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Recap 2nd Lecture
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Paraxial Optics: trajectory described by offsets (x, x´, y, y´) from design orbit,
important approximation: displacements |x|, |y| << ρ

Geometric Optics: each element i is represented by a transfer matrix Mi,
→ treatment of linear elements only

Matrices (simple 2x2 approx.): dipole and drift ,   quadrupole
1
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Matrix Formalism: trajectory (single particle’s orbit) from 01

n

ii
x x

=
= ⋅ΠM 

Equations of Motion: ← linearization of all terms

← “flat” accelerator
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Matrices from EQM: build from solution of EQM for individual elements
→ piecewise solution of EQM by applying the matrix formalism

Dipole Focusing: horizontal geometric focusing in sector dipole magnets
vertical edge focusing in rectangular dipole magnets
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Configuration and Trace Space
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Famous theorem of Liouville:
The phase space distribution function describing the density of possible states 

around a phase space point is invariant under conservative forces”!

→ The phase space area covered by the beam remains constant!

Configuration Space

Trace Spaces
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x
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0 ´x r rp m c xβ γ= ⋅
Trace Space (x, x´) ↔ Phase Space (x, px)
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Beam and Trace Space
Beam = statistical set of points in trace space!

Consider 2D trace space, u is representing x or y:

→  each particle i is represented by a point (ui, ui´) in trace space

Choose origin of the coordinate system (u, u´) at the barycenter of the points:
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Interested in variances (rms spread)
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→ Hands-On Lattice Calculations
recommended: E8 – E11
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Beam and Trace Space
Variances in rotated system (U, U´):

are minimized / maximized with respect to the angle θ when

which yields (from                                    and                                  ): 
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Proceedings!

using
sin 2 2sin cosθ θ θ=
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Beam Emittance
Emittance ε ↔   defined by spread of the distribution

( )´

22 2´ ´u U U u u uuε σ σ⋅= = ⋅ −

It is important to note that this is a statistical definition of ε !
More general, εu will be defined over the area                      !d ´du u uε = ∫∫

The emittance can be considered as a statistical mean area:
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(remember                                                     )

where Aij is the area of the triangle 0PiPj and ε is a measure of 

the spread of the points around their barycenter.

[ ] m raduε = ⋅

u

u´
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→ Hands-On Lattice Calculations
optional: E2.2Ph
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Beam Emittance
The area A of the envelope ellipse is just π times the emittance ε

and its equation with respect to the rotated coordinates X and X´

where a and b are the two semi-axes of the envelope ellipse.

´U U uA ab σ σπ π π ε= = =
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´ 1´
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U U U U
a bσ σ
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By an inverse rotation of angle –θ in trace space we obtain the ellipse equation 
in trace space coordinates u and u´:

2 2 2 2
´

2 ´ ´2 ´u u uu uu uu u σε σ= ⋅ − ⋅ + ⋅

where we have defined the correlation coefficient
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64



CAS Intro: Transverse Linear Beam Dynamics W. Hillert

Optical Functions
Liouville’s theorem ↔ density of states around a phase space point = const.

→ particles occupy the same area in phase space at different s

The emittance εu remains constant under conservative forces!
It characterizes the beam's “internal” properties!

0 0 ´ ´u r u r r up m v m c u u pγ β γ= = ⋅ ↔ mono-energetic beam:

→ Liouville’s theorem holds as well for the trace space (if βrγr = const.!) 

→ Normalization of the beam parameters by the emittance:
Separation of the impact of magnet optics and the beam's internal properties!
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2 22 ´ ´u u u uu uu uε γ α β= + +

Optical Functions
We call the newly defined  αu, βu, γu optical functions (Twiss parameters)!

Using them, the equation of the envelope ellipse reads in the „conventional“ form:

All the above derived equations appear in identical form for the horizontal 
and vertical plane. In the following, we will skip the index u for reason of 

simplicity. Please note, that this doesn’t imply that emittances and 
corresponding Twiss parameters are equal in both planes – they are not!
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2 22 ´ ´u uu uε γ α β= + +

u

u´

A = πε
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Optical Functions
Meaning of the optical functions:

• represents the r.m.s. beam envelope per unit emittance
• represents the r.m.s. beam divergence per unit emittance
• is proportional to the correlation between u and u´

β
γ

α
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Remark:
According to the
statistical definition,
the ellipse does NOT
enclose all points
(= particle positions)
in trace space!
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Beam Matrix
Beam matrix = covariance matrix of the particle distribution:

Envelope ellipse in trace space:

( )beamdet= Σ

Emittance ↔ beam matrix:

( ) 1
beam

T
u u uε −= ⋅ ⋅ ⋅Σ 

→ Important relation between the optical functions:
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Solving the EQM
Equation of motion in general form:

( )0( ) ( ) cos ( )u s A w s sµ ϕ= ⋅ ⋅ +

Ansatz for a solution of the equation of motion:

´́ ( ) ( ) ( ) 0u s K s u s+ ⋅ =

Discussion of the chosen parametrization:

• Phase advance µ(s) is positive and monotonously increasing

• Amplitude function w(s) > 0 and constant A > 0 are defined except for a 

scaling factor since only the product A·w(s) enters. We choose

0( ) 0, (́ ) 0, (0) 0s sµ µ µ µ> > = =

2
0 0 0

0

1(0) ´ 1
´

w w w µ
µ

= = → =

( )0, defined by individual particleA ϕ
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Decoupled Equations

Integration of the second equation:

Inserting the Ansatz in the equation of motion yields

( ) [ ] ( )2
0 0´́ ´ cos 2 ´ ´ ´́ sin 0w w K w w wµ µ ϕ µ µ µ ϕ − ⋅ + ⋅ ⋅ + − ⋅ ⋅ + ⋅ + = 

Relation is valid for any given phase advance µ(s) and any given position s
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=0 =0
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Beta Function
Definition of a new function - the beta function:

2( ) ( )s w sβ =

→ transverse position displacement = oscillation around reference orbit
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Building the first derivative and again defining a new alpha function, we obtain
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Au s s s s
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α µ ϕ µ ϕ
β

= − ⋅ + + +

( )with     ( )
2
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Twiss Parameters
The equation for u can be transformed to

which can be used in combination with the equation for u´ to obtain

Using cos2 + sin2 = 1 we derive

( )
2

2
0 2cos u

A
µ ϕ

β
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2

2
0sin ´u u
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2
2
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s s

α β
β β

 
+ ⋅ + ⋅ =  

 

Defining a new gamma function by                           this can be transformed to

2 2 22 ´ ´u uu u Aγ α β+ + =

… looks perfectly the same like the envelope ellipse equation on slide 66! 

( )21γ α β= +
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Twiss Parameters
Are the newly defined α, β and γ identical to those defined on slide 65?

Each particle is defined by its individual Ai and ϕi,0!

Let’s check and calculate the second statistical moments:

( )2 2 2 2
0,cosu i iu Aσ β µ ϕ= = +

( ) ( ) ( ) ( ){ }
2

2 2 2 2 2
´ ´ cos ... sin ... 2 cos ... sin ...i

u
Auσ α α
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( ) ( ) ( ){ }2 2
0, 0, 0,´ cos cos sini i i iuu A α µ ϕ µ ϕ µ ϕ= − + + + +

( ) ( ) ( )
222 2 2 2 21´ ´

4 iu u uu Aε βγ α= − = −

→ indeed – they are:

21 1Twiss parameters , , ,    with , ,
2
β αα β γ µ µ α γ

β β
′ +′= = − =

21
2 iA γ=

21
2 iA α= −

21
2 iA β=

2
21

2 iA =  
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Proceedings!

But all particles are described by the same optical functions α, β, γ, µ
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Single Particle Dynamics
Each particle will stay on its own ellipse, which will enclose a constant area 
in trace space. The amplitude factor A represents the Courant Snyder 
invariant! The shape of the ellipse is determined by the Twiss parameters 
α, β, γ and will change along the magneto-optics system, its area will stay 
always constant (Rem.: in case of conservative forces and no acceleration). 
The shape (not the size) of all single particle ellipses are determined by the 
same Twiss parameters!

2 2 22 ´ ´u uu u Aγ α β+ + =

area = πA2
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β1, α1, γ1 β2, α2, γ2
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Transformation in Trace Space
The transformation of the displacements of a single particle along a beam line may 
be derived from the transport matrixes.
Important finding: the area A2 of the corresponding ellipse will remain constant!
So, comparing the displacements at s=0 with those at s, we have for a particle on 
its ellipse with area A2

2 2 2 2 2
0 0 0 0 0 0 02 2u u u u A u uu uγ α β γ α β′ ′ ′ ′+ + = = + +

Any particle trajectory starting at s=0 transforms to s≠0 by

0

0

( ) ( )
( ) ( )

uu C s S s
u C s S s u

    
→ = ⋅      ′ ′ ′ ′     

which gives via matrix inversion for the inverse transformation

1
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u
C s s u C u Cuu

−

=

=

  ′ ′ ′− −     
= ⋅ ⋅ =         ′ ′ ′ ′′ − − +    ′ ′ − 

M

M


0u u= ⋅M 
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Trafo in Trace Space
We therewith get for the quadratic and mixed terms

which we insert in the ellipse equation                                                    getting

This gives the wanted transformation of the Twiss parameters:

2 2 2 2 2
0 2u S u SS uu S u′ ′ ′ ′= − +

2 2 2 2 2
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Beta Matrix Formalism
Another useful relation may be obtained by defining the Beta matrix B

β α
α γ

− 
≡  − 

B

which yields with

( )1with      since det 1
γ α
α β

−  
= = 

 
B B

Displacement vector      transforms according tou

1 0u u= ⋅M 

By inserting                     we obtain with  1−= ⋅1 M M
1 1

0
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T TTu uε − − −= ⋅ ⋅ ⋅⋅ ⋅⋅M M MB M 

2, det( ) 1β γ α= − =B
2

beam2, u uu

uu u

σ σ
ε
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′
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⋅ = ≡ 

 
B Σ

( )1 0, T Tu u= ⋅M 

0
T Tu= ⋅ M

( ) ( ) ( )1 1 1
0 0 0

T Tu u− − −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅M M B M M 

( ) 1

1 0 1
T Tu u

−
= ⋅ ⋅ ⋅ ⋅M B M 

1 1
0 0 0

T Tu u u uε − −= ⋅ ⋅ = ⋅ ⋅B B   
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2 22u uu uε γ α β′ ′= + +

( )1 1T T T− −⋅ = ⋅M M M M
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Beta Matrix Formalism
We therewith get the transformation of the beta matrix

1 0
T= ⋅ ⋅B M B M

We thus can transform the Twiss parameters by only taking use of the

transfer matrix!

Explicitly:

0 0

0 0

Tβ αβ α
α γα γ

−−   
= ⋅ ⋅   −−   

M M
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→ Hands-On Lattice Calculations
recommended: E12, E14
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Example: Free Drift
Application of the beta matrix formalism to a drift around a symmetry point 
of a transfer line where αsym = 0  →  γsym = 1/βsym :

drift drift

01 1 0
( )

0 10 1 1
T

sym

sym

sym

s
s

s
β

β
    

= ⋅ ⋅    
    

M B M

B
 



2

1

sym
sym sym

sym sym

s s

s

β
β β

β β

 
+ 

 =  
  
 

This gives the relations for the beam parameters around a symmetry-point:
2

( ) sym
sym

ssβ β
β

= +

( )
sym

ssα
β

= −

1( )
sym

sγ
β

=

The corresponding beam size scales with

( ) ( )s sσ ε β= ⋅
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Emittance ↔ Wavelength
Evolution of rms beam size                and beam divergence                :σ εβ= σ εγ′ =

2 2

0 0 2
0 0

( ) 1 1 , ( ) const.
sym

s ss s εσ σ σ σ
β σ ε σ

   
′= ⋅ + = ⋅ + = =       

To obtain further insights, let us compare the particle’s beam with a Gaussian 
light beam (TEM00) with wavelength λ. There, we get for the beam radius w

80

4π ε λ⋅ 

A charged particle’s beam with emittance ε “behaves” like a
Gaussian TEM00 light beam with wavelength λ / (4π ) !

2 2 2
0 0

0
w 4w( ) w 1    with the Rayleigh length   R

R

ss z
z

π πσ
λ λ

 
= ⋅ + = = 

 
Direct comparison reveals the important relation
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Example: Free Drift

0α > 0α <0α =

RR

81

( )sσ
0σ02σ

s

x

2 symβ

→ Hands-On Lattice Calculations
optional: E2.3Ph
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The transformation matrix M can be derived also from the Twiss parameters. With

and the starting conditions u(0) = u0, u´(0) = u0´, µ (0) = 0, which transforms to

0

0 0

0
0 0 0

0
0c s, 1inos uuu αϕ β

ε
ϕ

ε β β

 
′= − +  

 
=

we obtain M, only dependent on the initial and final Twiss parameters (and µ!)
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00 0

0 0

cos sin sin
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1cos sin cos sin
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β
µ α µ β β µ

β

βα α α αµ µ µ α µ
β β β β β

 
+ 

 =  
− + − − 

 

M
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Transfer Matrix from Twiss

[ ]{ }00 00( ) cos sin sin cossin so ic ns cosu s ϕ ϕε α µ µ µ µ
β

ϕ ϕ′ = − ⋅ ⋅ ⋅ − ⋅ − ⋅ + ⋅

( ) { }00 0( ) cos cos si sn incosu s µϕεβ µ ϕϕ ε β µ= + = ⋅ ⋅ ⋅ − ⋅
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End of 3rd Lecture!

83

Beam Emittance!
Optical Functions!
Twiss Parameters!

Beam, Beta Matrix!
Twiss Matrix!
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