is monotonously increasing:

µ(s) > 0 , µ′(s) > 0 , µ(0) = µ0 = 0 . (144)

The constant parametersA and φ0 are defined by the individual particle. Since only the product ofA and
an amplitude function w(s) enter, both are defined except for a scaling factor which in principle can be
chosen freely. As will be discovered later, it will be advantageous to define this scaling factor such that

w0 = w(0) =

√
1

µ′0
→ w2

0µ
′
0 = 1 . (145)

Using the Ansatz the equation of motion reads(
w′′ − wµ′

2
+Kw

)
cos (µ+ φ0)−

(
2w′µ′ + wµ′′

)
sin (µ+ φ0) = 0 . (146)

Since we request this equation to be fulfilled for any initial phase φ0 the sine and cosine terms have to
vanish seperately:

w′′ − wµ′
2
+Kw = 0 , (147)

2w′µ′ + wµ′′ = 0 . (148)

Integration of Eq. (148) yields∫ s

0

µ′′

µ′
ds = −2

∫ s

0

w′

w
ds → µ′(s)

µ′0
=

(
w0

w(s)

)2

, (149)

and after a subsequent integration using Eq. (145) we get

µ(s) = w2
0µ

′
0

∫ s

0

ds̃

w2(s̃)
=

∫ s

0

ds̃

w2(s̃)
. (150)
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We now define a new function β(s), the beta function, which at present has nothing in common with
the function defined in Eq. (137) (but will turn out later to be identical) by

β(s) = w2(s) . (151)

Using Eq. (150), the phase advance can be computed from the beta function via

µ(s) =

∫ s

0

ds̃

β(s̃)
. (152)

The transverse position displacement then reads

u(s) = A
√
β(s) cos (µ(s) + φ0) , (153)

and represents an oscillation around the reference orbit with varying amplitude A
√
β. Building the de-

rivative of Eq. (153) we get for the angular displacement

u′(s) = − A√
β(s)

[α(s) cos (µ(s) + φ) + sin (µ(s) + φ)] , (154)

where we again have used a new function α(s) defined by

α(s) = −β
′(s)

2
. (155)

Equation (153) can be transformed to

cos2 (µ(s) + φ0) =
u2(s)

A2β(s)
, (156)

which can be used in combination with Eq. (154) to obtain

sin2 (µ(s) + φ0) =

(√
β(s)

A
u′(s) +

α(s)

A
√
β(s)

u(s)

)2

. (157)

Using cos2+sin2 = 1 we derive

u2(s)

β(s)
+

(
α(s)√
β(s)

u(s) +
√
β(s)u′(s)

)2

= A2 . (158)

We finally define a third function γ(s) by

γ(s) =
1 + α2(s)

β(s)
, (159)

and obtain a relation
A2 = γ(s)u2(s) + 2α(s)u(s)u′(s) + β(s)u′

2
(s) , (160)

which looks exactly like the envelope ellipse equation (140) but with A2 instead of ϵ. Are the newly
defined functions α(s), β(s) and γ(s) identical to those defined in Eqs. (137) – (139)? Since Eq. (140)
parametrizes the envelope ellipse of the beam, which was based on the second statistical moments ⟨u2⟩,
⟨u′2⟩ and the correlation coefficient ⟨uu′⟩, whereas Eq. (160) indicates an ellipse for a single particle
with individual A2 and φ0, we expect that this will be the case.
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For a more rigorous proof we have to calculate the statistical moments by averaging over the dis-
tribution of particles. Each particle is represented by its individual Ai and φ0,i which determine via
Eq. (153) its transverse coordinates (ui, u′i). We will evaluate the second statistical moments at a fixed s
position and drop the s dependence by e.g. writing ui, µ instead of ui(s), µ(s). Please note that the beta
function and the phase advance are determined by Eq. (141), thus only depend on the position s, and re-
main the same for all particles! Again, we will assume a centered beam and no correlation of amplitude
and phase:

0 = ⟨ui⟩ , (161)

0 = ⟨cos (µ+ φ0,i)⟩ = ⟨sin (µ+ φ0,i)⟩ = ⟨cos (µ+ φ0,i) sin (µ+ φ0,i)⟩ . (162)

For the quadratic terms we get from averaging over all phases φ0,i〈
cos2 (µ+ φ0,i)

〉
=
〈
sin2 (µ+ φ0,i)

〉
=

1

2
. (163)

We finally obtain for the second statistical moments and the emittance

σ2u =
〈
u2
〉

=
〈
A2

iβ cos
2(...)

〉
=

1

2

〈
A2

i

〉
β , (164)

σ2u′ =
〈
u′

2
〉

=

〈
A2

i

β

{
α2 cos2(...) + sin2(...) + 2α cos(...) sin(...)

}〉
=

1

2

〈
A2

i

〉
γ , (165)〈

uu′
〉

=
〈
−A2

i

{
α cos2(...) + cos(...) sin(...)

}〉
= −1

2

〈
A2

i

〉
α , (166)

ϵ =
√
⟨u2⟩

〈
u′2
〉
− ⟨uu′⟩2 = 1

2

〈
A2

i

〉√
βγ − α2 =

1

2

〈
A2

i

〉
, (167)

and indeed find, that the definition of the optical functions comply with the settings made in Eqs. (151),
(155) and (159)! The 4 parameters β, α, γ and µ are called the Twiss parameters. The first three of them
(the optical functions) determine the orientation and shape of the beam ellipse in trace space (not its area,
which is specified by the emittance only!), wheras the last specifies the phase advance of the particles’
oscillations around the reference path according to Eq. (153). These oscillations are named betatron
oscillations since they were first investigated for a betatron.

We obtained another remarkable result: The beam emittance can be determined by averaging over
the squared amplitude factors A2

i of the individual particles. A2
i remains constant for a given particle i

and πA2
i specifies the area of the particle’s individual ellipse in trace space. A2 is called the Courant-

Snyder invariant, a tribute to E. D. Courant and H. S. Synder who pioneered the theory of the strong
focusing synchrotron in the mid 50’s (cf. [4, 5]).

Each particle will stay on its own ellipse whose shape and orientation is determined by the optical
functions only. Particles with same A2 will be on the same ellipse but at different locations, determined
by their individual phases φ. Particles with different A2 will be on ellipses with different areas but same
orientation and shape, since these are determined by the Twiss parameters only.

Figure 26 illustrates this situation. All particles represented by dots of the same color have
identical A2, but different φ. The shape and orientation of the ellipses depends on s and will change
from s1 to s2, their areas will remain constant.

6.5 Transformation of beta functions
Let’s consider a single particle with coordinates u0 and u′0 at position s0 travelling through a magneto-
optic system. At position s its coordinates will have changed to u and u′, but its Courant-Snyder invariant
A2 will remain the same. Thus, Eq. (160) holds for both positions, linking the coordinates and the Twiss
parameters at s0 and s:

γ0u
2
0 + 2α0u0u

′
0 + β0u

′
0
2
= A2 = γu2 + 2αuu′ + βu′

2
. (168)
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Figure 26: Trace space points of particles with two different Courant-Snyder invariants A1 and A2 and different
phases φ. Left: Distribution at longitudinal position s1 where α = 0. Right: Distribution at longitudinal position
s2 where α ̸= 0.

On the other hand, the coordinate transformation from s0 to s is defined by applying the transfer matrix
M(s0, s) to the position vector u⃗

u⃗ = M(s0, s)u⃗0 , (169)

which reads in its fundamental form (cf. Eq. (116))(
u
u′

)
=

(
C S
C ′ S′

)
·
(
u0
u′0

)
. (170)

Building the inverse, we obtain with Eq. (120)(
u0
u′0

)
=

1

CS′ − SC ′

(
S′ −S
−C ′ C

)
·
(
u
u′

)
=

(
S′u− Su′

−C ′u+ Cu′

)
. (171)

We therewith get for the quadratic and mixed terms

u20 = S′2u2 − 2SS′uu′ + S2u′
2
, (172)

u′0
2

= C ′2u2 − 2CC ′uu′ + C2u′
2
, (173)

u0u
′
0 = −C ′S′u2 +

(
C ′S + CS′)uu′ − CSu′

2
, (174)

which we insert in Eq. (168) yielding(
S′2γ0 − 2S′C ′α0 + C ′2β0

)
︸ ︷︷ ︸

=γ

u2 + 2
(
−SS′γ0 +

(
S′C + SC ′)α0 − CC ′β0

)︸ ︷︷ ︸
=α

uu′

+
(
S′2γ0 − 2SCα0 + C2β0

)
︸ ︷︷ ︸

=β

u′
2
= A2 .

(175)

This reveals the transformation of the Twiss parameters in matrix formulationβα
γ

 =

 C2 −2SC S2

−CC ′ S′C + SC ′ −SS′

C ′2 −2S′C ′ S′2

 ·

β0α0

γ0

 . (176)
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By means of this matrix equation one can transform the optical functions piecewise through the lattice
and determine their evolution β(s), α(s), and γ(s). Of course, this requires a cumbersome rearrangement
of the elements C, S,C ′, S′ of the transfer matrices in a new 3x3 matrix according to Eq. (176).

There exist another, even more useful procedure in which the transfer matrices can be used un-
changed. It is based on a new matrix B, the beta matrix, which is defined by

B =

(
β −α
−α γ

)
, (177)

and can be related to the beam matrix Σbeam, which is the covariance matrix of the particle distribution,
by

Σbeam =

(
σ2u σuu′

σuu′ σ2u′

)
= ϵ ·

(
β −α
−α γ

)
= ϵ ·B , (178)

where σuu′ = ⟨uu′⟩ and we have used Eqs. (137), (138), and (139). According to Eq. (159), the determ-
inant of the beta matrix is

det (B) = βγ − α2 = 1 . (179)

Using the inverse of the beta matrix

B−1 =

(
γ α
α β

)
, (180)

Eq. (168) can be written in rather compact form

A2 = T u⃗ ·B−1 · u⃗ = T u⃗0 ·B−1
0 · u⃗0 . (181)

Since the position vector can be transformed by applying the transfer matrix M

u⃗ = M · u⃗0 , (182)

and accordingly
T u⃗ = T (M · u⃗0) = T u⃗0 · TM , (183)

we can derive a simple transformation rule for the beta matrix. By inserting I = M−1 ·M in Eq. (181),
we obtain

A2 = T u⃗0 · TM · TM−1 ·B−1
0 ·M−1 ·M · u⃗0

= T (M · u⃗0) ·
(
TM−1 ·B−1

0 ·M−1
)
· (M · u⃗0)

= T u⃗ · (M ·B0 · TM︸ ︷︷ ︸
=B

)−1 · u⃗ ,
(184)

from which we can read off the transformation of the beta matrix:

B = M ·B0 · TM . (185)

As a simple example, we consider a free drift in a beam transfer line. More specifically, we want to
investigate the evolution of the beta function around a symmetry point at position s = 0 where αsym = 0.
We then have γsym = 1

βsym
and get

B(s) =

(
1 s
0 1

)
·

(
βsym 0
0 1

βsym

)
·
(
1 0
s 1

)
=

(
βsym + s2

βsym

s
βsym

s
βsym

1
βsym

)
, (186)

from which the evolution of the optical functions can be extracted:

β(s) = βsym +
s2

βsym
, (187)
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α(s) = − s

βsym
, (188)

γ(s) =
1

βsym
. (189)

Figure 27 illustrates the evolution of the beta function for different values of βsym. The corresponding

Figure 27: Evolution of the beta function around a symmetry point αsym = 0. Smaller values of βsym lead to a
more pronounced increase of beta with increasing distance from the symmetry point.

r.m.s. beam size scales with σ =
√
ϵ · β(s), thus

σ(s) = σ0 ·

√
1 +

(
s

βsym

)2

, (190)

whereas the r.m.s. beam divergence remains constant:

σ′(s) =
ϵ

σ0
= const. (191)

To obtain further insights, we will compare the particle beam with a Gaussian TEM00 light beam, char-
acterized by its waist radius w(s) and the Rayleigh length zR, in which w2 is doubled. From diffraction
theory, we know (cf. [9])

w(s) = w0 ·

√
1 +

(
s

zR

)2

. (192)

The Rayleigh length is determined by the waist radius at the focal point w0 and the wavelength λ of
the light beam

zR =
πw2

0

λ
. (193)

Comparing Eqs. (190), (192), and (193) we obtain

βsym =̂ zR =
πw2

0

λ
. (194)

Thus, in a distance βsym from the focal point, the variance σ2 of the particle beam is doubled. Since
the light beam’s intensity distribution I(x, y) is defined by

I(x, y) = I0 ·
(w0

w

)2
· e−

2(x2+y2)
w2 , (195)
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the variances of a round beam are linked to the squared waist radius by a factor 1
4 :

σ2x =

∫∫
x2I(x, y)dxdy∫∫
I(x, y)dxdy

=

∫∫
y2I(x, y)dxdy∫∫
I(x, y)dxdy

= σ2y =
w2

4
. (196)

Replacing w0 = 2σ0 = 2
√
ϵβ in Eq. (194) we obtain the important relation

4πϵ =̂ λ . (197)

A particle beam with emittance ϵ thus evolves like a Gaussian TEM00 light beam with wavelength 4πϵ.

Figure 28: Evolution of a beam in horizontal configuration space (upper figure) and horizontal trace space (lower
figure).

Figure 28 illustrates the evolution of a beam in the horizontal configuration space (x, s) and the ho-
rizontal trace space (x, x′) in case of a free drift. Before the focal plane, the beam is convergent (α > 0)
and x and x′ have a negative correlation leading to a clockwise rotated and sheared ellipse. In the fo-
cal plane α = 0, the correlation vanishes and the ellipse is symmetric with respect to the (x, x′) axes.
Behind the focal plane, the beam is divergent (α < 0) and x and x′ have a positive correlation leading
to an anticlockwise rotated and sheared ellipse. For large distances, the trajectory of the particle with
maximum x′0 and x0 = 0 in the focal plane defines the beam envelope.

The transformation matrix M can also be derived from the Twiss parameters. If the initial values
α0, β0 and γ0 at the beginning (at position s0) and the final values α, β and γ at the end (at position
s) of a transfer line section are known, M can be expressed by these quantities. In addition, and this is
important, the phase advance µ needs to be known as well. Then with

u(s) =
√
ϵβ cos (µ+ φ0) =

√
ϵβ (cosµ cosφ0 − sinµ sinφ0) , (198)

its derivative

u′(s) = −
√
ϵ√
β
{α (cosµ cosφ0 − sinµ sinφ0)− (sinµ cosφ0 − cosµ sinφ0)} , (199)
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and the initial values u(s0) = u0, u′(s0) = u′0, µ(s0) = 0 which transform to

cosφ0 =
u0√
ϵβ0

, (200)

sinφ0 = − 1√
ϵ

(
u′0
√
β0 +

α0u0√
β0

)
, (201)

we obtain M, only dependent on the initial and final Twiss parameters

M(s0, s) =

( √
β√
β0

(cosµ+ α0 sinµ)
√
ββ0 sinµ

α0−α√
ββ0

cosµ− 1+αα0√
ββ0

sinµ
√
β0√
β
(cosµ− α sinµ)

)
. (202)

This representation of the transfer matrix will turn out to be very useful when discussing circular accel-
erators.

7 Circular accelerators
In the following, we will apply the derived formalism to circulator accelerators. After looking into gen-
eral requirements for orbit stability, we will investigate the impact of field errors on the beam dynamics.

7.1 Weak focusing
In the “old” days of the early synchrotrons, the concept of weak focusing has been applied to achieve
confined beams in both horizontal planes. It is based on having transverse focusing in both planes at
the same time. Recalling the equations of motions which read

x′′(s) +

(
1

ρ2
− k(s)

)
· x(s) = 0 , (203)

y′′(s) + k(s) · y(s) = 0 , (204)

we must demand that the factors before x(s) and y(s) always remain positive, which is equivalent to

0 < k(s) = − q

p0

∂By

∂x
<

1

ρ2
, (205)

where we have used the definition of k according to Eqs. (38) and (46). With p0 = qρBy(0), where
By(0) defines the bending field at the design orbit, we can define a new parameter, the dimensionsless
field index n by

n = − ρ

By(0)

∂By

∂x
, (206)

which describes the change of the bending field with horizontal displacement x from the reference orbit

By(x) = By(0) ·
(
x+ ρ

ρ

)−n

. (207)

With Eq. (205) we get the well-known criterion of weak focusing

0 < n < 1 . (208)

Thus an overall focusing in both planes can be achieved by a constant field index.

Recalling that a quadrupole magnet with constant quadrupole strength k only focuses in one plane
but acts defocusing in the other, the question arises why a non-varying (with longitudinal coordinate s)
“moderate” decrease of By with x according to Eq. (207) can lead to focusing in both transverse planes.
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Figure 29: Geometrical focusing in a homogeneous magnetic field. Left: all particles starting in point P1 with
slightly different angles will meet again in point P2. Right: Particles are bent back to the reference orbit and thus
experience a horizontal focusing.

The reason lies in an additional focusing which is of pure geometrical nature and already gave rise to
the horizontal weak focusing of a sector dipole magnet (cf. Eq. (99)). This geometrical focusing can
best be explained considering a homogeneous bending field with n = 0 in which particles with the same
momentum p0 will move on circles with the same radii (cf. Fig. 29). All particles starting at a point P1

with slightly different angular displacements x′ will meet again at point P2. With respect to the reference
orbit (as denoted by the transverse displacements x and y in our coordinate system following the refer-
ence orbit), this looks like focusing. For n < 1 this geometrical focusing overcompensates the horizontal
defocusing caused by the horizontal decrease of By.

A weak focusing machine is a circular accelerator made of identical dipole magnets with radially
decreasing bending field strength fullfilling the weak focusing criterion Eq. (208). The overall focusing
of constant strength will cause an oscillation of the beam particles around the reference trajectory with
constant spatial frequencies ωx, ωy in the horizontal and vertical plane:

ωx =

√
1

ρ2
− k =

√
1− n

ρ
, (209)

ωy =
√
k =

√
n

ρ
. (210)

The number Q of oscillations per turn of length L = 2πρ will then be

Qx = ρωx =
1

2π

∮
ds

βx
=

√
1− n < 1 , (211)

Qy = ρωy =
1

2π

∮
ds

βy
=

√
n < 1 . (212)

Orbit stability is thus guaranted. Why have such accelerators then been replaced by strong focusing
machines applying alternating gradient focusing (as will we explained in the next section)? The reason
lies in the following: since the beta functions are constant, we get from Eqs. (211) and (212)

βx > ρ , βy > ρ . (213)

Thus the r.m.s. beam size defined by Eq. (137) will increase with increasing radius according to

σ =
√
ϵβ >

√
ϵρ , (214)

and reach intolerable values for large orbit radii which are indispensably necessary for high energy
circular accelerators like colliders and brilliant synchrotron radiation sources.
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Remark: So far we have only considered monochromatic beams. Thus only the transverse displacements
caused by betatron oscillations contributed to the r.m.s. beam size. As we will discover in section 8, there
will be another contribution coming from the local dispersion and the momentum spread of the beam
making the situation even worse.

7.2 Strong focusing
As we have seen in the last subsection, the problem of a weak focusing isomagnetic ring is that the net
focusing is getting weaker and weaker with increasing orbit radius ρ, leading to a an r.m.s. beam size
which increases linearly with

√
ρ. This can be “cured” by applying a new concept: the strong focusing by

alternating gradients. Strong focusing simply means that |n| ≫ 1, causing either horizontal defocusing
in case of n ≫ 1 or vertical defocusing in case of n ≪ 0 in isomagnetic rings. The basic idea of
alternating gradient focusing is depicted in Fig. 30. Instead of using an isomagnetic ring, the ring is

Figure 30: Basic scheme of an alternating gradient strong focusing magnetic structure.

build from segments with large quadrupole strengths k of opposite sign. In both transverse planes, we
then have a periodic sequence of strongly focusing and strongly defocusing sectors. The key question
is if this leads to stable betatron oscillations in both planes, meaning that the oscillation amplitudes will
remain finite even after a large number of turns in a circular accelerator. In terms of the matrix formalism
introduced in the last section, this translates to the requirement

lim
N→∞

MN = finite , (215)

where M denotes the transfer matrix for one periodic cell (or one turn). This matrix has to be de-
rived from the solutions of the linearized equations of motion, which read in the generalized form (cf.
Eq. (141))

u′′(s) +K(s) · u(s) = 0 . (216)

Now, we have the situation that K(s) is a periodic function since it is reproduced after each segment (or
at least after one turn) of length L:

K(s+ L) = K(s) . (217)

In this case, Eq. (216) is called Hill’s differential equation named after the astronomer G.W. Hill (cf.
[6]). ç A powerful theorem known as Floquet’s theorem states that if K(s) is periodic, the amplitude
function—and therewith the beta function β(s)—is periodic as well (cf. [7]). With Eqs. (155) and (159)
this translates to so-called periodic boundary condititions for which

β(s+ L) = β(s) , (218)

α(s+ L) = α(s) , (219)

γ(s+ L) = γ(s) . (220)

Please note that this does not imply that the phase advance µ(s) an therewith the transverse displacements
x(s), y(s) are periodic as well. This would be an exception and deal with a catastrophic situation, as we
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will discover later. Applying the periodic boundary conditions to the transfer matrix of the periodic
segment (or the one-turn matrix), we can simplify its Twiss parameters’ dependent representation (cf.
Eq. (202)) significantly since β = β0, α = α0, γ = γ0:

M =

(
cosµ+ α0 sinµ β0 sinµ

−γ0 sinµ cosµ− α0 sinµ

)
. (221)

This matrix was first derived by R.Q. Twiss from general mathematics principles and is called the Twiss
matrix. In order to get an information on what is happening when MN is built, we calculate the eigen-
values of M from

det (M− λ · I) = λ2 − Tr (M) · λ+ detM = 0 . (222)

With Tr (M) = 2 cosµ and detM = 1 we obtain

λ1,2 = cosµ± i sinµ = e±iµ . (223)

This reveals an important information: even for large values of µ we get eigenvalues |λ1,2| = 1 in case
of a real phase advance since then |e±iµ| = 1. This is ensured when

|Tr (M) | = |2 cosµ| ≤ 2 . (224)

It should be noted that the phase advance µ of a periodic structure and therewith the trace of its transfer
matrix M are independent of the chosen starting point s in the periodic lattice. This can be seen as
follows:
We can express the transfer matrix from position s1 to position s2 + L as

M(s1, s2 + L) = M(s2, s2 + L) ·M(s1, s2) , (225)

or by
M(s1, s2 + L) = M(s1 + L, s2 + L) ·M(s1, s1 + L) . (226)

Since M(s1+L, s2+L) = M(s1, s2), the matrix M(s2, s2+L) differs from the matrix M(s1, s1+L)
only by a similarity transformation

M(s2, s2 + L) = M(s1, s2) ·M(s1, s1 + L) ·M−1(s1, s2) , (227)

which does not change the trace. But take care: the transfer matrix M as a whole does depend on
the starting position s. This is caused by the dependence of the optical functions on s.

We now apply a “trick” and rewrite the Twiss matrix using

J =

(
α β
−γ −α

)
, (228)

and the 2x2 identity matrix I in the form

M = I · cosµ+ J · sinµ . (229)

Since J2 = −I we obtain

M2 = I ·
(
cos2 µ− sin2 µ

)
+ 2J sinµ cosµ = I · cos(2µ) + J · sin(2µ) , (230)

which can be extended using Moivre’s formula to

MN = I · cos(Nµ) + J · sin(Nµ) . (231)

Now coming back to Eq. (224). With Eq. (231) we have

|Tr
(
MN

)
| = |2 cos(Nµ)| ≤ 2 . (232)

So we found:
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The matrix for an infinite number of turns in a periodic structure stays finite as long as the phase
advance per period µ is a real number. This can be easily checked by computing the trace of

the transfer matrix of the periodic structure which must satisfy

|Tr (M) | ≤ 2 . (233)

7.3 Regular FODO lattice
The most popular strong focusing lattice is a regular (equidistant) sequence of focusing (QF ) and de-
focusing (QD) quadrupole magnets with either free space or dipole magnets in between. Since the fo-
cusing is completely dominated by the quadrupole magnets, dipole magnets are treated as “0” focusing.
We thus have a sequence of F - 0 - D - 0 focusing. Replacing “0” by “O” the optics is called a “FODO”
lattice. One period of such a structure is presented in Fig. 31. The FODO geometry can be expressed

Figure 31: One period of a FODO structure made from a periodic sequence of quadrupole magnets of alternating
focusing.

symbolically by the sequence
1

2
QF,O,

1

2
QD︸ ︷︷ ︸

=M−1/2

,
1

2
QD,O,

1

2
QF︸ ︷︷ ︸

=M1/2

. (234)

We will treat the quadrupoles as thin magnets and set the focal lengths of half the quadrupoles to f1 =
2fQF > 0, f2 = 2fQD < 0 and the drift length to L. Defining

1

f∗
=

1

f1
+

1

f2
− L

f1 · f2
, (235)

the transformation matrix of half a FODO cell is

M1/2 =

(
1 0

− 1
f2

1

)
·
(
1 L
0 1

)
·
(

1 0
− 1

f1
1

)
=

(
1− L

f1
L

− 1
f∗ 1− L

f2

)
, (236)

and

M−1/2 =

(
1 0

− 1
f1

1

)
·
(
1 L
0 1

)
·
(

1 0
− 1

f2
1

)
=

(
1− L

f2
L

− 1
f∗ 1− L

f1

)
. (237)

Multiplying both matrices gives the transformation matrix of the FODO cell

MFODO =

 1− 2 L
f∗ 2L

(
1− L

f2

)
− 2

f∗

(
1− L

f1

)
1− 2L

f∗

 . (238)

Overall stability is guaranted if Eq. (233) is fullfilled. This gives

|Tr (MFODO) | = |2− 4L

f∗
| ≤ 2 , (239)
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which is equivalent to

1 ≥ L

f∗
≥ 0 . (240)

Defining two parameters u = L
f1

(QF has f1 > 0) and v = L
f2

(QD has f2 < 0) we get

0 ≤ u+ v − u · v ≤ 1 , (241)

from which we derive the boundaries of the stability region

|u| ≤ 1 , |v| ≥ |u|
1 + |u|

, (242)

|v| ≤ 1 , |v| ≤ |u|
1− |u|

, (243)

and obtain the “famous” necktie diagram of stability for a thin lens approximation which is presented in
Fig. 32. In the simplest case of equal focusing strengths f = fQF = −fQD, we arrive at

Figure 32: Necktie diagram of stable solutions for a regular FODO lattice in thin lens approximation. The para-
meters u and v are linked to the focusing strengths fQF and fQD of the quadrupoles and the distance between
the quadrupoles L by u = L

2fQF
and v = L

2fQD
.

L

2f
=
LFODO

4f
≤ 1 , (244)

which corresponds to the minimum 4f imaging in light optics.

Beyond looking at the limits of stability, we can further optimize the focusing with respect to
the achievement of minimum beta functions and therewith beam sizes. In doing so, we will again con-
centrate on the symmetric case f = fQF = −fQD. The transfer matrix of a FODO cell then reduces
to

MF/2-ODO-F/2 =

 1− L2

2f2 L
(
2 + L

f

)
− L

f2

(
1− L

2f

)
1− L2

2f2

 , (245)

when starting in the center of a focusing quadrupole and

MD/2-OFO-D/2 =

 1− L2

2f2 L
(
2− L

f

)
− L

f2

(
1 + L

2f

)
1− L2

2f2

 , (246)
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when starting in the center of a defocusing quadrupole. From the trace of the matrices, we get the phase
advance

cosµ = 1− L2

2f2
→ L2

4f2
=

1

2
(1− cosµ) = sin2

(µ
2

)
, (247)

whereas the beta function in the center of the quadrupole magnets can be derived from the matrix element
r12 = β sinµ revealing the maximum and minimum β values

βmax =
2L

sinµ

(
1 + sin

(µ
2

))
, (248)

βmin =
2L

sinµ

(
1− sin

(µ
2

))
. (249)

The average beta function is

⟨β⟩ = 2L

sinµ
, (250)

and is minimized for a phase advance of µ = π/2. For this often chosen case we have the striking result
that the average beta function is the period length 2L of a FODO cell.

7.4 Periodic beta functions
We now want to extend our treatment to general periodic magnetic lattices. As discussed before, period-
icity implies periodic boundary conditions as stated in Eqs. (218)–(220). In this case, the transfer matrix
for one period can as well be represented by its Twiss form (the Twiss matrix, cf. Eq. (221)). If we start at
a symmetry point s0 where α0 = 0, we obtain by comparing the transfer matrix M(s0, s0 + L), derived
from multiplying the transfer matrices of the individual elements, with its Twiss form

M(s0, s0 + L) =

(
r11 r12
r21 r22

)
=

(
cosµ β0 sinµ

−γ0 sinµ cosµ

)
, (251)

and get the Twiss parameters at position s0

α0 = 0 , β0 =
r12√
1− r211

, γ0 =
1

β0
=

−r21√
1− r211

, cosµ = r11 . (252)

Applying the formalism based on the transformation of the beta matrix, these parameters can be trans-
formed to any position s. This only requires to first compute the transformation matrix M(s0, s) which
then has to be applied to the beta matrix according to Eq. (185)(

β(s) −α(s)
−α(s) γ(s)

)
= M(s0, s) ·

(
β0 0
0 1

β0

)
· TM(s0, s) , (253)

thus revealing the evolution of the optical functions β(s), α(s), γ(s).

Again, we obtained a very important result: for a circular accelerator (or in general a periodic
structure) the optical functions are only determined by the magnetic lattice! This was caused by period-
icity and Floquet’s theorem requiring the beta functions to be periodic as well.

The optical functions derived by Eq. (253) define what is named a machine ellipse. More precisely:
the orientation and shape of the machine ellipse is uniquely defined by the optical functions, its area is
usually set to πϵ where ϵ is the emittance of the circulating beam. But take care: the properties of
a circulating beam are represented by its beam matrix (cf. Eq. (178)) which reads for the plane u:

Σbeam =

(
σ2u σuu′

σuu′ σ2u′

)
, (254)
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Figure 33: a) Toy model of a simple circular accelerator consisting of 8 identical FODO cells in which rectangular
dipole magnets between the quadrupoles deflect the beam on a circular orbit. b) Evolution of the horizontal and
vertical beta functions in a FODO cell of the toy model ring. In addition, two machine ellipses at different positions
are shown. A third displayed function Dx, the horizontal dispersion, will be discussed in Section 8.

and define the beam’s r.m.s. emittance by

ϵu =
√
det (Σbeam) , (255)

Using Eqs. (137)–(139), the beam matrix can as well be written as

Σbeam = ϵu ·Bbeam = ϵu ·
(
βu −αu

−αu γu

)
, (256)

thus defining optical parameters βu, αu, γu of the beam.It is important to note that these optical para-
meters βu, αu, γu must not be equal to the optical functions derived from the lattice. If this is the case,
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we have a matched beam. In general, the beam might have any distribution not in accordance with
the machine ellipse! This will be discussed in more detail in Subsection 7.6.

As an example, we will apply this to a simple toy model ring having a FODO lattice with rect-
angular dipole magnets between the quadrupoles (cf. [8] and Fig. 33(a)). According to the procedure
described above, the evolution of the beta functions can be derived. It has been computed for a bend-
ing radius ρ = 3.8197m and kQD = −kQF = 1.20m−2 and is presented in Fig. 33(b). In addition,
the horizontal and vertical machine ellipses are shown for 2 different positions in the ring. The shape and
orientation of these ellipses vary along the ring and are determined by the optical functions. In the center
of the quadrupole magnets, the ellipses are symmetric with respect to the trace space axes since these
positions are symmetry points of the lattice. There, the beta functions have a local extremum:

– βx will have a local maximum in a (horizontally) focusing quadrupole QF and a local minimum
in a defocusing quadrupole QD,

– βy will just show the opposite: a local minimum in a focusing quadrupole QF and a local max-
imum in a defocusing quadrupole QD.

7.5 Betatron tune
Each particle orbiting in a circular accelerator is moving in trace space on a machine ellipse with area
πA2 defined by the Courant-Snyder invariant A2 of the particle. The shape and orientation of this ellipse
is determined by the optical functions of the machine lattice and is fixed at a given longitudinal position s.
Since the particle’s orbit oscillates around the reference orbit (the particle performs betatron oscillations),
the actual position of the particle’s point in trace space on this ellipse is determined by the phase of its
betatron oscillation. The number of oscillations per turn is called the betatron tune Qu and can be
computed via

Qu =
1

2π

∮
1

βu
ds . (257)

In case of a mono-energetic beam and a linear lattice, the tune is the same for all particles. Thus, for
each revolution of a particle its point (u, u′) in trace space makes Qu turns along the ellipse equivalent
to a phase advance per turn of µu = 2πQu. This is illustrated in Fig. 34, representing the trace space at

Figure 34: Trace space ellipse for one particle at a fixed longitudinal position in the ring. For each revolution of
the particle, the point (u, u′) makes Qu turns along the machine ellipse with area πA2

u determined by the Courant-
Snyder invariant A2

u for the coordinate u of the particle.

a fixed longitudinal position s. From turn to turn the particle hops on the machine ellipse by an angle
given by 2π times the fractional tune.
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7.6 Filamentation
Let us now consider a beam injection into a circular accelerator. If the optical parameters of the beam at
the injection point differ from the optical functions of the lattice at this location, the beam’s individual
ellipse is not matched to the machine ellipse. If we track an individual particle of the beam at the point of
injection turn by turn, its trace space coordinates will follow the machine ellipse. Since this happens for
all particles, the beam ellipse will start to rotate with a phase advance per revolution of 2πQu. Due to ef-
fects of higher order the quadrupole strengths and therewith the phase advance depends on the amplitude
and thus the Courant-Snyder invariant of the particle. In case of a mismatch, the beam trace space dis-
tribution starts to filament as indicated in Fig. 35. After a large number of turns, the distribution smears

Figure 35: In case of an unmatched beam, the envelope ellipse of the beam starts to rotate since each particle
of the beam moves on an ellipse whose orientation and shape is determined by the machine ellipse. Non-linear
processes lead to an amplitude-dependent phase advance per turn and finally to filling a machine ellipse with larger
area. This process is called filamentation.

out and may be enclosed by a larger ellipse with the shape and orientation of the machine ellipse. Hence
the emittance of the injected beam has therewith been enlarged (or “spoiled”), which will not happen if
the injected beam is matched to the machine parameters at the injection point.

Please note that Liouville’s theorem is not violated by this process since at any point in time,
the phase space area covered by the particle distribution is preserved. In fact non-linear and non-
conservative effects which are always present lead to mixing and coupling the particle’s motion which
finally damps the correlated oscillations and fills the entire new equilibrium phase space. Now Liouville’s
theorem is no longer applicable, the emittance has suffered a real growth.

7.7 Normalized coordinates
It is often useful to transform the oscillatory solution with varying amplitude and frequency to a solution
which looks exactly like that of a harmonic oscillator. So far, we had

u(s) = A
√
β(s) cos (µ(s) + φ0) , (258)

u′(s) = −A

[
α(s)√
β(s)

cos (µ(s) + φ0)−
1√
β
sin (µ(s) + φ0)

]
. (259)

We now introduce new coordinates un(ψ) defined by

un =
u√
β
, (260)

ψ =
µ

Q
. (261)
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The angle ψ advances by 2π every revolution. It coincides with the geometric angle θ (which is defined
by s = Lθ

2π ) at each βmax and βmin location and does not depart very much from θ in between. We can as
well use un(µ) which only differs by the different phase advance of 2πQ per revolution.

Considering µ′ = 1
β and β′ = −2α we get for u̇n(µ) where “dot” represents the derivative with respect

to µ while “prime” is the derivative with respect to s

u̇n(µ) =
dun
dµ

=
dun
ds

ds

dµ
=

dun
ds

β =

(
u′√
β
− 1

2
uβ−3/2β′

)
= u′

√
β +

a√
β
u , (262)

and together with Eq. (260) we obtain the required transformation(
un
u̇n

)
=

(
1√
β

0
α√
β

√
β

)
·
(
u
u′

)
, (263)

or in short form
u⃗n(µ) = T · u⃗(s) , u⃗(s) = T−1 · u⃗n(µ) , (264)

with the transformation matrices

T(s) =

(
1√
β

0
α√
β

√
β

)
, T−1(s) =

( √
β 0

− α√
β

1√
β

)
. (265)

Please note that the transformation matrix T is explicitly depending on the longitudinal position s since
the optical functions are explicitly depending on s as well.

The transformation to un(ψ) is derived completely analogue to the procedure above. We get

u⃗n(ψ) = T̃ · u⃗(s) , u⃗(s) = T̃−1 · u⃗n(ψ) , (266)

with

T̃(s) =

(
1√
β

0

Q α√
β

Q
√
β

)
, T̃−1(s) =

( √
β 0

− α√
β

1
Q
√
β

)
. (267)

The new coordinates u⃗n are often called Floquet coordinates and the transformation T Floquet trans-
formation. Since normalized coordinates transform through the lattice as

u⃗ = T−1 · u⃗n = M · u⃗0 = M ·
(
T−1 · u⃗n,0

)
→ u⃗n = T ·M ·T−1 · un,0 , (268)

the one-turn matrix M has to be replaced replaced by R

R = T ·M ·T−1 =

(
cos(2πQ) sin(2πQ)
− sin(2πQ) cos(2πQ)

)
, (269)

which is a pure rotation matrix when transforming normalized coordinates. Using these normalized
coordinates, the equation of motion is simplified to

d2un
dµ2

+ un = 0 , or
d2un
dψ2

+Q2un = 0 . (270)

The ellipse equation transforms to

A = γu2 + 2αuu′ + βu′
2
= u2n + u̇2n , (271)

and the ellipse in the trace space transforms to a circle in the normalized trace space, which is visualized
in Fig. 36. We thus have

⟨u2n⟩ = ⟨u̇2n⟩ = ϵ , ⟨un · u̇n⟩ = 0 . (272)
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Figure 36: Floquet transformation to normalized coordinates changes the machine ellipse in the trace space to a
circle in the normalized trace space.

7.8 Dipole errors and closed orbit distortions
7.8.1 Closed orbit
Periodicity, which in circular accelerators will appear at least after one turn, leads to a periodic amplitude
function βu(s) which reproduces itself after one turn according to Floquet’s theorem. This implies, that
the charge center of the beam moves on a closed trajectory, which is called the closed orbit. Please note
that this does not apply for the trajectories of individual particles as well (which would have disastrous
consequences as we will discover in Section 7.10). The shape of the closed orbit is determined by
the magnets and can, due to errors and misalignments, significantly deviate from the design orbit. In
the following, we will investigate the impact of dipole errors on the closed orbit causing deviations which
are called closed orbit distortions. Dedicated steerer magnets (e.g. small dipole magnets or correction
coils), which have to be installed around the ring, are typically used to correct these distortions.

7.8.2 Dipole error
Let us assume a single erroneous dipole magnet. It can be approximated by a adding a small extra dipole
field δB to an error-free dipole magnet, produced by a short dipole. Such a short dipole of length l will
additionally bend the beam by a small angle φ on a circular orbit with radius r = p0

qδB . It will therefore

Figure 37: A short dipole generates a small kick δu′ in divergence.

generate a small angular kick δu′ in divergence of a beam whose momentum is defined by its magnetic
rigidity p0 = qρB:

l = r · φ =
p0
qδB

δu′ =
ρB

δB
δu′ . (273)

We thus get for the angular kick changing the angular displacement u′

δu′ =
δ (Bl)

ρB
. (274)
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However, the transverse displacement u will remain unchanged in good approximation.

7.8.3 Closed orbit distortions
We will start considering the following simplified situation: a single erroneous dipole is located at lon-
gitudinal position s0 causing an extra angular kick δu′. Elsewhere we have an unperturbed lattice, for
which the orbit obeys the unperturbed Hill’s differential equation.

Let us first analyze the situation using normalized coordinates u(ψ). Hill’s differential equation
then simplifies to

d2un
dψ2

+Q2un = 0 , (275)

which is solved by
un(ψ) = un,0 cos(Qψ + ψ0) . (276)

Please note, that for the unperturbed closed orbit we have un,0 = 0. We now have to include the impact
of the erroneous dipole, where Hill’s differential equation is no longer valid. This dipole will cause
an extra kick δu′ at position s0. We choose ψ = 0 to be diametrically opposite to the position of
the erroneous dipole magnet. Then by symmetry ψ0 = 0 and the perturbed closed orbit makes harmonic
oscillations around the ideal path (the unperturbed closed orbit), cf. Fig. 38. What remains is to compute

Figure 38: Perturbed closed orbit in normalized coordinates. A single dipole error at ψ = π causes a harmonic
oscillation of un(ψ) around the reference orbit. The orbit is symmetric with respect to the position of the field
error where it has a “cusp”.

the amplitude un,0 of the oscillations, which requires to transform the kick δu′ to normalized coordinates.
Since at the position of the kick β = β0 and u does not change in the short dipole, we get with Eqs. (266)
and (267)

δu̇n = δ

(
Q
√
β0u

′ +
Qα√
β0
u

)
= Q

√
β0δu

′ . (277)

Since the kick changes the normalized angular displacement by δu̇n, by symmetry u̇n(s0) = u̇n,0 =
−1

2δu̇n must hold right before the kick. Thus

−1

2
δu̇n = −1

2
Q
√
β0 · δu′ = u̇n(π) = −Q · un,0 sin(πQ) , (278)

giving

un,0 =

√
β0

2 sin(πQ)
δu′ =

√
β0

2 sin(πQ)

δ(Bl)

Bρ
. (279)
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Finally, we have to express this result in unnormalized coordinates. Since the kick is at s0, we get for
the phase advance µ(s)− µ(s0) = Q · ψ −Qπ yielding a closed orbit distortion

uc(s) =
√
β(s)un,0 cos(Qψ) =

(√
β(s)β(s0)

2 sin(πQ)

δ(Bl)

Bρ

)
cos (µ(s)− µ(s0) +Qπ) , (280)

where the index “c” denotes the displacement of the closed orbit.

The same result is obtained using the matrix formalism. For doing so, we use the Twiss matrix
representation of the transfer matrix Mturn for one turn. The displacement of the closed orbit uc at the po-
sition s0 of the dipole error can be calculated from the displacements just before and after the erroneous
dipole since the closed orbit including the extra kick δu′ must be periodic:(

uc,0
u′c,0 − δu′

)
= Mturn ·

(
uc,0
u′c,0

)
=

(
cosµ+ α0 sinµ β0 sinµ

−γ0 sinµ cosµ− α0 sinµ

)
·
(
uc,0
u′c,0

)
, (281)

which yields with µ = 2πQ

uc,0 =
β0δu

′

2 sin(πQ)
cos(πQ) , (282)

u′c,0 =
δu′

2 sin(πQ)
[sin(πQ)− α0 cos(πQ)] . (283)

The closed orbit displacement uc(s) is calculated from u⃗c(s) = M(s0, s) · u⃗c,0. Again using the Twiss
parameter dependent representation of M(s0, s) (cf. Eq. (202)), we finally get Eq. (280) for the displace-
ment uc of the closed orbit at s, caused by a dipole kick at s0. The effect of a random distribution of
dipole errors can be estimated from the r.m.s. average, weighted with the square root of the beta functions
at the positions of the kicks. When defining the “kick density” dδ(Bl)

ds (s0), we can write

uc(s) =

√
β(s)

2 sin(πQ)

∮ √
β(s0) ·

1

Bρ

dδ(Bl)

ds
(s0) · cos (µ(s)− µ(s0) +Qπ) · ds0 . (284)

From Eq. (284) we extract a very important finding:

For integer tunes the closed orbit displacements will grow indefinitely! Thus, integer tunes have
to be avoided in circular accelerators, Q ̸= n!

This instability can be easily understood. If the betatron tune is integer, a small perturbation always
kicks a particle in the same direction and at the same phase of its betatron oscillation. The individual
kicks add up coherently leading to an unlimited increase of the amplitude of the particle’s transverse
oscillation.

7.9 Quadrupole errors, tune shift, and beta beating
Similar to the approach chosen to treat dipole errors, we will first concentrate on the situation dealing
with a single erroneous small quadrupole magnet of length ds added to an error-free quadrupole magnet.
Its additional focusing or defocusing, often called a gradient error, will cause a small change in the an-
gular displacement but will leave the orbit displacement unchanged. Thus, the quadrupole error can be
described by an additional matrix δQ

δQ =

(
1 0
− 1

f 1

)
=

(
1 0

−δKds 1

)
. (285)

Please note that we have used the convention of Eq. (142), thus Kx = −k,Ky = k and K > 0 means
focusing.
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7.9.1 Tune shifts
We start right before the faulty element at s0, apply δQ and continue for one turn with the one-turn
matrix M0 in Twiss representation. This reveals the modified one-turn matrix M̃0 including the gradient
error

M̃0 = δQ ·M0

=

(
cosµ0 + α0 sinµ0 β0 sinµ0

−δKds (cosµ0 + α0 sinµ0)− γ0 sinµ0 −δKdsβ0 sinµ0 + cosµ0 − α0 sinµ0

)
.

(286)

It has to be mentioned that the optical functions will in principle be slightly changed by the changed
focusing. Since here we are only interested in the the change of the phase advance, this effect (which is
of higher order) will be neglected. Its investigation is postponed to the next section.

The phase advance over one turn can be be calculated from the trace of the matrix:

1

2
Tr
(
M̃0

)
= cosµ = cos(µ0 +∆µ) ≈ cosµ0 −∆µ · sinµ0

= cosµ0 −
1

2
δKdsβ0 sinµ0 ,

(287)

yielding with ∆µ = 2π∆Q the change of the betatron tune or the tune shift

2π∆Q = ∆µ =
1

2
β0δKds . (288)

Now putting the gradient error to an abitrary position s and integrating over all existing gradient errors
δK(s), one obtains

∆Q =
1

4π

∮
β(s)δK(s)ds , (289)

which is the quadrupole error induced (linear) tune shift. This formula comprises the effect of a distri-
bution of quadrupole errors δK(s) along the ring on the betatron tune. It states that quadrupole errors
δK at locations with large beta functions will create larger tune shifts than quadrupole errors at locations
with small beta functions.

Remark: Forcing the tune shift by deliberatly changing the strength of a single quadrupole by a known
δK and measuring the resulting tune shift is a common method to determine the beta function at the loc-
ation of the quadrupole.

7.9.2 Beta beating
We now want to look at the impact of gradient errors on the beta function. For a beam passing all quad-
rupoles in their centers a gradient error will not influence the closed orbit. However a gradient error will
change the betatron function of the lattice. In order to calculate the modulation of the betatron oscillation
amplitude, we have to determine the modified single turn matrix M̃s starting at a given observer position
s. This is can be achieved by matrix multiplication, cf. Fig. 39. Starting at s, the matrix M(s, s0) will
transform the coordinates to the position s0 where a small gradient error is located. There, the error
matrix δQ has to be applied. The remaining part of the turn is added by finally applying the matrix
M(s0, s). Thus, we have

M̃s =

(
□ r̃12
□ □

)
= M(s0, s) · δQ(s0) ·M(s, s0)

=

(
b11 b12
b21 b22

)
·
(

1 0
−δKds0 1

)
·
(
a11 a12
a21 a22

)
.

(290)
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Figure 39: A gradient error changes the one-turn matrix, which always depends on the starting position. When
starting at s, the one-turn matrix M̃ can be obtained by matrix multiplication of M(s, s0), δQ(s0) and M(s0, s)

as indicated.

Since we are only interested in the change of the beta function which can be determined from the matrix
element r̃12 = ∆(β cosµ), it is only necessary to calculate this element. We get

r̃12 = b11a12 + b12 (−δKds0 · a12 + a22) = r12 − δKds0 · a12b12 , (291)

where r12 from the unperturbed matrix can be found by putting δKds0 = 0. Using the Twiss represent-
ation of M (Eq. (202)) we obtain a12 =

√
ββ0 sin(µ− µ0), b12 =

√
ββ0 sin(µ0 − µ), and the variation

in the r12 term due to the gradient error is

∆ [β(s) sin(2πQ)] = −δKds0β(s)β(s0) · sin (µ(s)− µ(s0)) · sin (µ(s0)− µ(s))

= −δKds0β(s)β(s0) · sin (µ(s)− µ(s0)) · sin [2πQ− (µ(s)− µ(s0))] .
(292)

Using sinx · sin y = 1
2 [cos(x− y)− cos(x+ y)], the left-hand and right-hand sides can be expanded to

give

∆β(s) sin(2πQ0) + β(s)2π∆Q︸ ︷︷ ︸
=

· cos(2πQ) =

︷ ︸︸ ︷
1

2
δKds0β(s0)β(s) {cos(2πQ)− cos [2 (µ(s)− µ(s0)− πQ)]} .

(293)

We therewith get for the change ∆β(s) of the beta function at position s

∆β(s) =
β(s)

2 sin(2πQ0)
δKds0β(s0) cos [2 (µ(s)− µ(s0)− πQ)] . (294)

Now again putting the gradient error to an abitrary position s0 and integrating over all quadrupole per-
turbations, one obtains

∆β(s) =
β(s)

2 sin(2πQ0)

∮
δK(s0)β(s0) cos [2 (µ(s)− µ(s0)− πQ)] ds0 . (295)

Quadrupole errors will lead to a position dependent change of the beta function which is called beta
beating. This beta beating has no effect on the transverse position of the beam, it rather describes
the change of the beam size caused by focusing errors. It is worth to note that the actual value ∆β(s)
linearly depends on both the beta function β(s0) at the position of the gradient error and the beta function
β(s) at the observer’s position. Thus, gradient errors occuring at positions with large beta functions are
more harmful than those at positions with small beta functions. In circular accelerators, field errors of
focusing quadrupoles typically will have a larger impact on the horizontal beam size whereas field errors
of defocusing quadrupoles will more affect the vertical beam size. In addition, we extract another very
important finding from Eq. (295):
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For half integer tunes the beta function and therewith the beam size will grow indefinitely! Thus,
half integer tunes have to be avoided in circular accelerators, Q ̸= n

2 !

Again, this instability can be easily understood. If the betatron tune is half integer, a focusing error
δK will always kick a transversly displaced particle inwards or outwards depending on the sign of δK.
The individual kicks add up coherently leading to an unlimited increase of the amplitude of the betatron
oscillation. However, a particle moving on the design orbit will not experience any kicks since it passes
the quadrupoles at their field-free centers. Thus, only the beam size is affected, the close orbit will remain
unchanged.

7.10 Optical resonances
We obtained the following important impact of field errors in circular accelerators:

– Dipole errors will cause closed orbit distortions. The displacement of the closed orbit will grow
indefinitely when the tune approaches an integer value.

– Gradient errors will produce an average tune shift ∆Q. They will not affect the closed orbit but
change the beta function. The beam size will grow indefinitely when the tune approaches half
integer values.

These phenomena are called optical resonances and can be studied best when regarding the normalized
trace space where the particles’ ellipses transform to circles, cf. Fig. 40. Let us for reasons of simplicity

Figure 40: Normalized trace space of a single particle at the position of an erroneous magnetic element. The point
representing the particle rotates along along a circle and performs 2πQ rotations per revolution. Left: Impact of
a small dipole error on a particle with half integer unperturbed tune. Right: Impact of a small quadrupole error on
a particle with an unperturbed tune close to a half integer which has already been locked into the resonance.

assume a circular accalerator with a single faulty element only: a small dipole or quadrupole error. In
addition, we will concentrate on a single particle represented by a point in the normalized trace space.
The evolution of the particle’s coordinates can be followed turn by turn by looking at the movement of
its point in the trace space. Since we are interested in the impact of the error, we select the trace space at
the position of the faulty element. Without an erroneous element, the particle’s point stays on a circle and
its actual position is only dependent on its betatron phase described by an initial phase φ0 and the phase
advance µ(s). It will perform 2πQ rotations per revolution.
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In case of a dipole error, every turn the particle will get a constant kick δu̇ changing the radius
of the circle. This kick may cause an additional phase advance δµ depending on the particle’s actual
betatron phase when passing the faulty element. This additional phase advance changes the tune by
δQ = δµ

2π . It is important to note that δQ will change its sign with the sign of u. Thus, on average
there will be no tune shift since both signs appear equally likely. However, there will be a modulation of
the tune with an amplitude dQ = δQmax. So, if the particle’s unperturbed tune Q deviates less than dQ
from an integer value, the tune modulation will cause that Q will be occasionally changed to an integer
value. Since this will be a stable situation being reproduced every turn, the particle’s tune will remain at
this integer value. From then on all kicks will add coherently and the particle’s coordinates will increase
indefinitely, a process which is called “auto locking” into the resonance. This type of resonance is called
an integer resonance since it occurs at integer tunes.

In case of a quadrupole error, the sign of the kick will depend on the sign of u and its strength
will scale with u. Thus, the particle will always be kicked in the same “direction” (outwards or inwards,
depending on the sign of δK) leading to an average tune shift of ∆Q = 1

4πβδ(Kl). Again, the kicks
will cause a change in the phase advance depending on the actual betatron phase when passing the faulty
element. This will change the tune turn by turn accordingly and lead to a tune modulation with amplitude
dQ = δQmax. If the particle’s unperturbed tune deviates less than dQ from a half-integer value, auto
locking into the resonance will take place and all kicks will add coherently. This type of resonance is
called a half-integer resonance since it occurs at half integer tunes.

We therewith obtain regions of instability, called stop bands, around integer and half-integer tunes.
The width of these stop bands are given by the tune modulation amplitude which depends on the strength
of the field error. Each particle whose unperturbed Q lies in the stop band will lock into resonance and
will finally be lost. The observation that dipole errors lead to integer resonances and quadrupole errors
to half-integer resonances indicates that sextupole fields excite resonances at third-integer Q values and
in general a magnetic multipole of order n will excite a 1

n resonance. This is in fact the case but out
of the scope of the linear treatment applied in this course. Anyhow, we conclude that field errors cause
stop bands around fractional tunes which therefore have to be avoided. The corresponding resonance
condition reads

nQ ̸= N , (296)

where n and N are integers. Moreover, one has in general a coupling between horizontal and vertical
betatron oscillations due to higher order multipoles or magnet misalignments. This leads to the more
general resonance condition

mQx + nQy ̸= N , (297)

where m, n, and N are integers. m + n is called the order of the resonance. Since the widths of
the stop bands decrease with increasing m,n, only the “lower” orders are important. Which orders
have to be considered depend on the actual requirements (e.g. only the first ≈5 orders are important for
a fast ramping synchrotron whereas higher orders up to >10 may be important in case of a long store in
a circular collider or a synchrotron radiation source). The situation is often visualized in the tune diagram
where Qy is plotted versus Qx and the leading order resonance lines are indicated. Such a tune diagram
in which all reonance lines up to 5th order in the intervals m ≤ Qx ≤ m+1, n ≤ Qy ≤ n+1 are drawn
is shown in Fig. 41. The horizontal and vertical tunes and therewith the working point (Qx, Qy) have to
be chosen in a reasonable distance from the resonance lines.

7.11 Beam dynamics with acceleration
Here, beam acceleration means the increase of the beam energy by accelerating structures like rf cavities.
Typically, this is a rather slow process compared to the time scale of the transverse beam dynamics de-
termind by the oscillation frequency of the betatron oscillations. We thus can assume that the transverse
dynamics will adiabatically follow since the multipole strengths will be kept constant by continuously
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Figure 41: Tune diagram displaying the intervals m ≤ Qx ≤ m+ 1, n ≤ Qy ≤ n+ 1. All resonance lines up to
5th order are shown in different colors. The working point chosen is indicated by a red filled circle.

adjusting the magnetic fields to the actual beam energy. However, the changing Lorentz factors γr, βr
will lead to a changing scaling of the transverse angular displacements. Since the transverse momentum
which is related to the angular displacement by

pu = m · du
dt

= m · ds
dt

· u′ ≈ p0 · u′ = βrγrm0c · u′ , (298)

is not changed by the beam acceleration only increasing the longitudinal momentum, the angular dis-
placements change with changing beam energy according to

βrγr · u′ = const. (299)

Thus beam acceleration causes a decrease of the angular displacement u′ and therewith a compression
of the u′ axis of the trace space. This consequently leads to a decrease of the beam emittance which is
called adiabatic damping and illustrated in Fig. 42.

Figure 42: Trace spaces for different beam energies. Since the angular displacement u′ scales with the beam
energy, an energy increase causes a shrinkage of the u′ dimension of the trace space and thus a reduction of the
beam’s emittance.
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For this more general case, a more appropriate invariant is defined by

ϵn = βrγr · ϵ , (300)

and called the normalized emittance ϵn which is conserved independent from the beam energy. ϵ is called
the geometric emittance.

8 Dynamics with off momentum particles
Up to now, we assumend that all particles in the beam have the same nominal momentum p0. For real
beams, this is of course not the case. In the following, we want to discuss the influence of momentum
deviations ∆p = p−p0 on the linear beam dynamics. Coming back to the equations of motion (Eq. (88))
we recognize that only the equation for the horizontal plane containes a momentum-dependent term.
Thus, in flat accelerators the dynamics of off momentum particles is only affected in the horizontal
plane. We will therefore restrict our treatment to the horizontal trace space including the momentum
dependence.

8.1 Momentum dispersion
The linearized equation of motion for the horizontal coordinate reads

x′′(s) +

(
1

ρ2(s)
− k(s)

)
· x(s) = 1

ρ(s)

∆p

p0
=

δ

ρ(s)
, (301)

where we have set δ = ∆p
p0

. It is called a homogeneous differental equation when δ = 0 and an inhomo-
geneous differential equation when δ ̸= 0. The solution consists of the general solution of the homogen-
eous equation, the betatron oscillations xβ , plus a special solution xD of the inhomogeneous equation.
Since for quadrupole magnets ρ → ∞ and the inhomogeneous term vanishes, we have only to consider
dipole magnets where ρ(s) = ρ = const. and k(s) = 0. Thus, a special solution of the inhomogeneous
equation is xD = ρ · δ, leading to

x(s) = xβ(s) + xD(s) = a · cos
(
s

ρ

)
+ b · sin

(
s

ρ

)
+ ρδ . (302)

The integration constants a, b are again derived from the initial values at s = 0. Since now the inhomo-
geneous solution xD has to be included, we get

x(s = 0) = x0 = a+ ρδ , x′(s = 0) = x′0 =
b

ρ
, (303)

and by defining the bending angle φ = L
ρ of the dipole magnet with an arc length L, we obtain

x(L) = x0 · cosφ+ ρx′0 · sinφ+ ρ(1− cosφ) · δ , (304)

x′(L) = −x0
ρ

sinφ+ x′0 · cosφ+ sinφ · δ . (305)

By extenting the matrix formalism in the bending plane to three variables, we can easily include the im-
pact of the momentum deviation. The horizontal position vector is written as

x⃗(s) =

x(s)x′(s)
δ

 , (306)

and is transformed by a 3x3 transfer matrix M:

x⃗(s) = M · x⃗0 . (307)
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For a sector dipole magnet, Mdip can be derived from Eqs. (304) and (305) giving

Mdip =

 cosφ ρ sinφ ρ(1− cosφ)
−1

ρ sinφ cosφ sinφ

0 0 1

 . (308)

First neglecting that the quadrupole strength is dependent on the acual momentum of the particle, the quad-
rupole matrices remain “unchanged” but have to be extended to 3x3 matrices yielding

MQF =

 cosΩ 1√
|k|

sinΩ 0

−
√

|k| sinΩ cosΩ 0
0 0 1

 , (309)

MQD =

 coshΩ 1√
|k|

sinhΩ 0√
|k| sinhΩ coshΩ 0

0 0 1

 , (310)

where we have used the abbreviations of Section 5.4. The 3x3 transfer matrix of a free drift in space of
length L reads

Mdrift =

1 L 0
0 1 0
0 0 1

 . (311)

For more than one element, we get the total transfer matrix by matrix multiplication as explained in
Section 5.

This formalism leads to the following important result: Whereas a drift space and a quadrupole
magnet will not directly cause an impact on the trajectory of a particle with momentum deviation, a dipole
magnet will create a dispersion D and its derivative D′ by the non-vanishing matrix elements in the first
two lines of the third column:

D = r13 = ρ(1− cosφ) , (312)

D′ = r23 = sinφ . (313)

The dispersion indicates, how much the reference trajectory (the trajectory showing no betatron oscilla-

Figure 43: A dipole magnet creates a dispersionD and its derivativeD′ which causes an additional orbit displace-
ment xD = D · δ and angular displacement x′D = D′ · δ at the end of the magnet.

tions which is represented by a point in the center of the trace space ellipse) of a particle with momentum
deviation is displaced from the design orbit defined for δ = 0. It represents this displacement for a relat-
ive momentum deviation δ = 1 and contributes via the dispersion orbit xD to the particle’s trajectory

x(s) = xβ(s) + xD(s) , xD(s) = D(s) · δ . (314)
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Often, D(s) is called the dispersion function, a solution of the equation of motion for δ = 1.

It is of utmost importance to notice that, once a dispersion has been created by a dipole magnet, it
will be altered by drifts and quadrupole magnets as well! We therefore better distinguish between a dis-
persion Ddip, which is the matrix element r13 of the transfer matrix of a dipole magnet and thus created
by the dipole magnet, and the dispersion function D(s) which depends on all elements in a magnetic
lattice before the position s. Building a vectorD(s)

D′(s)
1

 , (315)

we can compute the evolution of an already existing dispersion D0 and D′
0 by applying the 3x3 transfer

matrix M to this vector D(s)
D′(s)
1

 = M ·

D0

D′
0

1

 , (316)

which would explicitly read for a sector dipole magnetD(s)
D′(s)
1

 =

 cosφ ρ sinφ Ddip
−1

ρ sinφ cosφ D′
dip

0 0 1

 ·

D0

D′
0

1

 . (317)

Thus, a dipole magnet modifies an existing dispersion D0 and in addition adds its own “contribution”
Ddip whereas quadrupole magnets and drift sections only modify an existing dispersion. If a beam passes

Figure 44: Dipole and quadrupole magnets modify an existing dispersion causing a change in xD amd x′D. In a
thin lens ony D′ and thus x′D is changed.

through a beam transfer line, not only its optical parameters β, α and γ but also its dispersive “properties”
D and D′ are propagated starting from some initial values β0, α0, γ0, D0, D′

0 which have to be specified
at the beginning of the transfer line. We will discover in the next section that in a circulator accelerator
the dispersion function D(s) is again a unique, periodic function of the position along the ring which is
only determined by the magnetic lattice.

The influence of a non-vanishing dispersion on the effective beam size σ̃x, divergence σ̃x′ and
trace space area can be calculated using the statistical definitions and replacing δ by the r.m.s. momentum

spread σδ =
√

⟨δ2i ⟩:

σ̃2x =
1

N

N∑
i=1

(xi +Dδi)
2 =

1

N

N∑
i=1

x2i +
D2

N

N∑
i=1

δ2i +
2D

N

N∑
i=1

(xiδi) = σ2x + (Dσδ)
2 , (318)

σ̃2x′ =
1

N

N∑
i=1

(
x′i +D′δi

)2
=

1

N

N∑
i=1

x′i
2
+
D′2

N

N∑
i=1

δ2i +
2D′

N

N∑
i=1

(
x′iδi

)
= σ2x′ +

(
D′σδ

)2
, (319)
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where we have assumend that the momentum deviations will not be correlated with the transverse dis-
placements. Thus, we get an enlarged beam size and divergence

σ̃x =

√
ϵxβx + (Dσδ)

2

σ̃x′ =

√
ϵxγx + (D′σδ)

2
. (320)

The area in the horizontal trace space increases as well, since the dispersion orbit xD is added to xβ .
This may be described by an “effective” emittance ϵ̃x which has to be derived from a lengthy calculation
first defining a generalized 6-dimensional intensity distribution and then integrating over unwanted co-
ordinates (cf. e.g. [10]). Finally, one obtains an intensity distribution I(x, x′, δ) in which the following
effective emittance appears:

ϵ̃x =
√
ϵ2x + ϵxσ2δ

(
γxD2 + 2αxDD′ + βxD′2

)
. (321)

8.2 Dispersion evolution by integrals
The dispersion function can as well be calculated using the principal solutions defined in Section 5.5.
Based on the definition of a so-called Green’s function G built from the principal solutions C(s) and
S(s) and using the properties of the Wronskian we can find a special solution of the equation of motion
where we have set δ = 1

D′′(s) +K(s) ·D(s) =
1

ρ(s)
. (322)

Defining

D(s) =

∫ s

0

1

ρ(s̃)
· [S(s) · C(s̃)− C(s) · S(s̃)]︸ ︷︷ ︸

=G(s,s̃)

·ds̃ , (323)

we obtain for the first and second derivative

D′(s) = S′(s)

∫ s

0

C(s̃)

ρ(s̃)
ds̃− C ′(s)

∫ s

0

S(s̃)

ρ(s̃)
ds̃ , (324)

D′′(s) = S′′(s)

∫ s

0

C(s̃)

ρ(s̃)
ds̃− C ′′(s)

∫ s

0

S(s̃)

ρ(s̃)
ds̃+

1

ρ(s)

(
C(s)S′(s)− S(s)C ′(s)

)︸ ︷︷ ︸
=det(M)=1

. (325)

Since both C(s) and S(s) are solutions of the homogeneous equation, we have C ′′(s) = −K(s)C(s)
and S′′(s) = −K(s)S(s) and proofed, that D(s) defined in Eq. (323) solves the inhomogeneous differ-
ential equation (322). Thus, the dispersion function can also be derived from integration of the principal
solutions

D(s) = S(s)

∫ s

0

C(s̃)

ρ(s̃)
ds̃− C(s)

∫ s

0

S(s̃)

ρ(s̃)
ds̃ . (326)

8.3 Periodic dispersion functions
In a periodic lattice with period length L, the dispersion function has—as well the optical functions—to
fulfill periodic boundary conditions:

D(s0 + L) = D(s0) , (327)

D′(s0 + L) = D′(s0) . (328)
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Thus the dispersion function can be obtained from applying the 3x3 transfer matrix M(s0, s0 + L) for
one period D0

D′
0

1

 = M(s0, s0 + L) ·

D0

D′
0

1

 =

r11 r12 r13
r21 r22 r23
0 0 1

 ·

D0

D′
0

1

 , (329)

yielding

D0 =
r13 (1− r22) + r12r23

2− r11 − r22
=
r13 (1− r22) + r12r23

2 (1− cosµ)
, (330)

D′
0 =

r13 (1− r11) + r21r13
2− r11 − r22

=
r13 (1− r11) + r21r13

2 (1− cosµ)
, (331)

where for the transformation of the denominator we have used the Twiss parameter representation of
the transfer matrix (cf. Eq. (221)). We found that a stable periodic dispersion exists, as long as the phase
advance µ is not an integer multiple of 2π and therewith the tune Q is not integer. Applying Eq. (330)
to our toy model ring in Section 7.4, we obtain the dispersion function D(s) which is plotted in blue in
Fig. 33. In case of a simple FODO lattice, it shows the same general behaviour as the corresponding beta
function βx.

8.4 Chromaticity
Besides changing the bending in the dipole fields (creating dispersion), a momentum deviation also
changes the focusing strength k of the quadrupole magnets defined by Eq. (46). So far, we neglected
that off momentum particles will experience a different focusing from the quadrupole magnets. Now,
we will investigate the impact of the changed focusing on the betatron tune resulting in a tune shift ∆Q.
This tune shift will explicitly depend on δ, giving rise to the definition of a new quantity which is called
the chromaticity ξ. It is defined by

∆Qu = ξu · δ , (332)

indicating the tune shift normalized to the relative momentum deviation. It can be evaluated from the very
useful Eq. (289) derived in Section 7.9. We distinguish between natural chromaticity created by the chro-
matic abberation of the quadrupole magnets (cf. Fig. 45) and non-linear contributions produced by higher
order magnetic multipoles such as e.g. sextupole magnets.

Figure 45: Chromatic abberation of a focusing quadrupole treated as a thin lens. Particles with lower momentum
are deflected more than particles with higher momentum. The actual quadrupole’s focal length depends on the
relative momentum deviation δ.
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8.4.1 Natural chromaticity
The quadrupole strength scales with the particles’ momenta as

k = k0 +∆k =
q

p
· g =

q

p0 +∆p
· g ≈ q

p0
· g − q

p20
∆p · g , (333)

where k0 represents the quadrupole strength experienced by a particle with reference momentum p0.
This results in a quadrupole “error” for off momentum particles given by

∆k = −k0 ·
∆p

p0
= −k0 · δ =

{
−δK, horizontal plane
+δK, vertical plane

, (334)

where we have used the definition of the generalized K defined in Eq. (142). Inserting δK in Eq. (289)
we find

∆Qx = +
1

4π

∮
βx(s)k0(s)ds · δ ,

∆Qy = − 1

4π

∮
βy(s)k0(s)ds · δ ,

(335)

yielding an expression for the natural chromaticity produced by a contribution of all quadrupole magnets
in a circular accelerator

ξx = +
1

4π

∮
βx(s)k0(s)ds

ξy = − 1

4π

∮
βy(s)k0(s)ds

. (336)

The impact of the individual quadrupole magnets on the chromaticity is weighted by the local beta func-
tion at the quadrupoles’ positions. Since in a linear lattice the horizontal beta function is always larger
in a focusing quadrupole (where k0 < 0) than in a defocusing quadrople (where k0 > 0), the horizontal
natural chromaticity is always negative. The same argument holds for the vertical chromaticity as well
being always negative. We thus have:

The horizontal and vertical natural chromaticities are always negative.
Stronger focusing leads to larger natural chromaticities.

Big circular accelerators will have a larger natural chromaticity than smaller rings.

It should be mentioned that both transverse planes have chromaticity while dispersion is limited
to the bending plane only.

8.4.2 Chromaticity produced by sextupoles
A beam moving on a dispersion orbit through a sextupole magnet is deflected by its transverse non-linear
magnetic field Bsext:

q

p0
B⃗sext = m0xyêx +

1

2
m0

(
x2 − y2

)
êy , (337)

where m0 denotes the sextupole strength experienced by a particle with reference momentum p0. Build-
ing the first derivative and using Eq. (314) for the dispersion orbit, we get a position dependent focusing
which reads using the “generalized” K

δKx = −δk =
q

p0
· ∂Bsext,y

∂x
= m0 · x = m0 ·D · δ , (338)

δKy = +δk = − q

p0
· ∂Bsext,x

∂y
= −m0 · x = −m0 ·D · δ . (339)
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Again inserting these relations in Eq. (289) we obtain the additional contribution of sextupole magnets
to the chromaticity:

ξx = +
1

4π

∮
βx(s) [k0(s) +m0(s)D(s)] ds

ξy = − 1

4π

∮
βy(s) [k0(s) +m0(s)D(s)] ds

. (340)

8.4.3 Chromaticity correction
The chromaticity describes the dependence of the betatron tune on the momentum deviation. Since a real
beam consists of many particles each of which having its on momentum deviation and thus an individual
tune shift, the beam’s momentum spread will lead to a certain tune spread. In order to avoid a large
tune spread, chromaticity has to be corrected by implementing additional sextupole magnets in the linear
lattice. From Eq. (340) we obtain an important information:

– horizontal chormaticity is mainly affected by sextupoles positioned close to focusing quadrupoles,
– vertical chormaticity is mainly affected by sextupoles positioned close to defocusing quadrupoles.

In addition, a non-vanishing dispersion at the positions of the sextupoles is required. Chosing appropriate
sextupole strengths allows the compensation of both the horizontal and vertical natural chromaticity if
two sets or “families” of sextupoles with different sextupole strengths are used: one positioned close
to the focusing quadrupoles and one positioned close to the defocusing quadrupoles. The underlying
correction principle is illustrated in Fig. 46.

Figure 46: Chromaticity correction by a sextupole magnet. Since the momentum deviation is linked with the
displacement of the dispersion orbit, an appropriately chosen sextupole field can correct the momentum dependent
focusing of the quadrupole magnet.

Since sextupoles are non-linear elements, this correction will have an influence on the stability
of the beam. It will reduce the usable are in trace space to a maximum size determined by non-linear
effects. The maximum region of stability is called the dynamic aperture and has to be determined from
tracking a distribution of particles through the accelerator over many thousands of turns. Particles out-
side the stable dynamic aperture will get lost after many turns. Since the required sextupole strength
for chromaticity correction scales inversely proportional with the dispersion, these effects will become
more severe in circular accelerators with low dispersion as 4th generation synchrotron radiation sources.
A more detailed treatment requires a different mathematical approach using the Hamilton formalism and
non-linear maps, which is out of the scope of this introductory course.
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