Transverse Linear Beam Dynamics

Wolfgang Hillert

Introduction to Accelerator Physics 22 September – 05 October 2024 Santa Susanna, Spain

Copyright statement and speaker's release for video publishing

The author consents to the photographic, audio and video recording of this lecture at the CERN Accelerator School. The term "lecture" includes any material incorporated therein including but not limited to text, images and references.

The author hereby grants CERN a royalty-free license to use his image and name as well as the recordings mentioned above, in order to post them on the CAS website.

The author hereby confirms that to his best knowledge the content of the lecture does not infringe the copyright, intellectual property or privacy rights of any third party. The author has cited and credited any third-party contribution in accordance with applicable professional standards and legislation in matters of attribution. Nevertheless the material represent entirely standard teaching material known for more than ten years. Naturally some figures will look alike those produced by other teachers.

Table of Contents

1. Introdu	iction	
1.1. L	iterature	7
1.2. M	agnetic rigidity	10
2. Magne	2ts	12
2.1. D	eflection and focusing	13
2.2. Ta	aylor expansion	14
2.3. B	eam guidance (dipoles)	16
2.4. B	eam focusing (quadrupoles)	18 📮
2.5. C	orrection of chromatic errors (sextupoles)	23
2.6. M	Iultipole expansion	26
2.7. E	ffective field length	29
3. Linear	Beam Optics	32
3.1. C	oordinate system	33
3.2. Geometric optics		36
3.3. Linearized equations of motion		40 5
3.4. Matrix formalism		48
3.4.1.	Drift, dipoles and quadrupoles	50
3.4.2.	Particle orbits	56

Table of Contents

	3.5. Par	rticle beams and trace space	60	r h
	3.5.1.	Beam emittance	63	e 3
	3.5.2.	Twiss parameters	65	tur
	3.5.3.	Beta functions	69	Le Le
	3.5.4.	Transformation in trace space	75	Ę
<i>4</i> .	Circulo	ar Accelerators	85	
	4.1. We	eak focusing	86	
	4.2. Str	ong focusing	89	
	4.3. Per	riodic focusing systems	91	-μ
	4.2.1.	Floquet's theorem	91	4
	4.2.2	Stability criterion	94	ture
	4.3.1.	General FODO lattice	96	,ec
	4.3.2.	Periodic beta functions	100	
	4.4. Tra	ansverse beam dynamics	103	
	4.4.1.	Closed orbit	103	
	4.4.2.	Betatron tune	104	
	4.4.3.	Filamentation	105	ļ

Table of Contents

4.5	5. Effect of magnet errors	109	Ļ
4.5	.1. Dipole errors	111	
4.5	.2. Gradient errors	116	tir.
4.5	.3. Optical resonances	123) Sec
4.6	4.6. Adiabatic damping		
5. Dy 5.1	<i>namics with Off Momentum Particles</i>	130 133	e el
5. D y 5.1 5.2	<i>namics with Off Momentum Particles</i>	130 133 139	scture 6
5. D y 5.1 5.2 5.3	 <i>namics with Off Momentum Particles</i>	130 133 139 141	Lecture 6

1. Introduction

Picture taken from: https://www.cambridge.org/elt/blog/2023/07/27/5quick-and-effective-warm-up-activities-for-the-englishclassroom/

<u>Warm-up:</u>

- Literature
- Why Magnets?

Literature

Highly recommended and directly related to the lecture:

 W. Hillert: *Transverse Linear Beam Dynamics*, 2nd version, uploaded to the program @ the course indico page part of CAS proceedings available under <u>https://cernbox.cern.ch/s/8GTKGkebEDf8FSY</u>

Further recommended reading:

- A. Wolski: *Beam Dynamics in high energy particle accelerators*, Imperial College Press, ISBN 978-1-78326-277-9
- S. Peggs, T. Satogata: *Introduction to Accelerator Dynamics*, Cambridge University Press, ISBN 978-1-10713-284-9

Additional Literature

English Textbooks:

- S.Y. Lee: Accelerator Physics, 4th edition, World Scientific, New Yersey 2018, ISBN 978-981-4374-94-1
- Bryant/Johnson: *The Principles of Circular Accelerators and Storage Rings*, Cambridge University Press, Cambridge 2005, ISBN 978-0-521-61969-1
- Edwards/Syphers: An Introduction to the Physics of High Energy Accelerators, John Wiley & Sons, New York 1992, ISBN 978-0-471-55163-8
- K. Wille: *The physics of particle accelerators*, Oxford Univ. Press 2005, Oxford, ISBN 0-19-850550-7
- H. Wiedemann: *Particle Accelerator Physics*, 4th edition, Springer 2015, Berlin, ISBN 978-3-319-18316-9
- Chao / Tigner: *Handbook of Accelerator Physics and Engineering*, 2nd edition, World Scientific, Singapore 2013, ISBN 987-4417-17-4

Additional Literature

German Textbooks:

- F. Hinterberger: *Physik der Teilchenbeschleuniger und Ionenoptik*, 2. Ausgabe, Springer 2008, Berlin, ISBN 978-3-540-75281-3
- K. Wille: *Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen*,
 2. überarb. und erw. Ausgabe, Teubner 1996, Stuttgart, ISBN 978-3-519-13087-1

Why Magnets?

Deflection of charged particles:

Can use either components E_{\perp} or B_{\perp} perpendicular on particle's velocity v:

Zentripetal Force

$$\gamma_r m_0 \frac{v^2}{\rho} = \frac{pv}{\rho} = qE_{\perp} + qvB_{\perp}$$
 Lorentz Force

 Definition of the stiffness:
 Lecture of Irina Shreyber: Electromagnetic Theory

- electric stiffness: $pv = q\rho E_{\perp}$ (ρE_{\perp} is called the electric stiffness)
- magnetic stiffness: $p = q \rho B_{\perp}$ (ρB_{\perp} is called the magnetic stiffness)

Required stiffness to deflect ultra-relativistic particles (v \approx c):

,easy
$$\rho B_{\perp} = 1 \,\mathrm{Tm} \qquad \Leftrightarrow \qquad \rho E_{\perp} = 300 \,\mathrm{MV}$$
 ,impossible "

→ Only magnetic fields are used for deflection of ultra-relativistic beams!

 $B\rho$ is often called the **magnetic rigidity** of a beam!

Example LHC

2. Magnets

- Beam Guidance
- Beam Focusing
- Correction of Chromatic Errors
- Multipole expansion

Picture taken from https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.magnetic_dipoles

Deflection and Focusing

1) Beam deflection:

need homogenous (constant) vertical magnetic field

 $B_{v} = B_{0} = \text{const.}$

 \rightarrow dipole magnet,

2) Beam focusing:

need magnetic field which is <u>linearly increasing</u> with distance from center

Taylor Expansion

More general: Taylor expansion of the vertical magnetic field

Scaling defines types of "normal" magnets:

- **Dipole** magnets $\leftrightarrow B_{\nu} = \text{const.} \rightarrow Beam \ deflection$
- **Quadrupole** magnets $\leftrightarrow B_v \sim x$
- **Sextupole** magnets $\leftrightarrow B_v \sim x^2$
- **Qctupole** magnets $\leftrightarrow B_v \sim x^3$

- \rightarrow Beam focusing
 - \rightarrow Chromatic correction

 \ominus non-linear \rightarrow no detailed treatment here Θ

 $\rightarrow ...?$

What must they look like???

Calculation Strategy

 \leftrightarrow iron dominated magnets!

Let's consider e.g. a deflecting dipole magnet:

Or more simple and obvious:

<u>Use of soft steel = ferromagnetic material:</u>

- $\rightarrow B$ is perpendicular to the surface (poles)
- $\rightarrow B$ is "shaped" by the pole's contour

Dipole Strength

Deflection of particles \rightarrow homogenous field: $\vec{B} = B_0 \cdot \hat{e}_y = \text{const.}$ Corresponding magnetic potential: $\Phi(x, y) = -B_0 \cdot y$

→ Defining the pole's profile to be flat and parallel: Dipole Magnets!

Required Ampère windings *n*·*I* from Ampère's law:

 $n \cdot I = \oint \vec{H} \cdot d\vec{s} = \int_{gap} \vec{H}_0 \cdot d\vec{s} + \int_{yoke} \vec{H}_E \qquad \mu_r \cdot |H_E| = |H_0| \implies |H_0| \gg |H_E|$

$$B_0 = \mu_0 \frac{n \cdot I}{h} \quad \text{Dipole strength:} \quad \kappa = \frac{q}{p} B_0 = \frac{q \mu_0}{p} \frac{n \cdot I}{h} = \frac{1}{\rho}, \quad [\kappa] = m^{-1}$$

Types of Dipole Magnets

Iron dominated:

field determined by geometry of poles

 \rightarrow 2 flat poles

Superconducting:

field determined by geometry of coils

 $\rightarrow j(\phi) \sim \cos\phi$

Lectures of Gijs de Rijk: Warm Magnets, Cold Magnets

Beam Focusing

Restoring force, linearly increasing with increasing distance from the axis:

$$B_y = -g \cdot x, \quad B_x = -g \cdot y$$
 with $g = -\frac{\partial B_y}{\partial x} = -\frac{\partial B_x}{\partial y} = \text{const.}$ (\leftarrow Proceedings

Corresponding potential: $\Phi(x, y) = g \cdot x \cdot y$ solves $\vec{\nabla} \cdot \vec{B} = -\Delta \Phi = 0$

 Φ = const. defines the pole's profile to 4 hyperbolic poles: **Quadrupole Magnets**

Quadrupole Strength

Restoring force on the particle:

$$\vec{F} = q \cdot \left(\vec{v} \times \vec{B}\right) = q v g \cdot \left(x \, \hat{e}_x - y \, \hat{e}_y\right)$$

A quadrupole magnet is therefore focusing only in one plane and defocusing in the other, depending on the sign of g!

The g parameter may be related to the current of the coils by evaluating the closed loop integral $n \cdot I = \oint \vec{H} \cdot d\vec{s} = \int_{0}^{|\vec{I}|} \vec{H}_{0} \cdot d\vec{s} + \int_{|\vec{I}|} \vec{H}_{1} \cdot d\vec{s} + \int_{|\vec{I}|} \vec{H}_{0} \cdot d\vec{s} \approx \int_{0}^{|\vec{I}|} \vec{H}_{0} \cdot d\vec{s}$ $\int_{0}^{y} \vec{H}_{0} \cdot d\vec{s} = -\int_{0}^{a} \frac{g}{\mu_{0}} r dr = \frac{-g}{2\mu_{0}} a^{2} \rightarrow g = -\frac{2 \cdot \mu_{0} \cdot n \cdot I}{a^{2}}$ Normalization \rightarrow quadrupole strength $\left[\underbrace{k = \frac{q}{p}g = -\frac{2q\mu_{0}}{p}\frac{n \cdot I}{a^{2}}}_{p}, [k] = m^{-2} \right]$

Thin Lens Approximation

Thin lens approximation:

 $L \leq R \leftrightarrow$ transverse offset of beam remains unchanged in magnet

Comparing triangles:
$$\tan \alpha = \frac{x}{|f|} = \frac{L}{R} = L \cdot \left| \frac{q}{p} B_{y} \right| = \left| \frac{q}{p} g x \right| L = |x k| L$$

Focusing length of a thin quadrupole: $\frac{1}{f_{x,y}} = \mp k \cdot L$ Def.: $\begin{cases} k > 0: \text{ focusing in } y \\ k < 0: \text{ focusing in } x \end{cases}$

Overall 2D Focusing

Combining focusing and defocusing elements can still lead to overall focusing:

Light optics:

Magnet optics:

Types of Quadrupole Magnets

Iron dominated:

field determined by geometry of poles

 \rightarrow 4 hyperbolic poles

 Description
 Description

 Description
 Description

Picture taken from https://cds.cern.ch/record/1333874/plots

Superconducting:

field determined by geometry of coils $\rightarrow j(\phi) \sim \cos(2\phi)$

Lectures of Gijs de Rijk: Warm Magnets, Cold Magnets

Sextupole Magnets

Quadratic increase of magnetic fields with increasing distance from axis:

Sextupole Strength

Again, the *g* parameter may be related to the current of the coils by evaluating the closed loop integral

$$n \cdot I = \oint \vec{H} \cdot d \vec{s} \approx -\int_{0}^{\frac{2}{3}} \vec{H}_{0} \cdot d \vec{s} = \frac{1}{6} g' a^{3}$$

revealing

$$g' = \frac{\partial^2 B_y}{\partial x^2} = 6 \,\mu_0 \frac{n I}{a^3}$$

Normalization → **sextupole strength:**

$$m = \frac{q}{p}g' = \frac{6q\mu_0}{p}\frac{nI}{a^3}$$
, $[m] = m^{-3}$

Transverse magnetic fields \rightarrow coupling of particle's horizontal and vertical motion

$$B_{x}(x,y) = -\frac{\partial \Phi}{\partial x} = g'xy \text{ and } B_{y}(x,y) = -\frac{\partial \Phi}{\partial y} = \frac{1}{2}g'(x^{2}-y^{2})$$

Again: Basic Types of Magnets

Beam guidance:

dipole magnets

$$\frac{1}{\rho} = \kappa = \frac{q}{p}B_y, \quad B_y = \text{const.}$$

Beam focusing: quadrupole magnets $\frac{1}{f_x} = -kL, \quad B_x = -\frac{p}{q}ky, \quad B_y = -\frac{p}{q}kx$

Chromatic correction:

sextupole magnets

$$B_x = \frac{p}{q}mxy, \quad B_y = \frac{p}{2q}m(x^2 - y^2)$$

General treatment by multipole expansion, e.g. in polar coordinates:

$$B_{r}(r,\varphi) = B_{0} \sum_{n=1}^{\infty} \left(\frac{r}{r_{0}}\right)^{n-1} \cdot \left(b_{n} \sin(n\varphi) - a_{n} \cos(n\varphi)\right)$$

$$B_{\varphi}(r,\varphi) = B_{0} \sum_{n=1}^{\infty} \left(\frac{r}{r_{0}}\right)^{n-1} \cdot \left(a_{n} \sin(n\varphi) + b_{n} \cos(n\varphi)\right)$$
Contribution of multipole $n: |B|_{n} = \sqrt{B_{r,n}^{2} + B_{\varphi,n}^{2}} = B_{0} \left(\frac{r}{r_{0}}\right)^{n-1} \cdot \sqrt{a_{n}^{2} + b_{n}^{2}}$

Generally: 2*n* pole has symmetry $2\pi/n$, $|B|_n$ scales with r^{n-1}

$$n = 1$$
: dipole magnetClassification: $n = 2$: quadrupole magnet $Classification:$ $n = 3$: sextupole magnet $b_n \neq 0$: "upright" magnets $n = 4$: octupole magnet $a_n \neq 0$: "skew" magnets, rotated by $\pi/2n$

Field Pattern of Different Multipoles

Skew or rotated magnets

always vert. deflection in the horz. mid-plane!

Taken from Zolkin, Timofey, Phys.Rev.Accel.Beams 20 (2017) no.4, 043501

W. Hillert

Multipole Expansion: (x, y)

Magnetic Potential:

Proceedings!

Dipole

Quadrupole

Sextupole

Octupole

Upright Magnets:

Dipole	$\frac{q}{p}\vec{B}_1 = \kappa \hat{e}_y$	"constant"
Quadrupole	$\frac{q}{p}\vec{B}_2 = -ky\hat{e}_x - kx\hat{e}_y$	"linear"
Sextupole	$\frac{q}{p}\vec{B}_{3} = mxy\hat{e}_{x} + \frac{1}{2}m(x^{2} - y^{2})\hat{e}_{y}$	"cubic"
Octupole	$\frac{\dot{q}}{p}\vec{B}_{4} = \frac{1}{6}r(3x^{2}y - y^{3})\hat{e}_{x} + \frac{1}{6}r(x^{3} - 3)\hat{e}_{y} + \frac{1}{6}$	$(3xy^2)\hat{e}_y$

 $-\frac{q}{n} \cdot \Phi_1 = -\underline{\kappa} x + \kappa y$

$-\frac{1}{p} \cdot \Phi_1 = -\underline{\kappa} x + \kappa y$	Multipole strengths:		
$-\frac{q}{p} \cdot \Phi_2 = \frac{1}{2} \underline{k} \left(x^2 - y^2 \right) - k x y$	b_n : upright		
$-\frac{q}{p} \cdot \Phi_3 = -\frac{1}{6} \underline{m} \left(x^3 - 3xy^2 \right) + \frac{1}{6} m \left(3x^2y - y^3 \right)$	a_n : skew		
$-\frac{q}{p} \cdot \Phi_4 = -\frac{1}{24} \underline{r} \left(x^4 - 6x^2y^2 + y^4 \right) + \frac{1}{6r} \left(x^3y - xy^3 \right)$	$\underline{\kappa} = \frac{q B_0}{p} a_1, \qquad \kappa = \frac{q B_0}{p} b_1$		
nets:	$\underline{k} = -\frac{q B_0}{p r_0} a_2, \qquad k = -\frac{q B_0}{p r_0} b_2$		
$\frac{q}{p}\vec{B}_1 = \kappa \hat{e}_y \qquad \text{``constant''}$	$\underline{m} = \frac{q - 0}{p r_0^2} a_3, \qquad m = \frac{q - 0}{p r_0^2} b_3$ $r = \frac{q B_0}{p R_0} a_3, \qquad r = \frac{q B_0}{p R_0} b_3$		
$\frac{q}{p}\vec{B}_2 = -ky\hat{e}_x - kx\hat{e}_y \qquad \text{``linear''}$	$\underline{r} - \frac{1}{p r_0^3} u_4, \qquad r - \frac{1}{p r_0^3} v_4$		
$\frac{q}{p}\vec{B}_3 = mxy\hat{e}_x + \frac{1}{2}m\left(x^2 - y^2\right)\hat{e}_y \qquad \text{``cubic''}$	$s_n = \frac{q}{n} \cdot \frac{\partial^{n-1} B_y(0,0)}{\partial x^{n-1}}$		
(J = 1) (2.2.2) $(J = 2)$	D Q X		

add. minus sign for n = 2!

Effective Field Length

- So far: assumption of constant field distribution along $\hat{e}_s!$
- In reality: fringe fields at the end of the magnets
- \rightarrow Definition of an effective field length l_{eff} via

$$\int_{-\infty}^{\infty} \vec{B} \cdot d\vec{s} = \vec{B}_0 \cdot l_{eff}$$

End of 1st Lecture!

Questions?