Particle Sources

Dan Faircloth ISIS Low Energy Beams Group Leader Rutherford Appleton Laboratory STFC-UKRI

CERN Accelerator School, Introduction to Accelerator Physics Santa Susanna, Spain Tuesday 24th September 2024

Thermionic emission

1901 Owen Richardson

Cambridge University

 $J = A_G T^2 e^{\frac{-W}{kT}}$

Richardson's Law

Same form as the Arrhenius equation

Current rapidly increases with temperature

Thermionic emission

For a good electron emitter you need:

Lowest possible work function Highest possible temperature

Child-Langmuir Law

(Space charge limited extraction)

C.D Child 1911

I Langmuir 1913

90 kV triode gun with Pierce geometry

Thermionic dispenser cathode with integrated heater and grid

YU 171

Sinter of W and BaO

1cm² 12 W heater

1000 ns, 3 nC long pulses or 1 ns, 1.5 nC short pulses

Lifetime = several thousand hours

Photo emission

first observed by Heinrich Hertz in 1887

theoretical explanation by Einstein in 1905

Photo electric emission

Photo electric emission

Photo Emission Gun

Cathode-Anode Gap (mm)

Space Charge

Space Charge

Another reason to use lasers is...

Lasers are so fast they can easily beat Child-Langmuir

(actually so can gridded extraction)

RF Photoemission Source

RF Photoemission Source

20 ps, 1 nC pulses (50 A pulse)

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Super conducting

15 ps, 1 nC pulses (67 A pulse)

High brightness low emittance guns for FEL

Plasma Cathode

Very high electron currents can be extracted from plasma cathode electron sources

Other electron sources:

Combinations of those already mentioned e.g. photo-thermionic

Field emission from needle arrays Diamond amplifiers etc...

plasma generator +

(to make ionised particles)

- extraction system

(to select the correct particle species to accelerate and shape the beam) Extracting a beam from a plasma is complicated because:

1. Plasmas contain ' different particle species

2. The emission surface is a dynamic equilibrium

B

0 V

ion beam

Plasma generation - Ionisation

neutral atom

Most sources rely on electron impact ionisation

Plasma generation - Ionisation

Electrons also drive many other key **excitation** and **disassociation** plasma processes positive ion

Most sources rely on electron impact ionisation
Accelerating electrons

 $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ RF
Power
Supply

(a) Capacitively Coupled Plasma (CCP)

Voltage applied to electrodes creates electric field

(b) Inductively Coupled Plasma (ICP)

Time varying current in a coil creates a magnetic field the induces a time varying electric field (c) RF Cavity(waveguide or coax coupled)

The electric field component of an electromagnetic wave in a cavity

Fast, light, electrons - sheath phenomena

anode

cathode

Canal Ray Source

In 1886 Eugen Goldstein discovered canal rays

Heated Cathode Filament Source

Electron Bombardment Source "the first true ion source"

Arthur Dempster 1916 developed for early mass spectrometry

Vacuum Arc Ion Sources

1980s - Ian Brown at Lawrence Berkley Lab (and others)

MEtal Vapor Vacuum Arc (MEVVA)

15 mA of U⁴⁺ ions

Laser plasma ion sources

CÉRN

ITEP Laser source at CERN

ITEP Laser source at CERN

TWAC at ITEP Moscow

7 mA, 10 µs pulses of C⁴⁺

BNL and RIKEN RIKEN

Masahiro Okamura has demonstrated Direct Plasma Injection into an RFQ

Microwave Ion Sources

There are two types of **microwave driven** ion source:

1. High pressure microwave discharge sources

2. Electron Cyclotron Resonance (ECR) sources

Microwave Discharge Ion Source

87.5 mT

SILHI Microwave Source

cea

SACLAY

Rafael Gobin CEA Saclay Late 1990s

140 mA DC protons For one year!

ESS Source

Microwave Discharge Ion Source

ECR Ion Source

28 GHz superconducting VENUS ECR

Higher frequency = higher charge states

200 eµA U³⁴⁺ ions 4.9 eµA U⁴⁷⁺ ions Daniela Leitner LBNL Late 2000s

Electron Beam Ion Sources

Electron Beam Ion Sources

1.7 emA, 10 μs, 5 Hz Ag³²⁺ ions

Fully stripped nuclei can be obtained in EBIT mode

Jim Alessi BNL

Negative Ion Sources

Knocking electrons off is easy!

- It is much harder to add them on....
- Not all elements will even make negative ions

Hydrogen has an electron affinity of 0.7542 eV

H⁻ has much larger cross sections than H⁰ Up to 30 times for e⁻ collisions Up to 100 times for H⁺ collisions

H⁻ are very fragile!

Early attempts at producing negative ion beams:

- Charge exchange of positive beams in gas cells
 very inefficient
- 2. Extraction from existing ion sources- mostly electrons extracted

Early 1970s Budker Institute of Nuclear Physics Novosibirsk

Production of H⁻ ions by surface ionisation with the addition of caesium

Gennady Dimov

Yuri Belchenko

Vadim Dudnikov
Caesium – The magic elixir of negative ion sources!

Ce 58	Pr	Nd	Pm	82 Sm	Eu	Gd ⁶⁴	Tb	66 Dy	67 Ho	Er	69 Tm	Yb	7 Lu
90	Pa	92	93	94	Am	96	97	98	99	100	101	102	10
Th	Pa	U	Np	Pu		Cm	Bk	Cf	Es	Fm	Md	No	Lr

1 electron in

the outer orbital

An amazing donor of electrons = great for making negative ions

Caesium Chromate

各酸铯

Caesium coverage and work function

Early 1970s Budker Institute of Nuclear Physics Novosibirsk

Penning SPS

Vadim Dudnikov

- Very high current density > 1 Acm⁻²
- Low noise

Science and Technology Facilities Council

ISIS Neutron and Muon Source

Early 1970s Budker Institute of Nuclear Physics Novosibirsk

Gennady Dimov

Production of H⁻ ions by surface ionisation with the addition of caesium

Yuri Belchenko

Vadim Dudnikov

Magnetron SPS

BNL Magnetron

80 mA of H⁻ but only at low duty cycles < 0.5%

Filament cathode surface converter source

LANSE Surface Converter Source

SNICS (Source of Negative Ions by Caesium Sputtering) Cathode Sputter grater Roy Middelton et. al.

Corp.

"A Negative-Ion Cookbook" cathode material and gas recipes

Negative	<mark>e ion cu</mark>	rrents	(in µA)
H ⁻ 130	Si [–] 430	As [–] 60	Cs 1.5
D ⁻ 150	P [–] 125	Se [–] 10	CeO 0.2
Li ⁻ 4	S [–] 100	Br [–] 40	NdO 0.3
BeO ⁻ 10	Cl [–] 100	Sr [–] 1.5	EuO 1.0
B ⁻ 60	CaH ₃ [–] 0.8	Y [–] 0.66	ErO 10
B ₂ ⁻ 73	TiH [–] 10	Zr [–] 9.4	TmO 1.0
C ⁻ 260	VH [–] 25	Nb [–] 7	YbO 1.0
$C_2^- 40$	Cr- 5	Mo ⁻ 5	Ta ⁻ 9.5
$CN^- 12$	MnO- 4	Rh ⁻ 5	TaO ⁻ 6
$CN^-(15N) 20$	Fe- 20	Ag ⁻ 13	W ⁻ 2.5
$O^- 300$	Co- 120	CdO ⁻ 7	Os ⁻ 15
$F^- 100$	Ni- 80	InO ⁻ 20	Ir ⁻ 100
$Na^- 4.0$	Cu- 160	Sn ⁻ 20	Pt ⁻ 250
$MgH_2^- 1.5$	ZnO- 12	Sb ⁻ 16	Au ⁻ 150
$AI^- 7$	GaO- 7	Te ⁻ 20	PbO ⁻ 1
$AI_2^- 50$	Ge- 60	I ⁻ 220	Bi ⁻ 3.5

Produces a large range of different negative ions

Volume Production

 $H_2^* + e (\leq 1 \text{ eV}) \rightarrow H^- + H^0$

Dissociative attachment of **low energy** electrons to rovibrationally excited H_2 molecules

Marthe Bacal Ecole Polytechnique mid 1970's

Sources developed by Ehlers + Leung at LBNL

Multicusp Filament Volume Source

Filament Volume Source

15 mA DC H⁻ beam

Internal RF Solenoid Coil Volume Source

External RF Solenoid Coil Volume Source

ISIS RF H⁻ Ion Source (currently in commissioning)

SNS ion source

60 mA H⁻ 1 ms, 60 Hz

CERN have developed a ceasiated external coil source for LINAC4

Polarised Electrons Jefferson Lab Thomas Jefferson National Accelerator Facility Strained GaAs photocathode \square Channels Alumina Ceramic Electrode Corona Shield Circularly polarized laser light produces polarised electrons 80 Polarization (%) 70 1 QE (%) — QE Pol 0.1 40 0.02 30 820 860 740 780 900 λ (nm)

100 µA polarised e⁻

Polarised H⁻

- 1. High current proton source and H neutraliser cell
- 2. He ioniser cell
- 3. Laser pumped Rb-vapour cell
- 4. Sona-transition
- 5. Na jet ioniser cell

1.6 mA 400 µs polarised H⁻

Which Source?

- Type of particle
- Current, duty cycle, emittance
- Lifetime
- Expertise available
- Money available
- Space available

Reliability – is critical!

- Operational sources should deliver >98% availability
- Lifetime compatible with operating schedule
- Ideally quick and easy to change
- Short start-up/set-up time

cryogenic systems timing systems

machine interlocks communication systems

Reliability also depends on: Everything Else!

low voltage power supplies

cooling water

human error

hydrogen

vacuum systems

temperature controllers high voltage power supplies

control systems

mains power

personnel interlocks material purity

laser systems

compressed air supplies

Summary

- Particle sources are a huge interesting subject
- A perfect mixture of engineering and physics
- We have only scratched the surface

Thank you for listening Questions?