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Recap 5th Lecture
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Real Circular Accelerators with Field Errors:

Dipole Errors: closed orbit deviations 

Quadrupole Errors: effect on beta function (beam size) and tune

tune shift

beta beating

Optical Resonances: fractional tunes lead to instabilities → stop bands in tune diagram

general resonance condition: m + n = order of resonance

Tune Diagram: plot Qy vs. Qx with stop bands

Adiabatic Damping: Liouville → phase space, u´ “shrinks” through acceleration: 

Normalized Emittance:remains constant during acceleration
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5. Dynamics with Off 
Momentum Particles

• Dispersion and dispersion functions
• Dispersion in circular accelerators
• Chromaticity
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Picture taken from https://en.wikipedia.org/wiki/MAX_IV_Laboratory#/media/File:Max_IV%E2%80%93flygbild_06_september_2014-2.jpg

MAX IV



CAS Intro: Transverse Linear Beam Dynamics W. Hillert

Equation of Motion
We will come back to the equation of motion, now explicitly treating the 
momentum dependent right hand side, depending on the relative momentum 
deviation 0p pδ = ∆

2
1´́ ( ) ( ) ( )
( )

´́ ( ) ( ) ( )

1
( )

0

p
s

x s k s x s
s

y s k s y

p

s

ρ ρ
 

+ − ⋅ = 
 

+ ⋅ =

∆

Since the dynamics of off momentum particles is only affected in the horizontal 
plane, we will restrict the treatment to 1D including the momentum dependence 
and concentrate on the horizontal trace space (x, x´).

Remaining task: find a particular solution xih of the inhomogeneous equation!
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Dipole Magnet
A particular solution for a non-vanishing                                       .is ihxp p ρδ δ= = ⋅∆

( ) ( ))( ) cos( si) n(h ihx a s sx xs s s bρ ρ ρ δ⋅ + ⋅= + + ⋅=

The integration constants a, b are again derived from the boundary conditions at 
s = 0, but now the inhomogeneous solution has to be included:
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and by defining the bending angle ϕ = L/ρ of the dipole magnet, we obtain 
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Recalling the solution of the homogeneous equation gives
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Dispersion
This can be easily implemented in the matrix formalism by adding a 3rd component 
to the particle’s position vector dealing with the actual relative momentum 
deviation compared to the reference particle:
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First neglecting the dependence of the quadrupole strength k on the actual 
particle’s momentum, the quadrupole transfer matrices remain “unchanged”:
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→ Hands-On Lattice Calculations recommended: E25, E26
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Dispersion Function
Important:
Whereas a quadrupole magnet will not directly cause an impact on the particle’s 
trajectory, a dipole magnet creates a (horizontal) dispersion:

( )13 231 cos , ´ sinD r D rρ ϕ ϕ= = − = =

The dispersion represents the offset due to a relative momentum deviation ∆p/p = 1.
In general, we have:
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Here, D(s) is the dispersion function, a solution of the equation of motion for δ = 1. 
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This reads in vector notation:
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Dispersion Function
3x3 Formalism:

Since the transformation of the homogeneous solution is well know from the 
2x2 formalism and can be separated, we have  
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and can thus calculate the transformation of the dispersion function:
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Generation of Dispersion
A dipole magnet will create dispersion → dispersion orbit
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A quadrupole magnet will not create any dispersion:
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Dispersion Function
But now take care:

Both dipole and quadrupole magnets therefore will modify an existing 
dispersion according to

Due to                                  we will observe a change of the dispersion 
orbit           when passing a dipole magnet or a quadrupole magnet!! 
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Beams with Dispersion
The influence of dispersion on the effective beam size, divergence and emittance can be 
calculated using the statistical definition and replacing δ by the r.m.s. relative momentum 
spread σδ:
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and thus
( ) ( )2 2', ´x x x x x xD Dδ δσ ε β σ σ ε γ σ= + ⋅ = + ⋅ 

The effective emittance has to be obtained from a lengthy calculation first defining a 
generalized 6-dimensional intensity distribution          and then integrating over unwanted 
coordinates and thus deriving an intensity distribution                 in which finally appears:
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Periodic Dispersion Functions
In a periodic lattice, the dispersion function has – as well as the beta function – to fulfill 
periodic boundary conditions:

yielding

Thus the dispersion function can obtained from applying the 3x3 transport matrix M(L):
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Dispersive Lattice
Applying this to our model toy synchrotron, we can derive the dispersion function which is 
plotted in blue:

Please note that the total 
beam width is given by

( )2
x x x xD δσ ε β σ= +

The dispersion shows the 
same general behaviour as 

the corresponding beta 
function! 
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recommended: E29
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Chromaticity
Since the quadrupole strength k was normalized to 
the reference momentum p0, the focusing of off-
momentum particles will be different. Thus, we 
expect a different tune for off-momentum particles!

,
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,x yx y
pQ
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ξ ∆
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The variation of tunes is called chromaticity and is defined by the factor ξ in 

We distinguish between natural chromaticity created by the chromatic aberration 
of quadrupole magnets and perturbations derived from non-linear perturbations in 
the particles trajectories (e.g. produced by sextupole magnets).
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Natural Chromaticity
The quadrupole strength scales with the particles momentum:
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and the tune shift can therefore be calculated from the perturbation formula:
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Since in a linear lattice, the horizontal beta function is always maximal in a 
focusing quadrupole where K > 0 and minimal in a defocusing quadrupole 
where K < 0, the natural chromaticity is always negative!
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Natural chromaticity:

Take care:
Kx = −k
Ky = +k
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Chromaticity produced by Sextupoles
A beam of particles moving on a dispersion orbit through a sextupole magnet is 
(de-)focused by the nonlinear field due to horizontal displacement                       . 
We thus can derive a position dependent focusing strength from

0x D p p= ⋅ ∆

giving a dispersion dependent Kx,sext and Ky,sext to:
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This adds to the natural chromaticity and gives in total:
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Chromaticity Correction
In order to avoid a large tune spread, chromaticity has to be corrected by the use of 
additional sextupole magnets right after focusing and defocusing quadrupoles 
where the horizontal dispersion does not vanish

Quadrupole

Sextupole

Focal length
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This correction will have an influence on the stability of the beam and the 
maximum aperture given by nonlinear effects (so called dynamic aperture):

Dynamic Aperture

The dynamic aperture can be calculated from a tracking of the particles orbit 
through the accelerator where the nonlinear effect of sextupole magnets has to be 
treated as step by step correction in linear beam matrix optics:

145



CAS Intro: Transverse Linear Beam Dynamics W. Hillert

Dynamic Aperture

A sextupole of length l will produce an angular kick in the horizontal and vertical orbit of

The orbit vector is transformed from s0 to s1 by matrix transformation 1 1 0U U= ⋅M
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By this method a randomly chosen distribution of start 
vectors       is tracked through the accelerator for 
many revolutions and the resulting dynamic aperture 
is derived from the phase space representation.

0U
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