Recap 2nd Lecture

Paraxial Optics:trajectory described by offsets (x, x', y, y') from design orbit,
important approximation: displacements |x|, $|y| \ll \rho$

Geometric Optics: each element *i* is represented by a transfer matrix \mathbf{M}_i ,

 \rightarrow treatment of **linear elements only**

Matrices (simple 2x2 approx.): dipole and drift $\mathbf{M}_D = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$, quadrupole $\mathbf{M}_Q = \begin{pmatrix} 1 & 0 \\ -1/f_{rrr} & 1 \end{pmatrix}$ trajectory (single particle's orbit) from $\vec{x} = \prod_{i=1}^{n} \mathbf{M}_{i} \cdot \vec{x}_{0}$ **Matrix Formalism**: $x''(s) + \left\{\frac{1}{\rho^2(s)} - k(s)\right\} x(s) = \frac{1}{\rho(s)} \frac{\Delta p}{p_0} \quad \leftarrow \text{linearization of all terms}$ **Equations of Motion**: v''(s) + k(s)v(s) = 0← "flat" accelerator **Matrices from EQM**: build from solution of EQM for individual elements \rightarrow piecewise solution of EQM by applying the matrix formalism **Dipole Focusing**: weaks horizontal **geometric focusing** in sector dipole magnets vertical edge focusing in rectangular dipole magnets

Configuration and Trace Space

Famous theorem of Liouville:

The phase space distribution function describing the density of possible states around a phase space point is invariant under conservative forces"!

\rightarrow The phase space area covered by the beam remains constant!

Beam and Trace Space

Beam = statistical set of points in trace space!

Consider 2D trace space, *u* is representing *x* or *y*:

 \rightarrow Hands-On Lattice Calculations recommended: E8 - E11

 \rightarrow each particle *i* is represented by a point (u_i, u_i') in trace space

Choose origin of the coordinate system (u, u') at the barycenter of the points:

$$\overline{u} = \frac{1}{N} \sum_{i=1}^{N} u_i = 0, \qquad \overline{u'} = \frac{1}{N} \sum_{i=1}^{N} u_i' = 0$$

Interested in variances (rms spread)

$$\sigma_{u}^{2} = \frac{1}{N} \sum_{i=1}^{N} u_{i}^{2}, \qquad \sigma_{u'}^{2} = \frac{1}{N} \sum_{i=1}^{N} u_{i'}^{2}$$

System (U, U') which is rotated by θ :

$$U_{i} = u_{i} \cdot \cos \theta + u_{i}' \cdot \sin \theta$$
$$U_{i}' = -u_{i} \cdot \sin \theta + u_{i}' \cdot \cos \theta$$

Proceedings!

Variances in rotated system (U, U'):

$$\sigma_U^2 = \frac{1}{N} \sum_{i=1}^N U_i^2 = \overline{u^2} \cos^2 \theta + \overline{u'^2} \sin^2 \theta + \overline{uu'} \sin 2\theta$$

$$\sup_{\substack{\text{using} \\ \sin 2\theta = 2 \sin \theta \cos \theta}} \sigma_{U'^2}^2 = \frac{1}{N} \sum_{i=1}^N U_i'^2 = \overline{u^2} \sin^2 \theta + \overline{u'^2} \cos^2 \theta - \overline{uu'} \sin 2\theta$$

are minimized / maximized with respect to the angle θ when

Beam Emittance

Emittance $\varepsilon \leftrightarrow$ defined by spread of the distribution

$$\varepsilon_{u} = \sigma_{U} \cdot \sigma_{U'} = \sqrt{\overline{u'^2} \cdot \overline{u'^2} - (\overline{uu'})^2} \qquad [\varepsilon_{u}] = \mathbf{m} \cdot \mathbf{rad}$$

It is important to note that this is a statistical definition of ε ! More general, ε_u will be defined over the area $\varepsilon_u = \iint du' du!$

The emittance can be considered as a statistical mean area:

$$\varepsilon_{u} = \frac{1}{N} \sqrt{\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(u_{i} u_{j}' - u_{j} u_{i}' \right)^{2}}_{(\text{remember } 2A_{\Delta} = \left| \vec{a} \times \vec{b} \right|^{-\frac{a_{3} - b_{3} = 0}{2}} \left| a_{1} b_{2} - a_{2} b_{1} \right|} \right)$$
where A_{ij} is the area of the triangle $0P_{i}P_{j}$ and ε is a measure of the spread of the points around their barycenter.
 \rightarrow Hands-On Lattice Calculations

Hands-On Lattice Calculations optional: E2.2Ph

Beam Emittance

The area A of the envelope ellipse is just π times the emittance ε

$$A = \pi a b = \pi \sigma_{U} \sigma_{U'} = \pi \varepsilon_{u}$$

and its equation with respect to the rotated coordinates X and X'

$$\frac{U^{2}}{\sigma_{U}^{2}} + \frac{U'^{2}}{\sigma_{U'}^{2}} = \frac{U^{2}}{a^{2}} + \frac{U'^{2}}{b^{2}} = 1 \qquad \rightarrow \qquad U^{2}\sigma_{U'}^{2} + U'^{2}\sigma_{U}^{2} = \varepsilon_{u}^{2}$$

where *a* and *b* are the two semi-axes of the envelope ellipse.

By an inverse rotation of angle $-\theta$ in trace space we obtain the ellipse equation in trace space coordinates u and u':

$$\varepsilon_u^2 = u^2 \cdot \sigma_{u'}^2 - 2uu' \cdot \overline{uu'} + u'^2 \cdot \sigma_u^2 = u^2 \cdot \sigma_{u'}^2 - 2uu' \cdot r \sigma_u \sigma_{u'} + u'^2 \cdot \sigma_u^2$$

where we have defined the correlation coefficient

ent
$$r = \frac{uu}{\sqrt{\overline{u^2} \cdot \overline{u'^2}}}$$

Optical Functions

Liouville's theorem ↔ density of states around a phase space point = const.

 \rightarrow particles occupy the same area in phase space at different s

mono-energetic beam: $p_u = \gamma_r m_0 v_u = \beta_r \gamma_r m_0 c \cdot u' \iff u' \sim p_u$

 \rightarrow Liouville's theorem holds as well for the trace space (if $\beta_r \gamma_r = \text{const.}!$)

The emittance ε_u remains constant under conservative forces! It characterizes the beam's "internal" properties!

 \rightarrow Normalization of the beam parameters by the emittance: Separation of the impact of **magnet optics** and the **beam's internal properties**!

$$\sigma_{u}^{2}(s) = \overline{u^{2}(s)} = \varepsilon_{u} \cdot \beta_{u}(s)$$
Definition of α, β, γ :
 $\sigma_{u'}^{2}(s) = \overline{u'^{2}(s)} = \varepsilon_{u} \cdot \gamma_{u}(s)$

$$r\sigma_{u}\sigma_{u'} = \overline{uu'} = -\varepsilon_{u} \cdot \alpha_{u}(s)$$

Optical Functions

We call the newly defined $\alpha_u, \beta_u, \gamma_u$ optical functions (Twiss parameters)!

Using them, the equation of the envelope ellipse reads in the ,,conventional" form:

$$\varepsilon_{u} = \gamma_{u}u^{2} + 2\alpha_{u}uu' + \beta_{u}u'^{2}$$

All the above derived equations appear in identical form for the horizontal and vertical plane. In the following, we will skip the index u for reason of simplicity. Please note, that this doesn't imply that emittances and corresponding Twiss parameters are equal in both planes – they are not!

Optical Functions

- $\sqrt{\beta}$ represents the r.m.s. beam envelope per unit emittance
- $\sqrt{\gamma}$ represents the r.m.s. beam divergence per unit emittance
- α is proportional to the correlation between u and u'

Beam matrix = covariance matrix of the particle distribution:

$$\boldsymbol{\Sigma}_{\text{beam}} = \begin{pmatrix} \overline{u^2} & \overline{uu'} \\ \overline{uu'} & \overline{u'^2} \end{pmatrix} = \begin{pmatrix} \sigma_u^2 & \sigma_{uu'} \\ \sigma_{uu'} & \sigma_{u'}^2 \end{pmatrix} = \boldsymbol{\varepsilon}_u \begin{pmatrix} \boldsymbol{\beta}_u & -\boldsymbol{\alpha}_u \\ -\boldsymbol{\alpha}_u & \boldsymbol{\gamma}_u \end{pmatrix}$$

Emittance ↔ **beam matrix:**

$$\varepsilon_u = \sqrt{\sigma_u^2 \sigma_{u'}^2 - \sigma_{uu'}^2} = \sqrt{\det(\Sigma_{\text{beam}})}$$

 \rightarrow Important relation between the optical functions:

$$\varepsilon = \sqrt{\underbrace{\beta\varepsilon}_{u^2} \cdot \underbrace{\gamma\varepsilon}_{u^{\prime 2}} - \underbrace{\alpha^2\varepsilon^2}_{-uu^{\prime^2}}} \rightarrow \underbrace{\beta\gamma - \alpha^2 = 1}$$

Envelope ellipse in trace space:

$$\varepsilon_{u} = \frac{1}{\varepsilon_{u}} \left(u^{2} \sigma_{u'}^{2} - 2 \sigma_{uu'} u u' + u'^{2} \sigma_{u}^{2} \right) = \gamma u^{2} + 2 \alpha u u' + \beta u'^{2} = \varepsilon_{u} \cdot \vec{u}^{T} \cdot \left(\Sigma_{\text{beam}} \right)^{-1} \cdot \vec{u}$$

Equation of motion in general form:

 $u''(s) + K(s) \cdot u(s) = 0$

Ansatz for a solution of the equation of motion:

 $u(s) = A \cdot w(s) \cdot \cos(\mu(s) + \varphi_0)$ (A, φ_0) defined by individual particle

Discussion of the chosen parametrization:

- Phase advance $\mu(s)$ is positive and monotonously increasing $\mu(s) > 0$, $\mu'(s) > 0$, $\mu(0) = \mu_0 = 0$
- Amplitude function w(s) > 0 and constant A > 0 are defined except for a scaling factor since only the product A·w(s) enters. We choose

$$w_0 = w(0) = \sqrt{\frac{1}{\mu_0'}} \longrightarrow w_0^2 \mu_0' = 1$$

Inserting the Ansatz in the equation of motion yields

$$\left[\underbrace{w^{\prime\prime}-w\cdot\mu^{\prime^{2}}+K\cdot w}_{=0}\right]\cdot\cos\left(\mu+\varphi_{0}\right)-\left[\underbrace{2\cdot w^{\prime}\cdot\mu^{\prime}+w\cdot\mu^{\prime\prime}}_{=0}\right]\sin\left(\mu+\varphi_{0}\right)=0$$

Relation is valid for any given phase advance $\mu(s)$ and any given position s

$$w'' - w \cdot \mu'^{2} + K \cdot w = 0$$
$$2 \cdot w' \cdot \mu' + w \cdot \mu'' = 0$$

Integration of the second equation:

$$\int_{0}^{s} \frac{\mu''}{\mu'} ds = -2 \int_{0}^{s} \frac{w'}{w} ds \quad \to \quad \frac{\mu'(s)}{\mu'(0)} = \left(\frac{w(0)}{w(s)}\right)^{2} \quad \to \quad \mu(s) = \mu_{0}' w_{0}^{2} \int_{0}^{s} \frac{ds}{w^{2}(s)}$$

With our settings ($w_0^2 \mu_0' = 1$) we get:

$$\mu(s) = \int_{0}^{s} \frac{ds}{w^{2}(s)} \quad \text{and} \quad w'' - \frac{1}{w^{3}} + K \cdot w = 0$$

CAS Intro: Transverse Linear Beam Dynamics

W. Hillert

Beta Function

Definition of a new function - the beta function:

 $\beta(s) = w^2(s)$

 \rightarrow transverse position displacement = oscillation around reference orbit

$$u(s) = A \cdot \sqrt{\beta(s)} \cdot \cos(\mu(s) + \varphi_0)$$
$$\mu(s) = \int_0^s \frac{d\tilde{s}}{\beta(\tilde{s})}$$

Building the first derivative and again defining a new alpha function, we obtain

$$u'(s) = -\frac{A}{\sqrt{\beta(s)}} \left\{ \alpha(s) \cdot \cos(\mu(s) + \varphi_0) + \sin(\mu(s) + \varphi_0) \right\}$$

with
$$\alpha(s) = -\frac{\beta'(s)}{2}$$

The equation for *u* can be transformed to

$$\cos^2(\mu + \varphi_0) = \frac{u^2}{A^2 \cdot \beta}$$

which can be used in combination with the equation for u' to obtain

$$\sin^{2}(\mu + \varphi_{0}) = \left(\frac{\sqrt{\beta}}{A} \cdot u' + \frac{\alpha}{A\sqrt{\beta}} \cdot u\right)^{2}$$

Using $\cos^2 + \sin^2 = 1$ we derive

$$\frac{u^2}{\beta(s)} + \left(\frac{\alpha(s)}{\sqrt{\beta(s)}} \cdot u + \sqrt{\beta(s)} \cdot u'\right)^2 = A^2$$

Defining a new gamma function by $\gamma = (1 + \alpha^2)/\beta$ this can be transformed to

$$\gamma u^2 + 2\alpha u u' + \beta u'^2 = A^2$$

... looks perfectly the same like the envelope ellipse equation on slide 66!

Proceedings!

Are the newly defined α , β and γ identical to those defined on slide 65?

Each particle is defined by its individual A_i and $\varphi_{i,0}$!

But all particles are described by the same optical functions α , β , γ , μ

Let's check and calculate the second statistical moments:

$$\sigma_{u}^{2} = \overline{u^{2}} = \overline{A_{i}^{2}\beta\cos^{2}(\mu+\varphi_{0,i})} = \boxed{\frac{1}{2}\overline{A_{i}^{2}}\beta}$$

$$\sigma_{u'}^{2} = \overline{u'^{2}} = \frac{\overline{A_{i}^{2}}\beta\cos^{2}(\dots) + \sin^{2}(\dots) + 2\alpha\cos(\dots)\sin(\dots)}{\beta} = \boxed{\frac{1}{2}\overline{A_{i}^{2}}\gamma}$$

$$\overline{uu'} = -\overline{A_{i}^{2}}\left\{\alpha\cos^{2}(\mu+\varphi_{0,i}) + \cos(\mu+\varphi_{0,i})\sin(\mu+\varphi_{0,i})\right\} = \boxed{-\frac{1}{2}\overline{A_{i}^{2}}\alpha}$$

$$\varepsilon^{2} = \overline{u'^{2}u'^{2}} - (\overline{uu'})^{2} = \frac{1}{4}\left(\overline{A_{i}^{2}}\right)^{2}\left(\beta\gamma-\alpha^{2}\right) = \left[\left(\frac{1}{2}\overline{A_{i}^{2}}\right)^{2}\right]$$
Twiss parameters $\alpha, \beta, \gamma, \mu$ with $\frac{1}{\beta} = \mu', \quad \alpha = -\frac{\beta'}{2}, \quad \gamma = \frac{1+\alpha^{2}}{\beta}$

Single Particle Dynamics

Each particle will stay on its own ellipse, which will enclose a constant area in trace space. The amplitude factor *A* represents the Courant Snyder invariant! The shape of the ellipse is determined by the Twiss parameters α , β , γ and will change along the magneto-optics system, its area will stay always constant (Rem.: in case of conservative forces and no acceleration). The shape (not the size) of all single particle ellipses are determined by the same Twiss parameters!

Transformation in Trace Space

The transformation of the displacements of a single particle along a beam line may be derived from the transport matrixes.

Important finding: the area A^2 of the corresponding ellipse will remain constant! So, comparing the displacements at s=0 with those at s, we have for a particle on its ellipse with area A^2

$$\gamma_0 u_0^2 + 2\alpha_0 u_0 u_0' + \beta_0 u_0'^2 = A^2 = \gamma u^2 + 2\alpha u u' + \beta u'^2$$

Any particle trajectory starting at s=0 transforms to $s\neq 0$ by

$$\vec{u} = \mathbf{M} \cdot \vec{u}_0 \longrightarrow \begin{pmatrix} u \\ u' \end{pmatrix} = \begin{pmatrix} C(s) & S(s) \\ C'(s) & S'(s) \end{pmatrix} \cdot \begin{pmatrix} u_0 \\ u_0' \end{pmatrix}$$

which gives via matrix inversion for the inverse transformation

$$\begin{pmatrix} u_0 \\ u_0' \end{pmatrix} = \frac{1}{\underbrace{CS' - C'S}} \cdot \begin{pmatrix} S'(s) & -S(s) \\ -C'(s) & C(s) \end{pmatrix}} \cdot \begin{pmatrix} u \\ u' \end{pmatrix} \stackrel{|\mathbf{M}|=1}{=} \begin{pmatrix} S'u - Su' \\ -C'u + Cu' \end{pmatrix} _{=\mathbf{M}^{-1}}$$

We therewith get for the quadratic and mixed terms

$$u_0^2 = S'^2 u^2 - 2SS' uu' + S^2 u'^2$$

$$u_0'^2 = C'^2 u^2 - 2CC' uu' + C^2 u'^2$$

$$u_0 u_0' = -C'S' u^2 + (C'S + CS') uu' - CS u'^2$$

which we insert in the ellipse equation $\gamma_0 u_0^2 + 2\alpha_0 u_0 u_0' + \beta_0 u_0'^2 = A^2$ getting

$$\underbrace{\left(\underbrace{S'^{2} \cdot \gamma_{0} - 2 S'C' \cdot \alpha_{0} + C'^{2} \cdot \beta_{0}}_{=\gamma}\right) \cdot u^{2} + 2 \underbrace{\left(-SS' \cdot \gamma_{0} + \left(S'C + SC'\right) \cdot \alpha_{0} - CC' \cdot \beta_{0}\right)}_{=\alpha}\right) \cdot uu'}_{=\alpha}$$

$$+\underbrace{\left(\underbrace{S^{2} \cdot \gamma_{0} - 2 SC \cdot \alpha_{0} + C^{2} \cdot \beta_{0}}_{=\beta}\right) \cdot u'^{2}}_{=\beta}$$

This gives the wanted transformation of the Twiss parameters:

$$\begin{bmatrix} \beta \\ \alpha \\ \gamma \end{bmatrix} = \begin{bmatrix} C^2 & -2 S C & S^2 \\ -C C' & S' C + S C' & -S S' \\ C'^2 & -2 S' C' & S'^2 \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \alpha_0 \\ \gamma_0 \end{bmatrix}$$

Another useful relation may be obtained by defining the Beta matrix **B**

$$\mathbf{B} \equiv \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}, \quad \det(\mathbf{B}) = \beta \gamma - \alpha^2 = 1, \quad \varepsilon \cdot \mathbf{B} = \begin{pmatrix} \sigma_u^2 & \sigma_{uu'} \\ \sigma_{uu'} & \sigma_{u'}^2 \end{pmatrix} \equiv \boldsymbol{\Sigma}_{\text{beam}}$$

which yields with $\varepsilon = \gamma u^2 + 2\alpha u u' + \beta u'^2$

$$\varepsilon = {}^{T}\vec{u} \cdot \mathbf{B}^{-1} \cdot \vec{u} = {}^{T}\vec{u}_{0} \cdot \mathbf{B}_{0}^{-1} \cdot \vec{u}_{0} \quad \text{with} \quad \mathbf{B}^{-1} = \begin{pmatrix} \gamma & \alpha \\ \alpha & \beta \end{pmatrix} \quad \text{since} \quad \det(\mathbf{B}) = 1$$

Displacement vector \vec{u} transforms according to

$$\vec{u}_1 = \mathbf{M} \cdot \vec{u}_0$$
, $^T \vec{u}_1 = ^T (\mathbf{M} \cdot \vec{u}_0) = ^T \vec{u}_0 \cdot ^T \mathbf{M}$

By inserting $\mathbf{1} = \mathbf{M}^{-1} \cdot \mathbf{M}$ we obtain with $T(\mathbf{M}^{-1} \cdot \mathbf{M}) = T\mathbf{M} \cdot T\mathbf{M}^{-1}$

$$\varepsilon = {}^{T}\vec{u}_{0} \cdot {}^{T}\mathbf{M} \cdot {}^{T}\mathbf{M}^{-1} \cdot \mathbf{B}_{0}^{-1} \cdot \mathbf{M}^{-1} \cdot \mathbf{M} \cdot \vec{u}_{0}$$

= ${}^{T}(\mathbf{M} \cdot \vec{u}_{0}) \cdot ({}^{T}\mathbf{M}^{-1} \cdot \mathbf{B}_{0}^{-1} \cdot \mathbf{M}^{-1}) \cdot (\mathbf{M} \cdot \vec{u}_{0})$
= ${}^{T}\vec{u}_{1} \cdot (\mathbf{M} \cdot \mathbf{B}_{0} \cdot {}^{T}\mathbf{M})^{-1} \cdot \vec{u}_{1}$

Beta Matrix Formalism

We therewith get the transformation of the beta matrix

$$\mathbf{B}_1 = \mathbf{M} \cdot \mathbf{B}_0 \cdot {}^T \mathbf{M}$$

We thus can transform the Twiss parameters by only taking use of the

transfer matrix!

Example: Free Drift

Application of the beta matrix formalism to a drift around a symmetry point of a transfer line where $\alpha_{sym} = 0 \rightarrow \gamma_{sym} = 1/\beta_{sym}$:

$$\mathbf{B}(s) = \underbrace{\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}}_{\mathbf{M}_{drift}} \cdot \underbrace{\begin{pmatrix} \beta_{sym} & 0 \\ 0 & 1/\beta_{sym} \end{pmatrix}}_{\mathbf{B}_{sym}} \cdot \underbrace{\begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix}}_{^{T}\mathbf{M}_{drift}} = \begin{bmatrix} \beta_{sym} + \frac{s^{2}}{\beta_{sym}} & \frac{s}{\beta_{sym}} \\ \frac{s}{\beta_{sym}} & \frac{1}{\beta_{sym}} \end{bmatrix}$$

This gives the relations for the beam parameters around a symmetry-point:

CAS Intro: Transverse Linear Beam Dynamics

W. Hillert

Emittance ↔ Wavelength

Evolution of rms beam size $\sigma = \sqrt{\epsilon\beta}$ and beam divergence $\sigma' = \sqrt{\epsilon\gamma}$:

$$\sigma(s) = \sigma_0 \cdot \sqrt{1 + \left(\frac{s}{\beta_{sym}}\right)^2} = \sigma_0 \cdot \sqrt{1 + \left(\frac{s}{\sigma_0^2/\varepsilon}\right)^2}, \qquad \sigma'(s) = \frac{\varepsilon}{\sigma_0} = \text{const.}$$

To obtain further insights, let us compare the particle's beam with a Gaussian light beam (TEM₀₀) with wavelength λ . There, we get for the beam radius w

$$w(s) = w_0 \cdot \sqrt{1 + \left(\frac{s}{z_R}\right)^2}$$
 with the Rayleigh length $z_R = \frac{\pi w_0^2}{\lambda} = \frac{4\pi \sigma_0^2}{\lambda}$

Direct comparison reveals the important relation

$$4\pi \cdot \varepsilon \stackrel{\wedge}{=} \lambda$$

A charged particle's beam with emittance ε "behaves" like a Gaussian TEM₀₀ light beam with wavelength $\lambda / (4\pi)$!

Example: Free Drift

The transformation matrix M can be derived also from the Twiss parameters. With

$$u(s) = \sqrt{\varepsilon\beta} \cos(\mu + \varphi_0) = \sqrt{\varepsilon} \cdot \sqrt{\beta} \cdot \left\{ \cos\mu \cdot \cos\varphi_0 - \sin\mu \cdot \sin\varphi_0 \right\}$$
$$u'(s) = -\frac{\sqrt{\varepsilon}}{\sqrt{\beta}} \cdot \left\{ \alpha \cdot \left[\cos\mu \cdot \cos\varphi_0 - \sin\mu \cdot \sin\varphi_0 \right] - \sin\mu \cdot \cos\varphi_0 + \cos\mu \cdot \sin\varphi_0 \right\}$$

and the starting conditions $u(0) = u_0$, $u'(0) = u_0'$, $\mu(0) = 0$, which transforms to

$$\cos\varphi_0 = \frac{u_0}{\sqrt{\varepsilon}\beta_0}, \qquad \sin\varphi_0 = -\frac{1}{\sqrt{\varepsilon}} \left(u_0' \sqrt{\beta_0} + \frac{\alpha_0 u_0}{\sqrt{\beta_0}} \right)$$

we obtain **M**, only dependent on the initial and final Twiss parameters (and μ !)

$$\mathbf{M}(s) = \begin{pmatrix} \frac{\sqrt{\beta}}{\sqrt{\beta_0}} (\cos \mu + \alpha_0 \sin \mu) & \sqrt{\beta \beta_0} \sin \mu \\ \frac{\alpha_0 - \alpha}{\sqrt{\beta \beta_0}} \cos \mu - \frac{1 + \alpha \alpha_0}{\sqrt{\beta \beta_0}} \sin \mu & \frac{\sqrt{\beta_0}}{\sqrt{\beta}} (\cos \mu - \alpha \sin \mu) \end{pmatrix}$$

End of 3rd Lecture!

Questions?